# Search result: Catalogue data in Autumn Semester 2016

Mathematics Master | ||||||

Electives For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields. | ||||||

Electives: Pure Mathematics | ||||||

Selection: Algebra, Topology, Discrete Mathematics, Logic | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

401-3117-66L | Introduction to the Circle Method | W | 6 credits | 2V + 1U | E. Kowalski | |

Abstract | The circle method, invented by Hardy and Ramanujan and developped by Hardy and Littlewood and Kloosterman, is one of the most versatile methods currently available to determine the asymptotic behavior of the number of integral solutions to polynomial equations, when the number of solutions is sufficiently large. | |||||

Objective | ||||||

Content | The circle method, invented by Hardy and Ramanujan and developped by Hardy and Littlewood and Kloosterman, is one of the most versatile methods currently available to determine the asymptotic behavior of the number of integral solutions to polynomial equations, when the number of solutions is sufficiently large. The lecture will present an introduction to this method. In particular, it will present the solution of Waring's Problem concerning the representability of integers as sums of a bounded numbers of (fixed) powers of integers. | |||||

Literature | H. Davenport, "Analytic methods for Diophantine equations and Diophatine inequalities", Cambridge H. Iwaniec and E. Kowalski, "Analytic number theory", chapter 20; AMS R. Vaughan, "The Hardy-Littlewood method", Cambridge | |||||

401-4209-66L | Group and Representation Theory: Beyond an Introduction | W | 8 credits | 3V + 1U | T. H. Willwacher | |

Abstract | The goal of the course is to study several classical and important (and beautiful!) topics in group and representation theory, that are otherwise often overlooked in a standard curriculum. In particular, we plan to study reflection and Coxeter groups, classical invariant theory, and the theory of real semi simple Lie algebras and their representations. | |||||

Objective | Despite the title, the course will begin by a recollection of basic concepts of group and representation theory, in particular that of finite groups and Lie groups. Hence the course should be accessible also for students who only had a brief exposure to representation theory, as for example in the MMP course. | |||||

401-3059-00L | Combinatorics IIDoes not take place this semester. | W | 4 credits | 2G | N. Hungerbühler | |

Abstract | The course Combinatorics I and II is an introduction into the field of enumerative combinatorics. | |||||

Objective | Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them. | |||||

Content | Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers. | |||||

401-4145-66L | Reading Course: Abelian Varieties over Finite Fields | W | 2 credits | 4A | J. Fresán, P. S. Jossen | |

Abstract | ||||||

Objective | ||||||

Selection: Geometry | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-4531-66L | Topics in Rigidity Theory | W | 6 credits | 3G | M. Burger | |

Abstract | The aim of this course is to give detailed proofs of Margulis' normal subgroup theorem and his superrigidity theorem for lattices in higher rank Lie groups. | |||||

Objective | Understand the basic techniques of rigidity theory. | |||||

Content | This course gives an introduction to rigidity theory, which is a set of techniques initially invented to understand the structure of a certain class of discrete subgroups of Lie groups, called lattices, and currently used in more general contexts of groups arising as isometries of non-positively curved geometries. A prominent example of a lattice in the Lie group SL(n, R) is the group SL(n, Z) of integer n x n matrices with determinant 1. Prominent questions concerning this group are: - Describe all its proper quotients. - Classify all its finite dimensional linear representations. - More generally, can this group act by diffeomorphisms on "small" manifolds like the circle? - Does its Cayley graph considered as a metric space at large scale contain enough information to recover the group structure? In this course we will give detailed treatment for the answers to the first two questions; they are respectively Margulis' normal subgroup theorem and Margulis' superrigidity theorem. These results, valid for all lattices in simple Lie groups of rank at least 2 --like SL(n, R), with n at least 3-- lead to the arithmeticity theorem, which says that all lattices are obtained by an arithmetic construction. | |||||

Literature | - R. Zimmer: "Ergodic Theory and Semisimple groups", Birkhauser 1984. - D. Witte-Morris: "Introduction to Arithmetic groups", available on Arxiv - Y. Benoist: "Five lectures on lattices in semisimple Lie groups", available on his homepage. - M.Burger: "Rigidity and Arithmeticity", European School of Group Theory, 1996, handwritten notes, will be put online. | |||||

Prerequisites / Notice | For this course some knowledge of elementary Lie theory would be good. We will however treat Lie groups by examples and avoid structure theory since this is not the point of the course nor of the techniques. | |||||

401-3309-66L | Riemann Surfaces (Part 2) | W | 4 credits | 2V | A. Buryak | |

Abstract | The program will be the following: * Proof of the Serre duality; * Riemann-Hurwitz formula; * Functions and differential forms on a compact Riemann surface with prescribed principal parts; * Weierstrass points on a compact Riemann surface; * The Jacobian and the Picard group of a compact Riemann surface; * Holomorphic vector bundles; * Non-compact Riemann surfaces. | |||||

Objective | ||||||

Literature | O. Forster. Lectures on Riemann Surfaces. | |||||

Prerequisites / Notice | This is a continuation of 401-3308-16L Riemann Surfaces that was taught in the spring semester (FS 2016), see Link for the lecture notes. The students are also assumed to be familiar with what would generally be covered in one semester courses on general topology and on algebra. | |||||

401-3057-00L | Finite Geometries II | W | 4 credits | 2G | N. Hungerbühler | |

Abstract | Finite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares. | |||||

Objective | Finite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design. | |||||

Content | Finite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Moebius planes, error correcting codes, block design | |||||

Literature | - Max Jeger, Endliche Geometrien, ETH Skript 1988 - Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983 - Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press - Dembowski: Finite Geometries. | |||||

Selection: Analysis | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-3536-11L | Geometric Aspects of Hamiltonian Dynamics | W | 6 credits | 3V | P. Biran | |

Abstract | The course will concentrate on the geometry of the group of Hamiltonian diffeomorphisms introduced by Hofer in the early 1990's and its relations to various topics in symplectic geometry such as capacities, Lagrangian submanifolds, holomorphic curves, as well as recent algebraic structures on the group of Hamiltonian diffeomorphisms such as quasi-morphisms. | |||||

Objective | ||||||

Literature | Books: * L. Polterovich: "The geometry of the group of symplectic diffeomorphisms" * H. Hofer & E. Zehnder: "Symplectic invariants and Hamiltonian dynamics" | |||||

Prerequisites / Notice | Prerequisites. Good knowledge of undergraduate mathematics (analysis, complex functions, topology, and differential geometry). Some knowledge of elementary algebraic topology would be useful. | |||||

401-4767-66L | Partial Differential Equations (Hyperbolic PDEs) | W | 7 credits | 4V | D. Christodoulou | |

Abstract | The course begins with characteristics, the definition of hyperbolicity, causal structure and the domain of dependence theorem. The course then focuses on nonlinear systems of equations in two independent variables, in particular the Euler equations of compressible fluids with plane symmetry and the Einstein equations of general relativity with spherical symmetry. | |||||

Objective | The objective is to introduce students in mathematics and physics to an area of mathematical analysis involving differential geometry which is of fundamental importance for the development of classical macroscopic continuum physics. | |||||

Content | The course shall begin with the basic structure associated to hyperbolic partial differential equations, characteristic hypersurfaces and bicharacteristics, causal structure, and the domain of dependence theorem. The course shall then focus on nonlinear systems of equations in two independent variables. The first topic shall be the Euler equations of compressible fluids under plane symmetry where we shall study the formation of shocks, and second topic shall be the Einstein equations of general relativity under spherical symmetry where we shall study the formation of black holes and spacetime singularities. | |||||

Prerequisites / Notice | Basic real analysis and differential geometry. | |||||

401-4831-66L | Mathematical Themes in General Relativity I | W | 4 credits | 2V | A. Carlotto | |

Abstract | First part of a one-year course offering a rigorous introduction to general relativity, with special emphasis on aspects of current interest in mathematical research. Topics covered include: initial value formulation of the Einstein equations, causality theory and singularities, constructions of data sets by gluing or conformal methods, asymptotically flat spaces and positive mass theorems. | |||||

Objective | Acquisition of a solid and broad background in general relativity and mastery of the basic mathematical methods and ideas developed in such context and successfully exploited in the field of geometric analysis. | |||||

Content | Lorentzian geometry; geometric review of special relativity; the Einstein equations and their basic classes of special solutions; the Einstein equations as an initial-value problem; causality theory and hyperbolicity; singularities and trapped domains; Penrose diagrams; asymptotically flat spaces: ADM invariants, positive mass theorems, Penrose inequalities, geometric properties. | |||||

Lecture notes | Lecture notes written by the instructor will be provided to all enrolled students. | |||||

Prerequisites / Notice | The content of the basic courses of the first three years at ETH will be assumed. In particular, enrolled students are expected to be fluent both in Differential Geometry (at least at the level of Differentialgeometrie I, II) and Functional Analysis (at least at the level of Funktionalanalysis I, II). Some background on partial differential equations, mainly of elliptic and hyperbolic type, (say at the level of the monograph by L. C. Evans) would also be desirable. | |||||

401-4497-66L | Free Boundary Problems | W | 4 credits | 2V | A. Figalli | |

Abstract | ||||||

Objective | ||||||

401-4463-62L | Fourier Analysis in Function Space Theory | W | 6 credits | 3V | T. Rivière | |

Abstract | In the most important part of the course, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators. | |||||

Objective | ||||||

Content | During the first lectures we will review the theory of tempered distributions and their Fourier transforms. We will go in particular through the notion of Fréchet spaces, Banach-Steinhaus for Fréchet spaces etc. We will then apply this theory to the Fourier characterization of Hilbert-Sobolev spaces. In the second part of the course we will study fundamental properties of the Hardy-Littlewood Maximal Function in relation with L^p spaces. We will then make a digression through the notion of Marcinkiewicz weak L^p spaces and Lorentz spaces. At this occasion we shall give in particular a proof of Aoki-Rolewicz theorem on the metrisability of quasi-normed spaces. We will introduce the preduals to the weak L^p spaces, the Lorentz L^{p',1} spaces as well as the general L^{p,q} spaces and show some applications of these dualities such as the improved Sobolev embeddings. In the third part of the course, the most important one, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators. This theory will naturally bring us, via the so called Littlewood-Paley decomposition, to the Fourier characterization of classical Hilbert and non Hilbert Function spaces which is one of the main goals of this course. If time permits we shall present the notion of Paraproduct, Paracompositions and the use of Littlewood-Paley decomposition for estimating products and general non-linearities. We also hope to cover fundamental notions from integrability by compensation theory such as Coifman-Rochberg-Weiss commutator estimates and some of its applications to the analysis of PDE. | |||||

Literature | 1) Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions" (PMS-30) Princeton University Press. 2) Javier Duoandikoetxea, "Fourier Analysis" AMS. 3) Loukas Grafakos, "Classical Fourier Analysis" GTM 249 Springer. 4) Loukas Grafakos, "Modern Fourier Analysis" GTM 250 Springer. | |||||

Prerequisites / Notice | Notions from ETH courses in Measure Theory, Functional Analysis I and II (Fundamental results in Banach and Hilbert Space theory, Fourier transform of L^2 Functions) | |||||

401-4475-66L | Partial Differential Equations and Semigroups of Bounded Linear Operators | W | 4 credits | 2G | A. Jentzen | |

Abstract | In this course we study the concept of a semigroup of bounded linear operators and we use this concept to investigate existence, uniqueness, and regularity properties of solutions of partial differential equations (PDEs) of the evolutionary type. | |||||

Objective | The aim of this course is to teach the students a decent knowledge (i) on semigroups of bounded linear operators, (ii) on solutions of partial differential equations (PDEs) of the evolutionary type, and (iii) on the analytic concepts used to formulate and study such semigroups and such PDEs. | |||||

Content | The course includes content (i) on semigroups of bounded linear operators, (ii) on solutions of partial differential equations (PDEs) of the evolutionary type, and (iii) on the analytic concepts used to formulate and study such semigroups and such PDEs. Key example PDEs that are treated in this course are heat and wave equations. | |||||

Lecture notes | Lecture Notes are available in the lecture homepage (please follow the link in the Learning materials section). | |||||

Literature | 1. Amnon Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). 2. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations. Springer-Verlag, New York (2000). | |||||

Prerequisites / Notice | Mandatory prerequisites: Functional analysis Start of lectures: Friday, September 23, 2016 For more details, please follow the link in the Learning materials section. | |||||

401-3303-00L | Special Topics in One Complex Variable | W | 6 credits | 3V | H. Knörrer | |

Abstract | Hypergeometric Functions, Boundary values of holomorphic functions, Nevanlinna Theory and other special topics. | |||||

Objective | Advanced methods of one complex variables | |||||

Literature | R. Remmert: Funktionentheorie II. Springer Verlag E.Titchmarsh: The Theory of Functions. Oxford University Press C.Caratheodory: Funktionentheorie. Birkhaeuser E.Hille: Analytic Function Theory. AMS Chelsea Publishing A.Gogolin:Komplexe Integration. Springer | |||||

Prerequisites / Notice | Funktionentheorie | |||||

Selection: Further Realms | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-3502-66L | Reading Course THE ENROLMENT IS DONE BY THE STUDY ADMINISTRATION. Please send an email to Studiensekretariat D-MATH <studiensekretariat@math.ethz.ch> including the following pieces of information: 1) which Reading Course (60, 90, 120 hours of work, corresponding to 2, 3, 4 ECTS credits) you wish to register; 2) in which semester; 3) for which degree programme; 4) your name and first name; 5) your student number; 6) the name and first name of the supervisor of the Reading Course. | W | 2 credits | 4A | Professors | |

Abstract | For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study. | |||||

Objective | ||||||

401-3503-66L | Reading Course THE ENROLMENT IS DONE BY THE STUDY ADMINISTRATION. Please send an email to Studiensekretariat D-MATH <studiensekretariat@math.ethz.ch> including the following pieces of information: 1) which Reading Course (60, 90, 120 hours of work, corresponding to 2, 3, 4 ECTS credits) you wish to register; 2) in which semester; 3) for which degree programme; 4) your name and first name; 5) your student number; 6) the name and first name of the supervisor of the Reading Course. | W | 3 credits | 6A | Professors | |

Abstract | For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study. | |||||

Objective | ||||||

401-3504-66L | Reading Course THE ENROLMENT IS DONE BY THE STUDY ADMINISTRATION. Please send an email to Studiensekretariat D-MATH <studiensekretariat@math.ethz.ch> including the following pieces of information: 1) which Reading Course (60, 90, 120 hours of work, corresponding to 2, 3, 4 ECTS credits) you wish to register; 2) in which semester; 3) for which degree programme; 4) your name and first name; 5) your student number; 6) the name and first name of the supervisor of the Reading Course. | W | 4 credits | 9A | Professors | |

Abstract | For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study. | |||||

Objective | ||||||

Electives: Applied Mathematics and Further Application-Oriented Fields ¬ | ||||||

Selection: Numerical Analysis | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-4657-00L | Numerical Analysis of Stochastic Ordinary Differential Equations Alternative course title: "Computational Methods for Quantitative Finance: Monte Carlo and Sampling Methods" | W | 6 credits | 3V + 1U | A. Jentzen | |

Abstract | Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables. | |||||

Objective | The aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this the course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues. | |||||

Content | Generation of random numbers Monte Carlo methods for the numerical integration of random variables Stochastic processes and Brownian motion Stochastic ordinary differential equations (SODEs) Numerical approximations of SODEs Multilevel Monte Carlo methods for SODEs Applications to computational finance: Option valuation | |||||

Lecture notes | Lecture Notes are available in the lecture homepage (please follow the link in the Learning materials section). | |||||

Literature | P. Glassermann: Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, 2004. P. E. Kloeden and E. Platen: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin, 1992. | |||||

Prerequisites / Notice | Prerequisites: Mandatory: Probability and measure theory, basic numerical analysis and basics of MATLAB programming. a) mandatory courses: Elementary Probability, Probability Theory I. b) recommended courses: Stochastic Processes. Start of lectures: Wednesday, September 21, 2016 For more details, please follow the link in the Learning materials section. | |||||

401-4785-00L | Mathematical and Computational Methods in Photonics | W | 8 credits | 4G | H. Ammari | |

Abstract | The aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces | |||||

Objective | The field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications. The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength. Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare. Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing prevention along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures. The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The course merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials. | |||||

Selection: Probability Theory, Statistics | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-4604-66L | Topics in Probability Theory | W | 4 credits | 2V | W. Werner | |

Abstract | The goal of this course is to give a sample of some basic results and features to illustrate various areas of probability theory. | |||||

Objective | The goal of this course is to give a sample of some basic results and features to illustrate various areas of probability theory. |

- Page 1 of 3 All