From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Search result: Catalogue data in Autumn Semester 2014

Biomedical Engineering Master Information
Master Programme According to Programme Regulations 2013
Track Courses
Track Core Courses
During the Master program, a minimum of 12 CP must be obtained from track core courses.
227-0385-00LBiomedical Imaging Information W4 credits3GS. Kozerke, U. Moser, M. Rudin
AbstractIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
ObjectiveUnderstand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. Develop the mathematical framework to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods.
ContentX-ray imaging
Computed tomography
Single photon emission tomography
Positron emission tomography
Magnetic resonance imaging
Ultrasound/Doppler imaging
Lecture notesLecture notes and handouts: Biomedical Imaging
LiteratureIntroduction to Medical Imaging: Physics, Engineering and Clinical Applications by Andrew Webb, Nadine Barrie Smith,
Cambridge University Press
227-0386-00LBiomedical Engineering Information W4 credits3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
AbstractIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
ObjectiveIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
ContentIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
Lecture notesIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UG. Székely, O. Göksel, L. Van Gool
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 credits3GM. Stampanoni, K. S. Mader
AbstractThe lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.
ObjectiveIntroduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications
ContentSynchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.
Lecture notesAvailable online
LiteratureWill be indicated during the lecture.
  •  Page  1  of  1