Search result: Catalogue data in Spring Semester 2016

Computer Science Bachelor Information
Major
Electives
Compulsory major courses may also qualify as electives. Students may also choose courses from the Master's program in Computer Science. It is their responsibility to make sure that they meet the requirements and conditions for these courses.
NumberTitleTypeECTSHoursLecturers
252-0055-00LInformation Theory Information W4 credits2V + 1US. H. Hassani, J. M. Buhmann
AbstractThe course covers the fundamental concepts of Shannon's information theory.
The most important topics are: Entropy, information, data compression, channel coding, codes.
ObjectiveThe goal of the course is to familiarize with the theoretical fundamentals of information theory and to illustrate the practical use of the theory with the help of selected examples of data coding and compression.
ContentIntroduction and motivation, basics of probability theory, stochastic processes, entropy and information, asymptotic equipartition property, channel capacity and coding, linear codes with examples, polar codes.
LiteratureC. Shannon, The Mathematical Theory of Communication, 1948.

T. Cover, J. Thomas: Elements of Information Theory, John Wiley, 1991.
252-0820-00LCase Studies from Practice Information W4 credits2V + 1UM. Brandis
AbstractThe course is designed to provide students with an understanding of "real-life" challenges in business settings and teach them how to address these.
ObjectiveBy using case studies that are based on actual IT projects, students will learn how to deal with complex, not straightforward problems. It will help them to apply their theoretical Computer Science background in practice and will teach them fundamental principles of IT management and challenges with IT in practice.
ContentThe course consists of multiple lectures about general IT management topics held by Marc Brandis and case studies provided by guest lecturers from either IT companies or IT departments of a diverse range of companies. Students will obtain insights into both established and startup companies, small and big, and different industries.
Presenting companies have included avaloq, Accenture, AdNovum, Bank Julius Bär, Credit Suisse, Deloitte, HP, IBM Research, McKinsey & Company, Open Web Technology, SAP Research, Selfnation, WhiteStein Technologies, 28msec, and Marc Brandis Strategic Consulting. The participating companies in spring 2016 will be announced at course start.
227-0124-00LEmbedded Systems Information W6 credits4GL. Thiele
AbstractComputer systems for controlling industrial devices are called embedded systems (ES). Specifically the following topics will be covered: Design methodology, software design, real-time scheduling and operating systems, architectures, distributed embedded systems, low-power and low-energy design, architecture synthesis.
ObjectiveIntroduction to industrial applications of computer systems; understanding specific requirements and problems arising in such applications. The focus of this lecture is on the implementation of embedded systems using formal methods and computer-based synthesis methods.
ContentComputer systems for controlling industrial devices are called embedded systems (ES). ES not only have to react to random events in their environment in a timely manner, they also have to calculate control values from continuous sequences of measurements. Embedded computer systems are connected to their environment though sensors and actors. The great interest in the systematic design of heterogeneous reactive systems is caused by the growing diversity and complexity of applications for ES, the requirement for low development and testing costs, and by progress in key technologies. Specifically the following topics will be covered: Design methodology, software design, real-time scheduling and operating systems, architectures, distributed embedded systems, low-power and low-energy design, architecture synthesis. See: Link .
Lecture notesMaterial/script, publications, exercise sheets, podcast. See: Link .
Literature[Mar07] P. Marwedel. Eingebettete Systeme. Springer Verlag, Paperback, December 2007. ISBN 978-3-540-34048-5

[Mar11] P. Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer Verlag, Paperback, 2011. ISBN 978-94-007-0256-1

[Tei07] J. Teich. Digitale Hardware/Software-Systeme: Synthese und Optimierung. Springer Verlag, 2007. ISBN 3540468226

[But11] G.C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and applications. Springer Verlag, Berlin, 2011. ISBN-10: 1461406757, ISBN-13: 9781461406754

[Wolf12] W. Wolf. Computers as components: principles of embedded computing system design. Morgan Kaufmann, 2012. ISBN-10: 0123884365, ISBN-13: 978-0123884367
Prerequisites / NoticePrerequisites:
Basic course in computer engineering; knowledge about distributed systems and concepts for their description.
227-0945-10LCell and Molecular Biology for Engineers II
This course is part II of a two-semester course.
W3 credits2GC. Frei
AbstractThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
ObjectiveAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
ContentLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed. For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded, and count as 25% for the final grade.
Lecture notesScripts of all lectures will be available.
Literature"Molecular Biology of the Cell" (5th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
252-3125-00LPrinciples of Interaction Design Information
Does not take place this semester.
W3 credits2GM. Norrie
AbstractThe course allows students to explore user-centred design processes and to get hands-on experience in engineering interactive systems with a focus on multi-device environments.
ObjectiveThe goal of the course is that students should have basic knowledge of interaction design methods and tools as well as practical experience of engineering interactive systems.
ContentThe course picks up on the principles of interaction design from the Human-Computer Interaction course and allows students to explore user-centred design processes in the context of a larger interactive systems engineering project. At the core of the course is a supervised project ideally carried out in teams, which is used both to teach the principles of interaction design and guide the students through the design-build-evaluate interactive system development cycle using rapid prototyping techniques at all stages. Through the project, students will acquire practical experience of working with state-of-the-art hardware and software technologies when designing and implementing a multi-device application that is able to adapt to a variety of use contexts including multi-touch phones, tablets and interactive tabletops. The course is accompanied by a set of introductory lectures to give students an overview of established user interface engineering methods and tools as well as providing the necessary background to the project.
Prerequisites / NoticeIt is recommended that students also complete the Human-Computer Interaction course. Relevant principles and methods will be reviewed in this course and applied to the project.
  •  Page  1  of  1