Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Lerneinheiten im Herbstsemester 2016

Mathematik Bachelor Information
Bachelor-Studium (Studienreglement 2016)
Basisjahr
» Obligatorische Fächer des Basisjahres
» Ergänzende Fächer
» GESS Wissenschaft im Kontext
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-1151-00LLineare Algebra IO7 KP4V + 2UM. Akveld
402-1701-00LPhysik IO7 KP4V + 2UA. Wallraff
252-0847-00LInformatik Information O5 KP2V + 2UB. Gärtner
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis IO10 KP6V + 3UM. Einsiedler
Bachelor-Studium (Studienreglement 2010)
Basisjahr
Lerneinheiten des Basisjahres sind im Abschnitt Bachelor-Studium (Studienreglement 2016) - Basisjahr zu finden.
Obligatorische Fächer
Prüfungsblock I
Im Prüfungsblock I muss entweder die Lerneinheit 402-2883-00L Physik III oder die Lerneinheit 402-2203-01L Allgemeine Mechanik gewählt und zur Prüfung angemeldet werden. (Die andere der beiden Lerneinheiten kann im ETH Bachelor-Studiengang Mathematik belegt, aber weder in myStudies zur Prüfung angemeldet noch für den Studiengang angerechnet werden.)
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Information O6 KP3V + 2UR. Pandharipande
401-2333-00LMethoden der mathematischen Physik IO6 KP3V + 2UC. A. Keller
402-2883-00LPhysik IIIW7 KP4V + 2UJ. Home
402-2203-01LAllgemeine Mechanik Information W7 KP4V + 2UG. M. Graf
252-0851-00LAlgorithmen und KomplexitätO4 KP2V + 1UA. Steger
Prüfungsblock II
NummerTitelTypECTSUmfangDozierende
401-2003-00LAlgebra IO7 KP4V + 2UL. Halbeisen
Kernfächer
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3531-00LDifferentialgeometrie I
Das Bachelor-Kernfach 401-3531-00L Differentialgeometrie I / Differential Geometry I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3531-00L Differentialgeometrie I / Differential Geometry I noch 401-3532-00L Differentialgeometrie II / Differential Geometry II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.
W10 KP4V + 1UU. Lang
401-3461-00LFunktionalanalysis I
Das Bachelor-Kernfach 401-3461-00L Funktionalanalysis I / Functional Analysis I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3461-00L Funktionalanalysis I / Functional Analysis I noch 401-3462-00L Funktionalanalysis II / Functional Analysis II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.
W10 KP4V + 1UM. Struwe
401-3371-00LDynamical Systems IW10 KP4V + 1UW. Merry
401-3001-61LAlgebraic Topology IW8 KP4GP. S. Jossen
401-3132-00LCommutative Algebra Information W10 KP4V + 1UR. Pink
» Kernfächer aus Bereichen der reinen Mathematik (Mathematik Master)
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3651-00LNumerical Methods for Elliptic and Parabolic Partial Differential Equations Information
Course audience at ETH: 3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course "Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.
W10 KP4V + 1UC. Schwab
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle