Suchergebnis: Katalogdaten im Herbstsemester 2016

Umweltnaturwissenschaften Bachelor Information
Systemvertiefung
Biogeochemie
NummerTitelTypECTSUmfangDozierende
701-0216-00LBiogeochemische KreisläufeW3 KP2GB. Wehrli
KurzbeschreibungBiogeochemische Kreisläufe werden aus globalen oder regionalen Perspektiven analysiert, die wichtigsten Methoden zur Bestimmung von Umsatzraten und Reaktionswegen werden vorgestellt und typische Reaktionsmechanismen auf molekularer Ebene diskutiert.
LernzielDie Studierenden
* können erläutern, wie molekulare Prozessen wichtige globale Stoffkreisläufen steuern;
* beherrschen einfache numerische Modelle (Gleichgewichts-, Bilanz-, und Transport-Reaktionsmodelle;
* sind in der Lage, Konzentrationsänderungen in Zeit und Raum zu interpretieren und Reaktionsraten abzuleiten.
InhaltBiogeochemische Kreisläufe in aquatischen Systemen werden aus drei Blickwinkeln betrachtet: 1) Aus globaler und regionaler Perspektive vermitteln Fallbeispiele Hintergrundinformation über Raten, Zeitskalen und Stoffreservoirs von ausgewählten Kreisläufen wie C, N, P, S, Fe, Mn, Cu und As. 2) Aus praktischer Sicht werden Methoden verglichen und evaluiert, um biogeochemische Prozesse zu analysieren und zu quantifizieren. 3) Aus molekularer Perspektive werden wichtige Reaktionsmechanismen diskutiert.
Kapitel
Ein lebensfreundlicher Planet: Kohlenstoff-Silikat Kreislauf.
Gestein im Fluss: Verwitterungsreaktionen und Stofftransport Land-Meer
Baumeister am Werk: Biomineralisation - Kalzitfällung
Chemische Spuren von Lebensprozessen: Aquatische Primärproduktion
Eine Erfolgsgeschichte: Phosphorlimitierung und Gewässermanagement
Stickstoff hat viele Gesicher: Mikrobielle und industrielle Umwandlung von reaktivem Stickstoff
Sanfte Verbrennung - Sauerstoff und Redoxkaskaden
Redoxkatalysatoren - Eisen und Mangan
Die anerobe Welt - Sulfatreduktion in Meeressedimenten
Brennstoff entsteht: Methanogenese, Methanhydrate und Methanoxidation
Mikronährstoffe: Kupfer, Eisen, Zink
Massenvergiftung in guter Absicht: Arsen im Grundwasser
SkriptEin Skript und die Übungen werden abgegeben und sind via Moodle verfügbar
LiteraturSimilar coverage of some topics: Steven R. Emerson, John I. Hedges: Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press 2008.
Voraussetzungen / BesonderesGrundlagenwissen in Chemie und Systemanalyse
701-0419-01LSeminar für Bachelor-Studierende: BiogeochemieO2 KP2SG. Furrer, R. Kretzschmar, B. Wehrli
KurzbeschreibungDas Seminar beinhaltet eine Einführung in die Fachliteratur der Biogeochemie aquatischer und terrestrischer Systeme. Die Studierenden erarbeiten eine Zusammenfassung und Beurteilung von neueren oder klassischen Publikationen. Dabei lernen sie die Möglichkeiten der online-Literaturrecherchen kennen und verbessern ihre Präsentations- und Moderationstechnik.
LernzielFachzeitschriften im Bereich Biogeochemie kennenlernen. Wissenschaftliche Publikationen lesen, beurteilen und diskutieren. Verbesserung von Präsentationsfähigkeiten. Üben und Verbessern von Moderationsfähigkeiten.
InhaltTeil 1: Literaturrecherche. Präsentations- und Moderationstechniken.
Teil 2: Gemeinsames Literaturstudium; online-Informationsaustausch; Präsentation und Diskussion mit Moderation durch die Studierenden.
SkriptAusgewählte Unterlagen werden abgegeben.
Link
Voraussetzungen / BesonderesEinschreibefrist ist der ERSTE Semestertag. Spätere Anmeldungen können nur in sehr gut begründeten Ausnahmefällen und unter besonderen Bedingungen (z.B. eingeschränkte Themen- und Terminauswahl) berücksichtigt werden.
701-0423-00LChemie aquatischer SystemeW3 KP2GL. Winkel
KurzbeschreibungDieser Kurs gibt eine Einführung in die chemischen Prozesse in aquatischen Systemen und zeigt ihre Anwendung in verschiedenen Systemen. Es werden folgende Themen behandelt: Säure-Base-Reaktionen und Carbonatsystem, Löslichkeit fester Phasen und Verwitterung, Redoxreaktionen, Komplexierung der Metalle, Reaktionen an Grenzflächen fest / Wasser, Anwendungen auf See, Fluss, Grundwasser.
LernzielVerständnis für die chemischen Zusammenhänge in aquatischen Systemen. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Evaluation analytischer Daten aus verschiedenen aquatischen Systemen.
InhaltGrundlagen der Chemie aquatischer Systeme. Regulierung der Zusammensetzung natürlicher Gewässer durch chemische, geochemische und biologische Prozesse. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Folgende Themen werden behandelt: Säure-Base-Reaktionen (Carbonatsystem); Löslichkeit fester Phasen und Verwitterungsreaktionen; Metallkomplexierung und Metallkreisläufe in Gewässern; Redoxprozesse; Reaktionen an Grenzflächen Festphase-Wasser. Anwendungen auf Seen, Flüsse, Grundwasser.
SkriptUnterlagen werden abgegeben.
LiteraturSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
701-0533-00LBodenchemieW3 KP2GR. Kretzschmar, D. I. Christl
KurzbeschreibungDieser Kurs behandelt chemische und biogeochemische Prozesse in Böden und deren Einfluss auf das Verhalten und Kreisläufe von Nähr- und Schadstoffen in terrestrischen Systemen. Konzeptionelle Ansätze zur quantitativen Beschreibung der Prozesse werden eingeführt.
LernzielVerständnis wichtiger chemischer Eigenschaften und Prozesse in Böden, und wie sie das Verhalten (z.B. chemische Bindungsform, Bioverfügbarkeit, Mobilität) von Nährstoffen und Schadstoffen beeinflussen.
InhaltWichtige Themen sind die Struktur und Eigenschaften von Tonmineralen und Oxiden, die Chemie der Bodenlösung, Gasgleichgewichte, Ausfällung und Auflösung von Mineralphasen, Kationenaustausch, Oberflächenkomplexierung, Chemie der organischen Substanz, Redoxreaktionen in überfluteten Böden, Bodenversauerung und Bodenversalzung.
SkriptHandouts in der Vorlesung.
Literatur- Ausgewählte Kapitel aus: Encyclopedia of Soils in the Environment, 2005.
- Kapitel 2 und 5 in Scheffer/Schachtschabel - Lehrbuch der Bodenkunde, 16. Auflage, Spektrum, 2010.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 KP2G + 2UD. Or
KurzbeschreibungThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
LernzielStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
InhaltWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
SkriptClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
Link
LiteraturSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
  •  Seite  1  von  1