Das Frühjahrssemester 2021 findet bis auf Weiteres online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Frühjahrssemester 2015

Elektrotechnik und Informationstechnologie Master Information
Fächer der Vertiefung
Insgesamt 42 KP müssen im Masterstudium aus Vertiefungsfächern erreicht werden. Der individuelle Studienplan unterliegt der Zustimmung eines Tutors.
Communication
Kernfächer
Diese Fächer sind besonders Empfohlen, um sich in "Communications" zu vertiefen.
NummerTitelTypECTSUmfangDozierende
227-0111-00LCommunication Electronics Information W6 KP2V + 2UQ. Huang
KurzbeschreibungElectronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively.
LernzielFoundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver.
InhaltAccounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications.
This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications.
We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier.
We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance.
When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail.
Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter.
A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base.
An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized.
SkriptScript with slides and notes is available.
Voraussetzungen / BesonderesThe course Analog Integrated Circuits is recommended as preparation for this course.
227-0418-00LAlgebra and Error Correcting Codes Information W6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course is also an introduction to "abstract" algebra and some of its applications in coding and signal processing.
LernzielThe course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course is also an introduction to "abstract" algebra and some of its applications in coding and signal processing.
InhaltCoding: coding and modulation, linear codes, Hamming space codes, Euclidean space codes, trellises and Viterbi decoding, convolutional codes, factor graphs and message passing algorithms, low-density parity check codes, turbo codes, polar codes, Reed-Solomon codes.
Algebra: groups, rings, homomorphisms, ideals, fields, finite fields, vector spaces, polynomials, Chinese Remainder Theorem.
SkriptLecture Notes (english)
227-0420-00LInformation Theory II Information W6 KP2V + 2US. M. Moser
KurzbeschreibungThis course builds on Information Theory I. It introduces additional topics in single-user communication, connections between Information Theory and Statistics, and Network Information Theory.
LernzielThe course has two objectives: to introduce the students to the key information theoretic results that underlay the design of communication systems and to equip the students with the tools that are needed to conduct research in Information Theory.
InhaltDifferential entropy, maximum entropy, the Gaussian channel and water filling, the entropy-power inequality, Sanov's Theorem, Fisher information, the broadcast channel, the multiple-access channel, Slepian-Wolf coding, and the Gelfand-Pinsker problem.
Skriptn/a
LiteraturT.M. Cover and J.A. Thomas, Elements of Information Theory, second edition, Wiley 2006
227-0436-00LDigital Communication and Signal Processing Information W6 KP2V + 2UA. Wittneben
KurzbeschreibungA comprehensive presentation of modern digital modulation, detection and synchronization schemes and relevant aspects of signal processing enables the student to analyze, simulate, implement and research the physical layer of advanced digital communication schemes. The course both covers the underlying theory and provides problem solving and hands-on experience.
LernzielDigital communication systems are characterized by ever increasing requirements on data rate, spectral efficiency and reliability. Due to the huge advances in very large scale integration (VLSI) we are now able to implement extremely complex digital signal processing algorithms to meet these challenges. As a result the physical layer (PHY) of digital communication systems has become the dominant function in most state-of-the-art system designs. In this course we discuss the major elements of PHY implementations in a rigorous theoretical fashion and present important practical examples to illustrate the application of the theory. In Part I we treat discrete time linear adaptive filters, which are a core component to handle multiuser and intersymbol interference in time-variant channels. Part II is a seminar block, in which the students develop their analytical and experimental (simulation) problem solving skills. After a review of major aspects of wireless communication we discuss, simulate and present the performance of novel cooperative and adaptive multiuser wireless communication systems. As part of this seminar each students has to give a 15 minute presentation and actively attends the presentations of the classmates. In Part III we cover parameter estimation and synchronization. Based on the classical discrete detection and estimation theory we develop maximum likelihood inspired digital algorithms for symbol timing and frequency synchronization.
InhaltPart I: Linear adaptive filters for digital communication
• Finite impulse response (FIR) filter for temporal and spectral shaping
• Wiener filters
• Method of steepest descent
• Least mean square adaptive filters

Part II: Seminar block on cooperative wireless communication
• review of the basic concepts of wireless communication
• multiuser amplify&forward relaying
• performance evaluation of adaptive A&F relaying schemes and student presentations

Part III: Parameter estimation and synchronization
• Discrete detection theory
• Discrete estimation theory
• Synthesis of synchronization algorithms
• Frequency estimation
• Timing adjustment by interpolation
SkriptLecture notes.
Literatur[1] Oppenheim, A. V., Schafer, R. W., "Discrete-time signal processing", Prentice-Hall, ISBN 0-13-754920-2.
[2] Haykin, S., "Adaptive filter theory", Prentice-Hall, ISBN 0-13-090126-1.
[3] Van Trees, H. L., "Detection , estimation and modulation theory", John Wiley&Sons, ISBN 0-471-09517-6.
[4] Meyr, H., Moeneclaey, M., Fechtel, S. A., "Digital communication receivers: synchronization, channel estimation and signal processing", John Wiley&Sons, ISBN 0-471-50275-8.
Voraussetzungen / BesonderesFormal prerequisites: none
Recommended: Communication Systems or equivalent
227-0438-00LFundamentals of Wireless Communication Information
Findet dieses Semester nicht statt.
W6 KP2V + 2UH. Bölcskei
KurzbeschreibungThe class focuses on fundamental communication-theoretic aspects of modern wireless communication systems. The main topics covered are the system-theoretic characterization of wireless channels, the principle of diversity, information theoretic aspects of communication over fading channels, and the basics of multi-user communication theory and cellular systems.
LernzielAfter attending this lecture, participating in the discussion sessions, and working on the homework problem sets, students should be able to
- understand the nature of the fading mobile radio channel and its implications for the design of communication systems
- analyze existing communication systems
- apply the fundamental principles to new wireless communication systems, especially in the design of diversity techniques and coding schemes
InhaltThe goal of this course is to study the fundamental principles of wireless communication, enabling students to analyze and design current and future wireless systems. The outline of the course is as follows:

Wireless Channels
What differentiates wireless communication from wired communication is the nature of the communication channel. Motion of the transmitter and the receiver, the environment, multipath propagation, and interference render the channel model more complex. This part of the course deals with modeling issues, i.e., the process of finding an accurate and mathematically tractable formulation of real-world wireless channels. The model will turn out to be that of a randomly time-varying linear system. The statistical characterization of such systems is given by the scattering function of the channel, which in turn leads us to the definition of key propagation parameters such as delay spread and coherence time.

Diversity
In a wireless channel, the time varying destructive and constructive addition of multipath components leads to signal fading. The result is a significant performance degradation if the same signaling and coding schemes as for the (static) additive white Gaussian noise (AWGN) channel are used. This problem can be mitigated by diversity techniques. If several independently faded copies of the transmitted signal can be combined at the receiver, the probability of all copies being lost--because the channel is bad--decreases. Hence, the performance of the system will be improved. We will look at different means to achieve diversity, namely through time, frequency, and space. Code design for fading channels differs fundamentally from the AWGN case. We develop criteria for designing codes tailored to wireless channels. Finally, we ask the question of how much diversity can be obtained by any means over a given wireless channel.

Information Theory of Wireless Channels
Limited spectral resources make it necessary to utilize the available bandwidth to its maximum extent. Information theory answers the fundamental question about the maximum rate that can reliably be transmitted over a wireless channel. We introduce the basic information theoretic concepts needed to analyze and compare different systems. No prior experience with information theory is necessary.

Multiple-Input Multiple-Output (MIMO) Wireless Systems
The major challenges in future wireless communication system design are increased spectral efficiency and improved link reliability. In recent years the use of spatial (or antenna) diversity has become very popular, which is mostly due to the fact that it can be provided without loss in spectral efficiency. Receive diversity, that is, the use of multiple antennas on the receive side of a wireless link, is a well-studied subject. Driven by mobile wireless applications, where it is difficult to deploy multiple antennas in the handset, the use of multiple antennas on the transmit side combined with signal processing and coding has become known under the name of space-time coding. The use of multiple antennas at both ends of a wireless link (MIMO technology) has been demonstrated to have the potential of achieving extraordinary data rates. This chapter is devoted to the basics of MIMO wireless systems.

Cellular Systems: Multiple Access and Interference Management
This chapter deals with the basics of multi-user communication. We start by exploring the basic principles of cellular systems and then take a look at the fundamentals of multi-user channels. We compare code-division multiple-access (CDMA) and frequency-division multiple access (FDMA) schemes from an information-theoretic point of view. In the course of this comparison an important new concept, namely that of multiuser diversity, will emerge. We conclude with a discussion of the idea of opportunistic communication and by assessing this concept from an information-theoretic point of view.
SkriptLecture notes will be handed out during the lectures.
LiteraturA set of handouts covering digital communication basics and mathematical preliminaries is available on the website. For further reading, we recommend
- J. M. Wozencraft and I. M. Jacobs, "Principles of Communication Engineering," Wiley, 1965
- A. Papoulis and S. U. Pillai, "Probability, Random Variables, and Stochastic Processes," McGraw Hill, 4th edition, 2002
- G. Strang, "Linear Algebra and its Applications," Harcourt, 3rd edition, 1988
- T.M. Cover and J. A. Thomas, "Elements of Information Theory," Wiley, 1991
Voraussetzungen / BesonderesThis class will be taught in English. The oral exam will be in German (unless you wish to take it in English, of course).

A prerequisite for this course is a working knowledge in digital communications, random processes, and detection theory.
227-0558-00LPrinciples of Distributed Computing Information W6 KP2V + 2U + 1AR. Wattenhofer
KurzbeschreibungWe study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques.
LernzielDistributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week.
InhaltDistributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems.

Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds
SkriptAvailable. Our course script is used at dozens of other universities around the world.
LiteraturLecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world.

Distributed Computing: Fundamentals, Simulations and Advanced Topics
Hagit Attiya, Jennifer Welch.
McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6

Introduction to Algorithms
Thomas Cormen, Charles Leiserson, Ronald Rivest.
The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8

Disseminatin of Information in Communication Networks
Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger.
Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2

Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes
Frank Thomson Leighton.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1

Distributed Computing: A Locality-Sensitive Approach
David Peleg.
Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8
Voraussetzungen / BesonderesCourse pre-requisites: Interest in algorithmic problems. (No particular course needed.)
252-0407-00LCryptography Information W7 KP3V + 2U + 1AU. Maurer
KurzbeschreibungFundamentals and applications of cryptography. Cryptography as a mathematical discipline: reductions, constructive cryptography paradigm, security proofs. The discussed primitives include cryptographic functions, pseudo-randomness, symmetric encryption and authentication, public-key encryption, key agreement, and digital signature schemes. Selected cryptanalytic techniques.
LernzielThe goals are:
(1) understand the basic theoretical concepts and scientific thinking in cryptography;
(2) understand and apply some core cryptographic techniques and security proof methods;
(3) be prepared and motivated to access the scientific literature and attend specialized courses in cryptography.
InhaltSee course description.
Skriptyes.
Voraussetzungen / BesonderesFamiliarity with the basic cryptographic concepts as treated for
example in the course "Information Security" is required but can
in principle also be acquired in parallel to attending the course.
Empfohlene Fächer
Diese Fächer sind eine Empfehlung. Sie können Fächer aus allen Vertiefungsrichtungen wählen. Sprechen Sie mit Ihrem Tutor.
NummerTitelTypECTSUmfangDozierende
227-0116-00LVLSI I: von Architektur zu hochintegrierter Schaltung und FPGA Information W7 KP5GH. Kaeslin, N. Felber
KurzbeschreibungDiese erste Lehrveranstaltung aus einer dreisemestrigen Vorlesungsreihe befasst sich mit dem Entwurf von Algorithmen und leistungsfähigen Hardware-Architekturen im Hinblick auf ihre Realisierung als ASIC oder mit FPGAs. Im Zentrum steht der Front-End Design mit HDLs sowie automatischer Synthese zur Erzeugung funktionssicherer Schaltungen.
LernzielHochintegrierte Schaltungen (VLSI chips), Anwendungsspezifische Integrierte Schaltungen (ASIC) sowie Field-Programmable Gate-Arrays (FPGA) verstehen. Ihren inneren Aufbau kennen und passende Einsatzgebiete identifizieren können. Beherrschen des Front-End Designs vom Architekturentwurf bis zu Netzlisten auf Gatterniveau. Modellierung und Simulation von Digitalschaltungen mit VHDL oder SystemVerilog. Gewährleisten des korrekten Verhaltens mithilfe von Simulation, Testbenches, und Assertions. Einsatz automatischer Synthesewerkzeuge zur Erzeugung funktionssicherer VLSI und FPGA Schaltungen. Sammeln von praktischen Erfahrungen mit der Hardwarebeschreibungssprache VHDL sowie mit industriellen Werzeugen zur Entwurfsautomatisierung (EDA).
InhaltDie Lehrveranstaltung befasst sich mit Systemaspekten beim Entwurf von hochintegrierten Schaltungen (VLSI) und mit komplexen programmierbaren Bausteinen (FPGA). Behandelt werden:
- Übersicht über Entwurfsmethoden und Fabrikationstiefen.
- Abstraktionsniveaus der Schaltungsmodellierung.
- Aufbau und Konfiguration kommerzieller feldprogrammierbarer Bausteine.
- Design Flows für VLSI und FPGA.
- Spezialisierte und general purpose Architekturen im Vergleich.
- Erarbeiten von Architekturen zu gegebenen Algorithmen.
- Optimierung von Durchsatz, Schaltungsgrösse und Energieeffizienz mithilfe von Architekturumformungen.
- Hardware-Beschreibungssprachen und zugrundeliegende Konzepte.
- VHDL und SystemVerilog im Vergleich.
- VHDL (IEEE Norm 1076) zur Schaltungssimulation und -synthese.
- Das dazu passende neunwertige Logik-System (IEEE Norm 1164).
- Register-Transfer-Level (RTL) Synthese und ihre Grenzen.
- Baublöcke digitaler VLSI Schaltungen.
- Techniken zur funktionalen Verifikation und ihre Grenzen.
- Modulare, weitgehend wiederverwendbare Testbenches.
- Assertion-basierte Verifikation.
- Evaluation synchroner und asynchroner Schaltungstechniken.
- Ein Plädoyer für synchrone Schaltungstechnik.
- Periodische Ereignisse und das Anceau Diagramm.
- Fallstudien und Beispiele, Vergleich von ASICs mit Mikroprozessoren, DSPs und FPGAs.

In den Übungen wird eine digitale Schaltung in VHDL modelliert und eine Testbench für Simulationszwecke geschrieben. Anschliessend werden Netzlisten für VLSI-Schaltungen und FPGAs synthetisiert. Es gelangt ausschliesslich kommerzielle Software führender Anbieter zur Anwendung.
SkriptLehrbuch und alle weiteren Unterlagen in englischer Sprache.
LiteraturH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Voraussetzungen / BesonderesVoraussetzungen:
Grundkenntnisse in Digitaltechnik.

Prüfungen:
Schriftlich im Anschluss an das Vorlesungssemester (FS). Prüfungsaufgaben sind in Englisch vorgegeben, Antworten werden auf Deutsch oder Englisch akzeptiert.

Weiterführende Informationen:
http://www.iis.ee.ethz.ch/stud_area/vorlesungen/vlsi1.en.html
227-0148-00LVLSI III: Test and Fabrication of VLSI Circuits Information W6 KP4GN. Felber, H. Kaeslin
KurzbeschreibungDie letzte der drei Lehrveranstaltungen behandelt die Herstellung von integrierten Schaltungen (IC) in CMOS Technologie, die dabei möglicherweise auftretenden Defekte, sowie vor allem Verfahren und Werkzeuge zum Erkennen von Entwurfsfehlern und Fabrikationsdefekten.
LernzielBeherrschen von Methoden, Software-Werkzeugen und Apparaturen zum testgerechten Entwurf von VLSI Schaltungen, zum Prüfen fabrizierter digitaler ICs, sowie zur physikalischen Analyse im Fehlerfall. Grundwissen über moderne Halbleitertechnologien.
InhaltDiese letzte von drei Vorlesungen geht auf CMOS Fabrikationstechnologie, die Prüfung, die physikalische Analyse und Verpackungstechnik von VLSI Schaltungen ein. Künftige Entwicklungsmöglichkeiten der Mikro- und Nanoelektronik werden ebenfalls aufgezeigt. Behandelt werden:
- Auswirkung von Fabrikationsfehlern.
- Abstraktion vom physikalischen Fehlermodell zu solchen auf Transistor- und Gatterniveau.
- Fehlersimulation an grossen ASICs.
- Erzeugung effizienter Testvektoren.
- Verbesserung der Testbarkeit durch eingebaute Testmechanismen.
- Aufbau und Einsatz von IC-Testern.
- Physikalische Analyse von Bauelementen.
- Verpackungsprobleme und Lösungen.
- Heutige Nanometer CMOS Fabrikationsprozesse (HKMG).
- Optische und post-optische Photolithographie.
- Mögliche Alternativen zur CMOS Technik und MOSFETs.
- Entwicklungsrichtungen für den Schaltungsentwurf.
- Industrielle Planungsgrundlagen für die Weiterentwicklung der Halbleitertechnologie (ITRS).

In den Übungen werden Softwaretools und ASIC-Testgeräte eingesetzt zur Verifikation der Schaltungen nach deren Fabrikation - so weit vorhanden des eigenen ICs aus der Semesterarbeit im 7. Semester. Physikalische Analysemethoden mit professionellem Equipment (AFM, DLTS) vervollständigen die Ausbildung.
SkriptEnglischsprachiges Vorlesungsskript.

Sämtliche Unterlagen in englischer Sprache.
Voraussetzungen / BesonderesVoraussetzungen:
Grundkenntnisse in digitaler Schaltungstechnik.

Weiterführende Informationen:
http://www.iis.ee.ethz.ch/stud_area/vorlesungen/vlsi3.en.html
227-0216-00LControl Systems II Information W6 KP4GR. Smith
KurzbeschreibungIntroduction to basic and advanced concepts of modern feedback control.
LernzielIntroduction to basic and advanced concepts of modern feedback control.
InhaltThis course is designed as a direct continuation of the course "Regelsysteme" (Control Systems). The primary goal is to further familiarize students with various dynamic phenomena and their implications for the analysis and design of feedback controllers. Simplifying assumptions on the underlying plant that were made in the course "Regelsysteme" are relaxed, and advanced concepts and techniques that allow the treatment of typical industrial control problems are presented. Topics include control of systems with multiple inputs and outputs, control of uncertain systems (robustness issues), limits of achievable performance, and controller implementation issues.
SkriptThe slides of the lecture are available to download
LiteraturSkogestad, Postlethwaite: Multivariable Feedback Control - Analysis and Design. Second Edition. John Wiley, 2005.
Voraussetzungen / BesonderesPrerequisites:
Control Systems or equivalent
227-0366-00LIntroduction to Computational Electromagnetics Information W6 KP4GC. Hafner, J. Leuthold, J. Smajic
KurzbeschreibungAn overview over the most prominent methods for the simulation of electromagnetic fields is given This includes domain methods such as finite differences and finite elements, method of moments, and boundary methods. Both time domain and frequency domain techniques are considered.
LernzielOverview of numerical methods for the simulation of electromagnetic fields and hands-on experiments with selected methods.
InhaltOverview of concepts of the main numerical methods for the simulation of electromagnetic fields: Finite Difference Method, Finite Element Method, Transmission Line Matrix Method, Matrix Methods, Multipole Methods, Image Methods, Method of Moments, Integral Equation Methods, Beam Propagation Method, Mode Matching Technique, Spectral Domain Analysis, Method of Lines. Applications: Problems in electrostatic and magnetostatic, guided waves and free-space propagation problems, antennas, resonators, inhomogeneous transmissionlLines, nanotechnic, optics etc.
SkriptDownload from: http://alphard.ethz.ch/hafner/Vorles/lect.htm
Voraussetzungen / BesonderesFirst half of the semester: lectures; second half of the semester: exercises in form of small projects
227-0434-00LHarmonic Analysis: Theory and Applications in Advanced Signal Processing Information W6 KP2V + 2UH. Bölcskei
KurzbeschreibungThis course is an introduction to the field of applied harmonic analysis with emphasis on applications in signal processing such as transform coding, inverse problems, imaging, signal recovery, and inpainting. We will consider theoretical, applied, and algorithmic aspects.
LernzielThis course is an introduction to the field of applied harmonic analysis with emphasis on applications in signal processing such as transform coding, inverse problems, imaging, signal recovery, and inpainting. We will consider theoretical, applied, and algorithmic aspects.
InhaltFrame theory: Frames in finite-dimensional spaces, frames for Hilbert spaces, sampling theorems as frame expansions

Spectrum-blind sampling: Sampling of multi-band signals with known support set, density results by Beurling and Landau, unknown support sets, multi-coset sampling, the modulated wideband converter, reconstruction algorithms

Sparse signals and compressed sensing: Uncertainty principles, recovery of sparse signals with unknown support set, recovery of sparsely corrupted signals, orthogonal matching pursuit, basis pursuit, the multiple measurement vector problem

High-dimensional data and dimension reduction: Random projections, the Johnson-Lindenstrauss Lemma, the Restricted Isometry Property, concentration inequalities, covering numbers, Kashin widths
SkriptLecture notes, problem sets with documented solutions.
LiteraturS. Mallat, ''A wavelet tour of signal processing: The sparse way'', 3rd ed., Elsevier, 2009

I. Daubechies, ''Ten lectures on wavelets'', SIAM, 1992

O. Christensen, ''An introduction to frames and Riesz bases'', Birkhäuser, 2003

K. Gröchenig, ''Foundations of time-frequency analysis'', Springer, 2001

M. Elad, ''Sparse and redundant representations -- From theory to applications in signal and image processing'', Springer, 2010
Voraussetzungen / BesonderesThe course is heavy on linear algebra, operator theory, and functional analysis. A solid background in these areas is beneficial. We will, however, try to bring everybody on the same page in terms of the mathematical background required, mostly through reviews of the mathematical basics in the discussion sessions. Moreover, the lecture notes contain detailed material on the advanced mathematical concepts used in the course. If you are unsure about the prerequisites, please contact C. Aubel or H. Bölcskei.
227-0441-00LMobile Communications: Technology and Quality of Service Information W6 KP4GM. Kuhn
KurzbeschreibungBased on an introduction to wireless communications, the lecture course covers: WLAN and cellular networks, PHY technologies, MAC schemes, mechanisms supporting QoS in wireless networks, QoS measurements and evaluation, benchmarking.
LernzielIntroduction to mobile wireless communications, including characteristics of the wireless channel, PHY layer technologies (for example MIMO, OFDM etc.) and MAC layer schemes; comparison of different cellular standards; definition of QoS and support of QoS in wireless networks; understanding QoS measurements, their evaluation and benchmarking in cellular networks.
Inhalt- Introduction
- Wireless channel, propagation of electromagnetic waves, antenna structures
- Mobile communication, modulation techniques, OFDM, MIMO
- Wireless networks (cellular networks, access networks)
- Wireless standards (e.g. UMTS, LTE, IEEE 802.11)
- Services in wireless networks
- Quality of service (QoS) in wireless networks (definitions, Key Performance Indicators, mechanisms used to support QoS)
- QoS measurements (e.g. voice quality, coverage, delay) and their statistical evaluation
- Benchmarking (methodology, statistical methods and models)


Weekly exercises included in the lecture
SkriptLecture slides are available.
LiteraturWill be announced in the lecture.
Voraussetzungen / BesonderesEnglish
227-0456-00LHigh Frequency and Microwave Electronics I Information
Findet dieses Semester nicht statt.
W6 KP4GC. Bolognesi
KurzbeschreibungUnderstanding of basic building blocks of microwave electronics technology, with a focus on active semiconductor devices.
LernzielUnderstanding the fundamentals of microwave electronics technology, with emphasis on active components.
InhaltIntroduction, microstrip transmission lines, matching, semiconductors, pn-junction, noise, PIN-diode and applications, Schottky diodes and detectors, bipolar transistors and heterojunction bipolar transistors, MESFET physics and properties, high-electron mobility transistors, microwave amplifiers.
SkriptScript: Mikrowellentechnik and Mikrowellenelektronik, by Werner Bächtold
(In German).
Voraussetzungen / BesonderesThe lectures will be held in English.
227-0468-00LAnalog Signal Processing and Filtering Information
Suitable for Master Students as well as Doctoral Students.

This course will be offered in Autumn Semester from HS 2015 on.
It won't be offered in Spring 2016 anymore.
W6 KP2V + 2UH. Schmid
KurzbeschreibungThis lecture provides a wide overview over analogue (mostly integrated) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, and gives examples with sensor interfaces and class-D audio drivers. All circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.
LernzielThis lecture provides a wide overview over analogue (mostly integrated) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, and gives examples with sensor interfaces and class-D audio drivers. All these circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to enable them to gain an understanding of further circuits and systems by themselves.
InhaltAt the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters. Theory and implementation of opamps, current conveyors, and inductor simulators follow. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to switched-capacitor filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping. These topics form the basis for the longest part of the lecture: the discussion of sigma-delta A/D and D/A converters, which are portrayed as mixed analog-digital (MAD) filters in this lecture.
SkriptThe base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

Details: http://people.ee.ethz.ch/~hps/asfwiki/

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.
Voraussetzungen / BesonderesPrerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Knowledge of the Laplace Transform (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary.
227-0478-00LAcoustics II Information W6 KP4GK. Heutschi
KurzbeschreibungAdvanced knowledge of the functioning and application of electro-acoustic transducers.
LernzielAdvanced knowledge of the functioning and application of electro-acoustic transducers.
InhaltElectrical, mechanical and acoustical analogies. Transducers, microphones and loudspeakers, acoustics of musical instruments, sound recording, sound reproduction, digital audio.
Skriptavailable
227-0678-00LSprachverarbeitung II Information
"Sprachverarbeitung II" findet im Frühjahr 2015 zum letzten Mal statt.
W6 KP2V + 2UB. Pfister
KurzbeschreibungInterdisziplinäre Ansätze zur Sprachsynthese und -erkennung
(aufbauend auf Vorlesung Sprachverarbeitung I)
LernzielIn diesem Kurs werden ausgewählte Konzepte und interdisziplinäre Lösungsansätze behandelt, die heute in der Sprachsynthese und in der Spracherkennung erfolgreich eingesetzt werden.
InhaltGrundlagen zur Darstellung und Anwendung linguistischen Wissens: Einführung in die Theorie der formalen Sprachen, Chomsky-Hierarchie, das Wortproblem, endliche Automaten, Parsing.
Sprachsynthese: Analyse natürlicher Sprache (Wörter und Sätze), Lexika, Grammatik für natürliche Sprache; Produktion der abstrakten Darstellung der Aussprache (Lautfolge, Akzente, Sprechgruppen). Zudem wird das ETH-Sprachsynthesesystem SVOX erläutert.
Spracherkennung: Der statistische Ansatz mit Hidden-Markov-Modellen wird eingehend behandelt: Grundlegende HMM-Algorithmen (Forward-, Viterbi- und Baum-Welch-Algorithmus), Implementationsprobleme, HMM-Training, Ganz- vs. Teilwortmodellierung, Einzelworterkenner, Erkennung kontinuierlicher Sprache, statistische und regelbasierte Beschreibung von Wortfolgen.
SkriptEs wird das folgende Lehrbuch verwendet: "Sprachverarbeitung - Grundlagen und Methoden der Sprachsynthese und Spracherkennung", B. Pfister und T. Kaufmann, Springer Verlag, ISBN: 978-3-540-75909-6
Voraussetzungen / BesonderesVoraussetzungen:
Sprachverarbeitung I.
227-1032-00LNeuromorphic Engineering II Information W6 KP5GT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungDiese Vorlesung lehrt die Basis des analogen Chip-Design und Chip-Layout mit Betonung auf Neuromorphe Schaltungen, welche im Herbstsemester in der Vorlesung "Neuromorphic Engineering I" eingeführt werden.
LernzielDiese Vorlesung mit Übungen ermöglicht den Teilnehmern, selbst neuromorphe Schaltungen zu entwerfen und herstellen zu lassen.
InhaltEs werden verschiedene Computerprogramme vorgestellt und benutzt, die zur Simulation, zum Entwurf und zur Entwurfsverifikation von neuromorphen Schaltungen geeignet sind. Anhand von Beispielen wird aufgezeigt, worauf beim Schaltungsentwurf zu achten ist. Nützliche und notwendige Schaltungen werden erklärt und zur Verfügung gestellt. Es werden verschiedenen CMOS-Prozesse erläutert und gezeigt, wie man sie benutzen kann. Gegen Ende des Semesters kann jeder Student eine eigene Schaltung konzipieren und herstellen lassen.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; Software-Dokumentation.
Voraussetzungen / BesonderesVoraussetzungen: dass die Studenten bereits über die Grundkenntnisse der neuromorphen Schaltungstechnik verfügen, die sie sich am besten in der Vorlesung "Neuromorphic Engineering I" im vorangehenden Herbstsemester erwerben.
252-0526-00LStatistical Learning Theory Information W4 KP2V + 1UJ. M. Buhmann
KurzbeschreibungThe course covers advanced methods of statistical learning :
PAC learning and statistical learning theory;variational methods and optimization, e.g., maximum entropy techniques, information bottleneck, deterministic and simulated annealing; clustering for vectorial, histogram and relational data; model selection; graphical models.
LernzielThe course surveys recent methods of statistical learning. The fundamentals of machine learning as presented in the course "Introduction to Machine Learning" are expanded and in particular, the theory of statistical learning is discussed.
Inhalt# Boosting: A state-of-the-art classification approach that is sometimes used as an alternative to SVMs in non-linear classification.
# Theory of estimators: How can we measure the quality of a statistical estimator? We already discussed bias and variance of estimators very briefly, but the interesting part is yet to come.
# Statistical learning theory: How can we measure the quality of a classifier? Can we give any guarantees for the prediction error?
# Variational methods and optimization: We consider optimization approaches for problems where the optimizer is a probability distribution. Concepts we will discuss in this context include:

* Maximum Entropy
* Information Bottleneck
* Deterministic Annealing

# Clustering: The problem of sorting data into groups without using training samples. This requires a definition of ``similarity'' between data points and adequate optimization procedures.
# Model selection: We have already discussed how to fit a model to a data set in ML I, which usually involved adjusting model parameters for a given type of model. Model selection refers to the question of how complex the chosen model should be. As we already know, simple and complex models both have advantages and drawbacks alike.
# Reinforcement learning: The problem of learning through interaction with an environment which changes. To achieve optimal behavior, we have to base decisions not only on the current state of the environment, but also on how we expect it to develop in the future.
Skriptno script; transparencies of the lectures will be made available.
LiteraturDuda, Hart, Stork: Pattern Classification, Wiley Interscience, 2000.

Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer, 2001.

L. Devroye, L. Gyorfi, and G. Lugosi: A probabilistic theory of pattern recognition. Springer, New York, 1996
Voraussetzungen / BesonderesRequirements:

basic knowledge of statistics, interest in statistical methods.

It is recommended that Introduction to Machine Learning (ML I) is taken first; but with a little extra effort Statistical Learning Theory can be followed without the introductory course.
227-0120-00LCommunication Networks Information W6 KP4GB. Plattner, B. L. H. Ager, P. Georgopoulos, K. A. Hummel, L. Vanbever
KurzbeschreibungThe students will understand the fundamental concepts of communication networks, with a focus on computer networking. They will learn to identify relevant mechanisms that are used in networks, and will see a reasonable set of examples implementing such mechanisms, both as seen from an abstract perspective and with hands-on, practical experience.
LernzielThe students will understand the fundamental concepts of communication networks, with a focus on computer networking. They will learn to identify relevant mechanisms that are used to networks work, and will see a reasonable set of examples implementing such mechanisms, both as seen from an abstract perspective and with hands-on, practical experience.
Voraussetzungen / BesonderesPrerequisites: A layered model of communication systems (represented by the OSI Reference Model) has previously been introduced.
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle