# Suchergebnis: Katalogdaten im Frühjahrssemester 2015

Elektrotechnik und Informationstechnologie Master | ||||||

Fächer der Vertiefung Insgesamt 42 KP müssen im Masterstudium aus Vertiefungsfächern erreicht werden. Der individuelle Studienplan unterliegt der Zustimmung eines Tutors. | ||||||

Communication | ||||||

Kernfächer Diese Fächer sind besonders Empfohlen, um sich in "Communications" zu vertiefen. | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|

227-0111-00L | Communication Electronics | W | 6 KP | 2V + 2U | Q. Huang | |

Kurzbeschreibung | Electronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively. | |||||

Lernziel | Foundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver. | |||||

Inhalt | Accounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications. This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications. We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier. We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance. When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail. Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter. A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base. An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized. | |||||

Skript | Script with slides and notes is available. | |||||

Voraussetzungen / Besonderes | The course Analog Integrated Circuits is recommended as preparation for this course. | |||||

227-0418-00L | Algebra and Error Correcting Codes | W | 6 KP | 4G | H.‑A. Loeliger | |

Kurzbeschreibung | The course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course is also an introduction to "abstract" algebra and some of its applications in coding and signal processing. | |||||

Lernziel | The course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course is also an introduction to "abstract" algebra and some of its applications in coding and signal processing. | |||||

Inhalt | Coding: coding and modulation, linear codes, Hamming space codes, Euclidean space codes, trellises and Viterbi decoding, convolutional codes, factor graphs and message passing algorithms, low-density parity check codes, turbo codes, polar codes, Reed-Solomon codes. Algebra: groups, rings, homomorphisms, ideals, fields, finite fields, vector spaces, polynomials, Chinese Remainder Theorem. | |||||

Skript | Lecture Notes (english) | |||||

227-0420-00L | Information Theory II | W | 6 KP | 2V + 2U | S. M. Moser | |

Kurzbeschreibung | This course builds on Information Theory I. It introduces additional topics in single-user communication, connections between Information Theory and Statistics, and Network Information Theory. | |||||

Lernziel | The course has two objectives: to introduce the students to the key information theoretic results that underlay the design of communication systems and to equip the students with the tools that are needed to conduct research in Information Theory. | |||||

Inhalt | Differential entropy, maximum entropy, the Gaussian channel and water filling, the entropy-power inequality, Sanov's Theorem, Fisher information, the broadcast channel, the multiple-access channel, Slepian-Wolf coding, and the Gelfand-Pinsker problem. | |||||

Skript | n/a | |||||

Literatur | T.M. Cover and J.A. Thomas, Elements of Information Theory, second edition, Wiley 2006 | |||||

227-0436-00L | Digital Communication and Signal Processing | W | 6 KP | 2V + 2U | A. Wittneben | |

Kurzbeschreibung | A comprehensive presentation of modern digital modulation, detection and synchronization schemes and relevant aspects of signal processing enables the student to analyze, simulate, implement and research the physical layer of advanced digital communication schemes. The course both covers the underlying theory and provides problem solving and hands-on experience. | |||||

Lernziel | Digital communication systems are characterized by ever increasing requirements on data rate, spectral efficiency and reliability. Due to the huge advances in very large scale integration (VLSI) we are now able to implement extremely complex digital signal processing algorithms to meet these challenges. As a result the physical layer (PHY) of digital communication systems has become the dominant function in most state-of-the-art system designs. In this course we discuss the major elements of PHY implementations in a rigorous theoretical fashion and present important practical examples to illustrate the application of the theory. In Part I we treat discrete time linear adaptive filters, which are a core component to handle multiuser and intersymbol interference in time-variant channels. Part II is a seminar block, in which the students develop their analytical and experimental (simulation) problem solving skills. After a review of major aspects of wireless communication we discuss, simulate and present the performance of novel cooperative and adaptive multiuser wireless communication systems. As part of this seminar each students has to give a 15 minute presentation and actively attends the presentations of the classmates. In Part III we cover parameter estimation and synchronization. Based on the classical discrete detection and estimation theory we develop maximum likelihood inspired digital algorithms for symbol timing and frequency synchronization. | |||||

Inhalt | Part I: Linear adaptive filters for digital communication • Finite impulse response (FIR) filter for temporal and spectral shaping • Wiener filters • Method of steepest descent • Least mean square adaptive filters Part II: Seminar block on cooperative wireless communication • review of the basic concepts of wireless communication • multiuser amplify&forward relaying • performance evaluation of adaptive A&F relaying schemes and student presentations Part III: Parameter estimation and synchronization • Discrete detection theory • Discrete estimation theory • Synthesis of synchronization algorithms • Frequency estimation • Timing adjustment by interpolation | |||||

Skript | Lecture notes. | |||||

Literatur | [1] Oppenheim, A. V., Schafer, R. W., "Discrete-time signal processing", Prentice-Hall, ISBN 0-13-754920-2. [2] Haykin, S., "Adaptive filter theory", Prentice-Hall, ISBN 0-13-090126-1. [3] Van Trees, H. L., "Detection , estimation and modulation theory", John Wiley&Sons, ISBN 0-471-09517-6. [4] Meyr, H., Moeneclaey, M., Fechtel, S. A., "Digital communication receivers: synchronization, channel estimation and signal processing", John Wiley&Sons, ISBN 0-471-50275-8. | |||||

Voraussetzungen / Besonderes | Formal prerequisites: none Recommended: Communication Systems or equivalent | |||||

227-0438-00L | Fundamentals of Wireless Communication Findet dieses Semester nicht statt. | W | 6 KP | 2V + 2U | H. Bölcskei | |

Kurzbeschreibung | The class focuses on fundamental communication-theoretic aspects of modern wireless communication systems. The main topics covered are the system-theoretic characterization of wireless channels, the principle of diversity, information theoretic aspects of communication over fading channels, and the basics of multi-user communication theory and cellular systems. | |||||

Lernziel | After attending this lecture, participating in the discussion sessions, and working on the homework problem sets, students should be able to - understand the nature of the fading mobile radio channel and its implications for the design of communication systems - analyze existing communication systems - apply the fundamental principles to new wireless communication systems, especially in the design of diversity techniques and coding schemes | |||||

Inhalt | The goal of this course is to study the fundamental principles of wireless communication, enabling students to analyze and design current and future wireless systems. The outline of the course is as follows: Wireless Channels What differentiates wireless communication from wired communication is the nature of the communication channel. Motion of the transmitter and the receiver, the environment, multipath propagation, and interference render the channel model more complex. This part of the course deals with modeling issues, i.e., the process of finding an accurate and mathematically tractable formulation of real-world wireless channels. The model will turn out to be that of a randomly time-varying linear system. The statistical characterization of such systems is given by the scattering function of the channel, which in turn leads us to the definition of key propagation parameters such as delay spread and coherence time. Diversity In a wireless channel, the time varying destructive and constructive addition of multipath components leads to signal fading. The result is a significant performance degradation if the same signaling and coding schemes as for the (static) additive white Gaussian noise (AWGN) channel are used. This problem can be mitigated by diversity techniques. If several independently faded copies of the transmitted signal can be combined at the receiver, the probability of all copies being lost--because the channel is bad--decreases. Hence, the performance of the system will be improved. We will look at different means to achieve diversity, namely through time, frequency, and space. Code design for fading channels differs fundamentally from the AWGN case. We develop criteria for designing codes tailored to wireless channels. Finally, we ask the question of how much diversity can be obtained by any means over a given wireless channel. Information Theory of Wireless Channels Limited spectral resources make it necessary to utilize the available bandwidth to its maximum extent. Information theory answers the fundamental question about the maximum rate that can reliably be transmitted over a wireless channel. We introduce the basic information theoretic concepts needed to analyze and compare different systems. No prior experience with information theory is necessary. Multiple-Input Multiple-Output (MIMO) Wireless Systems The major challenges in future wireless communication system design are increased spectral efficiency and improved link reliability. In recent years the use of spatial (or antenna) diversity has become very popular, which is mostly due to the fact that it can be provided without loss in spectral efficiency. Receive diversity, that is, the use of multiple antennas on the receive side of a wireless link, is a well-studied subject. Driven by mobile wireless applications, where it is difficult to deploy multiple antennas in the handset, the use of multiple antennas on the transmit side combined with signal processing and coding has become known under the name of space-time coding. The use of multiple antennas at both ends of a wireless link (MIMO technology) has been demonstrated to have the potential of achieving extraordinary data rates. This chapter is devoted to the basics of MIMO wireless systems. Cellular Systems: Multiple Access and Interference Management This chapter deals with the basics of multi-user communication. We start by exploring the basic principles of cellular systems and then take a look at the fundamentals of multi-user channels. We compare code-division multiple-access (CDMA) and frequency-division multiple access (FDMA) schemes from an information-theoretic point of view. In the course of this comparison an important new concept, namely that of multiuser diversity, will emerge. We conclude with a discussion of the idea of opportunistic communication and by assessing this concept from an information-theoretic point of view. | |||||

Skript | Lecture notes will be handed out during the lectures. | |||||

Literatur | A set of handouts covering digital communication basics and mathematical preliminaries is available on the website. For further reading, we recommend - J. M. Wozencraft and I. M. Jacobs, "Principles of Communication Engineering," Wiley, 1965 - A. Papoulis and S. U. Pillai, "Probability, Random Variables, and Stochastic Processes," McGraw Hill, 4th edition, 2002 - G. Strang, "Linear Algebra and its Applications," Harcourt, 3rd edition, 1988 - T.M. Cover and J. A. Thomas, "Elements of Information Theory," Wiley, 1991 | |||||

Voraussetzungen / Besonderes | This class will be taught in English. The oral exam will be in German (unless you wish to take it in English, of course). A prerequisite for this course is a working knowledge in digital communications, random processes, and detection theory. | |||||

227-0558-00L | Principles of Distributed Computing | W | 6 KP | 2V + 2U + 1A | R. Wattenhofer | |

Kurzbeschreibung | We study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques. | |||||

Lernziel | Distributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week. | |||||

Inhalt | Distributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems. Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds | |||||

Skript | Available. Our course script is used at dozens of other universities around the world. | |||||

Literatur | Lecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world. Distributed Computing: Fundamentals, Simulations and Advanced Topics Hagit Attiya, Jennifer Welch. McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6 Introduction to Algorithms Thomas Cormen, Charles Leiserson, Ronald Rivest. The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8 Disseminatin of Information in Communication Networks Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger. Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2 Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes Frank Thomson Leighton. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1 Distributed Computing: A Locality-Sensitive Approach David Peleg. Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8 | |||||

Voraussetzungen / Besonderes | Course pre-requisites: Interest in algorithmic problems. (No particular course needed.) | |||||

252-0407-00L | Cryptography | W | 7 KP | 3V + 2U + 1A | U. Maurer | |

Kurzbeschreibung | Fundamentals and applications of cryptography. Cryptography as a mathematical discipline: reductions, constructive cryptography paradigm, security proofs. The discussed primitives include cryptographic functions, pseudo-randomness, symmetric encryption and authentication, public-key encryption, key agreement, and digital signature schemes. Selected cryptanalytic techniques. | |||||

Lernziel | The goals are: (1) understand the basic theoretical concepts and scientific thinking in cryptography; (2) understand and apply some core cryptographic techniques and security proof methods; (3) be prepared and motivated to access the scientific literature and attend specialized courses in cryptography. | |||||

Inhalt | See course description. | |||||

Skript | yes. | |||||

Voraussetzungen / Besonderes | Familiarity with the basic cryptographic concepts as treated for example in the course "Information Security" is required but can in principle also be acquired in parallel to attending the course. |

- Seite 1 von 1