# Search result: Catalogue data in Autumn Semester 2016

Health Sciences and Technology Master | ||||||

Course Units for Additional Admission Requirements The courses below are only for MSc students with additional admission requirements. | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

406-0253-AAL | Mathematics I & II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 13 credits | 28R | A. Cannas da Silva | |

Abstract | Mathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. Main focus of Mathematics II: multivariable calculus and partial differential equations. | |||||

Objective | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | |||||

Content | 1. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 2. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals. 3. Ordinary Differential Equations: separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems. 4. Multivariable Differential Calculus: functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence. 5. Multivariable Integral Calculus: multiple integrals, line and surface integrals, work and flow, Green, Gauss and Stokes theorems, applications. 6. Partial Differential Equations: separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform. | |||||

Literature | - Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall). - Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley). - Thomas, G. B.: Thomas' Calculus, Parts 2 (Pearson Addison-Wesley). - Kreyszig, E.: Advanced Engineering Mathematics (John Wiley & Sons). | |||||

Prerequisites / Notice | Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative. Assistance: Tuesdays and Wednesdays 17-19h, in Room HG E 41. | |||||

376-0203-AAL | Movement and Sport BiomechanicsEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course! | E- | 4 credits | 3R | S. Lorenzetti, B. Taylor | |

Abstract | Learning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation. | |||||

Objective | "Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics." | |||||

Content | Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated. | |||||

406-0062-AAL | Physics IEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | W | 5 credits | 11R | A. Vaterlaus | |

Abstract | Introduction to the concepts and tools in physics: mechanics of point-like and rigid bodies, elasticity theory, elements of hydrostatics and hydrodynamics, periodic motion and mechanical waves. | |||||

Objective | Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter. The student should acquire an overview over the basic concepts in mechanics. | |||||

Content | Book: Physics for Scientists and Engineers, Douglas C. Giancoli, Pearson Education (2009), ISBN: 978-0-13-157849-4 Chapters: 1, 2, 3, 4, 5, 6 (without: 6-5, 6-6, 6-8), 7, 8 (without 8-9), 9, 10 (without 10-10), 11 (without 11-7), 13 (without 13-13, 13-14), 14 (without 14-6), 15 (without 15-3, 15-5) | |||||

Literature | see "Content" Friedhelm Kuypers Physik für Ingenieure und Naturwissenschaftler Band 1: Mechanik und Thermodynamik Wiley-VCH Verlag, 2002, 544 S, ca.: Fr. 68.- |

- Page 1 of 1