Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Autumn Semester 2016

Environmental Sciences Bachelor Information
Bachelor Studies (Programme Regulations 2011)
Basic Courses II
Additional Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-0033-00LLaboratory Course in Physics for Students of Environmental Sciences Information O2 credits4PM. Münnich, A. Biland, N. Gruber
AbstractThe course provides an individual experience of physical phenomena and the basic principles of experiments. By carrying out simple physical experiments the students learn the proper use measuring instruments, the correct evaluation of report of the measured data and how to interpret the final results.
ObjectiveThis laboratory course aims to provide basic knowledge of
- the setup of a physics experiment,
- the use of measurement instruments,
- various measuring techniques,
- the analysis or measurement errors,
- and the interpretations of the measured quantities.
ContentThe students select 8 out of 20 experiments which they like to conduct. For each of these experiments the students will analyze the data they measure estimate the error of there measurements and compare these with the physical theory. Additionally each student will present one of their experiments in a seminar.
Lecture notesManuals for the experiments are provided online.
701-0035-00LIntegrated Practical Observation Networks Information O1.5 credits4PJ. Henneberger, T. Tormann
AbstractObservation networks - the combination of individual instruments - are the starting point of quantitative environmental studies. The structure and idiosyncrasies of existing observation networks are shown. When working in individual experiments on practical problems, various types of observation networks are dealt with; questions related to data quality and data availability are discussed.
ObjectiveGetting acquainted with existing networks. Insight into problems related to measuring and interpreting multi-dimensional fields of atmospheric physical, atmospheric chemical, and geophysical parameters.
ContentObservation networks for atmospheric physical, atmospheric chemical, geophysical, hydrological and climatological parameters on different scales (synoptic: 1000 km; mesoscale: 100 km, and microscale: 100 m). Combination of surface observation with remotely sensed data (satellite, radar). Solving interpolation problems in multi-dimensional fields of the observed variables. Assessing the representativity of local values, i.e., the directly observed variable in an observation network.
Lecture notesThe script is published anew every year. Apart from the description of the scientific problems to be worked on in individual experiments, it contains some theoretical chapters on observation networks, as well as guidelines for writing and publishing scientific papers. The script can be downloaded as pdf from the course webpage.
LiteratureLiterature is listed in the script.
  •  Page  1  of  1