From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Search result: Catalogue data in Autumn Semester 2016

Earth Sciences Master Information
Major in Geology
Restricted Choice Modules Geology
A minimum of two restricted choice modules must be completed for the major Geology.
Palaeoclimatology
Palaeoclimatology: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
651-4057-00LClimate History and PalaeoclimatologyW+3 credits2GS. Bernasconi, B. Ausin Gonzalez, A. Fernandez Bremer, A. Gilli
AbstractThe course "Climate history and paleoclimatology gives an overview on climate through geological time and it provides insight into methods and tools used in paleoclimate research.
ObjectiveThe student will have an understanding of evolution of climate and its major forcing factors -orbital, atmosphere chemistry, tectonics- through geological time. He or she will understand interaction between life and climate and he or she will be familiar with the use of most common geochemical climate "proxies", he or she will be able to evaluate quality of marine and terrestrial sedimentary paleoclimate archives. The student will be able to estimate rates of changes in climate history and to recognize feedbacks between the biosphere and climate.
ContentClimate system and earth history - climate forcing factors and feedback mechanisms of the geosphere, biosphere, and hydrosphere.

Geological time, stratigraphy, geological archives, climate archives, paleoclimate proxies

Climate through geological time: "lessons from the past"

Cretaceous greenhouse climate

The Late Paleocene Thermal Maximum (PETM)

Cenozoic Cooling

Onset and Intensification of Southern Hemisphere Glaciation

Onset and Intensification of Northern Hemisphere Glaciation

Pliocene warmth

Glacial and Interglacials

Millennial-scale climate variability during glaciations

The last deglaciation(s)

The Younger Dryas

Holocene climate - climate and societies
Palaeoclimatology: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W3 credits2GV. Picotti, A. Gilli
AbstractThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Objective-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Content-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Lecture notesno script. scientific articles will be distributed during the course
LiteratureWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Prerequisites / NoticeThe grading of students is based on in-class exercises and end-semester examination.
Sedimentology
Sedimentology: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
651-4041-00LSedimentology I: Physical Processes and Sedimentary SystemsW+3 credits2GV. Picotti
AbstractSediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record.
ObjectiveThe students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning.
ContentDetails on the program will be handed out during the first lecture.

We will attribute the papers for presentation on the 26th, so please be here on that day!
LiteratureThe sedimentary record of sea-level change
Angela Coe, the Open University.
Cambridge University Press
Prerequisites / NoticeThe grading of students is based on in-class exercises and end-semester examination.
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W+3 credits2GV. Picotti, A. Gilli
AbstractThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Objective-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Content-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Lecture notesno script. scientific articles will be distributed during the course
LiteratureWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Prerequisites / NoticeThe grading of students is based on in-class exercises and end-semester examination.
Sedimentology: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-4901-00LQuaternary Dating Methods Information W3 credits2GI. Hajdas, S. Ivy Ochs
AbstractReconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture we focus on the six methods that are most frequently used for dating Quaternary sediments and landforms.
ObjectiveStudents will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories.

At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.
Content1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibrium dating
5. Luminescence dating
5. K/Ar and Ar/Ar dating of lava flows and ash layers
6. Cs-137 and Pb-210 (soil, sediments, ice core)
7. Summary and comparison of results from several dating methods at specific sites
Prerequisites / NoticeVisit to radiocarbon lab, cosmogenic nuclide lab, noble gas lab, accelerator (AMS) facility.

Required attending the lecture, visiting laboratories, handing back solutions for problem sets (Excercises)
651-4063-00LX-ray Powder Diffraction Restricted registration - show details
Number of participants limited to 12.
W3 credits2GM. Plötze
AbstractIn the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.
ObjectiveUpon successful completion of this course students are able to:
- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.
ContentFundamental principles of X-ray diffraction
Setup and operation of X-ray diffractometers
Interpretation of powder diffraction data
Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)
Lecture notesSelected handouts will be made available in the lecture
LiteratureALLMANN, R.: Röntgen-Pulverdiffraktometrie : Rechnergestützte Auswertung, Phasenanalyse und Strukturbestimmung Berlin : Springer, 2003.
DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9)
PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009.
(http://www.springerlink.com/content/k100xr/#section=126257&page=1)
Prerequisites / NoticeThe course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data.
Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential.
The lecture course is limited to 12 participants.
Structural Geology
Structural Geology: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
651-4132-00LField Course IV: Non Alpine Field Course Restricted registration - show details
Does not take place this semester.
Number of participants limited to 24.
W+3 credits6PJ.‑P. Burg
AbstractField Course to Oman. The students will produce a geological map write and a complementing field report.
Objective
Prerequisites / NoticeSuccessful participation in Field Courses I-III.
Structural Geology: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-4003-00LNumerical Modelling of Rock DeformationW3 credits2GM. Frehner
AbstractIntroduction to the programming software Matlab.
Learning and understanding the continuum mechanics equations describing rock deformation.
Mathematical equations describing rock rheology: elasticity + viscosity.
Introduction to the finite-element method for modeling rock deformation in 2D.
A small applied project-work at the end of the semester will be tailored to the student's interest.
ObjectiveAt the end of this course, the students should be able to
- Use Matlab for their future needs (e.g., for their MSc Thesis)
- Understand the fundamental concept of the finite-element method
- Apply the finite-element method to successfully work on a small project tailored to the student's interests.

In addition, innovative methods will be applied to mark the performance in the course, which includes self-evaluation and peer-evaluation among the students. Therefore, some soft-skills will be required and trained as well, such as
- honest self-evaluation and self-grading
- providing honest feedback to a colleague in a tone that is acceptable
- receiving feedback from a colleague without taking criticism personal
- learning the procedure of scientific peer-evaluation
ContentIntroduction to Matlab
Continuum mechanics equations necessary to describe rock deformation
Rheological equations: elasticity + viscous materials
Introduction to the finite-element method (in 1D)
Numerical integration + isoparametric elements
Going to 2D finite elements
Finite-element method for 2D elasticity
Stress calculation + visualization
Finite-element method for 2D viscous materials
Heterogeneous media
Final project-based work tailored to the student's interest.

A substantial part of the lecture will take place in the computer-lab, where numerical finite element codes will be applied. The used software is Matlab. Students may bring their own laptop with a pre-installed copy of Matlab.
Lecture notesThe script is very diverse and ranges from PowerPoint-based pdf-files, to self-study tutorials. Also, the more theoretical and mathematical aspects will be explained on the black board without a proper script.

All lecture-presentations, as well as the numerical codes, will be made available to the students online.
LiteratureThere is no mandatory literature. The following literature is recomended:

Turcotte D.L. and Schubert G., 2002: Geodynamics, Cambridge University Press, ISBN 0-521-66624-4

Pollard D.D. and Fletcher R.C., 2005: Fundamentals of Structural Geology, Cambridge University Press, ISBN 978-0-521-83927-0

Ranalli G., 1995: Rheology of the Earth, Chapman & Hall, ISBN 0-412-54670-1

Smith I.M. and Griffiths D.V., 2004: Programming the Finite Element Method, John Wiley & Sons Ltd, ISBN 978-0-470-849-70-5

Zienkiewicz O.C. and Taylor R.L., 2000: The Finite Element Method - Volume 1: The Basis, Butterworth Heinemann, ISBN 0-7506-5049-4
Prerequisites / NoticeA good knowledge of linear algebra is expected.

The used software is Matlab. So, knowledge of Matlab is advantageous. Students may bring their own laptop with a pre-installed copy of Matlab.
651-4111-00LRock Physics Information W3 credits2GA. S. Zappone, K. Kunze, C. Madonna
AbstractThe modern discipline of Rock Physics serves as a bridge between traditional Rock Mechanics and traditional Rock Physical Property measurement. Through understanding the physics of the process, we strive to better understand other related fields such as structural geology and geophysics.
ObjectiveThe objective of this course is to introduce Rock Physics as a laboratory and interpretive tool.
ContentThe course will consists of regular classes, with a small number of laboratory demonstrations made on an ad-hoc basis (depending on equipment and research objective schedules at the Rock Deformation Laboratory). The course will cover measurements of physical properties of rock such as density, porosity, permeability and elastic wave velocity, and will introduce the concept of seismic seismic anisotropy etc. Later we will cover rock deformation in the brittle field, earthquake physics and triggering. Finally we will discuss scale effects as we move from small scale laboratory environment to the scale of the geophysical investigation.
Prerequisites / NoticeUndergraduate courses in the following subjects are highly recommended in order to get the most out of this specialist course:

- Basic structural Geology
- Geophysics
651-3521-00LTectonicsW3 credits2VJ.‑P. Burg, E. Kissling
AbstractComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
ObjectiveComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales.
Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information.
Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
ContentPlate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents.
Rheology of layered lithosphere and upper mantle.
Obduction systems
Collisions systems
Extensional systems
Basin evolution
Passive and active continental margin evolution
Lecture notesDetailed scriptum in digital form and additional learning moduls (www.lead.ethz.ch) available on the intranet.
LiteratureCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
Biogeochemistry
Biogeochemistry: Compulsory Courses
The compulsory courses of the module take place in spring semester.
Biogeochemistry: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-4058-00LBasics of Palaeobotany (University of Zurich)
Does not take place this semester.
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BIO280

Mind the enrolment deadlines at UZH:
http://www.uzh.ch/studies/application/mobilitaet_en.html
W3 credits2GUniversity lecturers
AbstractThe course "Basics in Palaeobotany" gives an overview on the evolution and palaeobiology of plants and their relevance for the reconstruction of past environments.
ObjectiveOn successful completion of the module, the students should be able to explain how plants are preserved in the fossil record, to describe the morphology of plant mega fossils, and of spores and pollen. They can describe how plant fossils can be used for reconstructing palaeoenvironments. Students should be able to explain the interactions between evolution of plants, climate and physical environment and they will be able to integrate the dimension of geological time into their understanding of biological events.
Content-Preservation of plants in the fossil record.
-First evidence for plants on Earth
-The conquest of the continents by plants
-Major adaptation and innovations leading to the present plant diversity
-The evolution and morphology of the major plant groups
-Plant associations through geological time and their palaeogeographic and stratigraphic relevance
-Mass extinctions and the fossil plant record
-Interaction between past vegetation and climate
-The relevance of plant microfossils for reconstruction of palaeoclimate and palaeoecology
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W3 credits2GV. Picotti, A. Gilli
AbstractThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Objective-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Content-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Lecture notesno script. scientific articles will be distributed during the course
LiteratureWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Prerequisites / NoticeThe grading of students is based on in-class exercises and end-semester examination.
651-4057-00LClimate History and PalaeoclimatologyW3 credits2GS. Bernasconi, B. Ausin Gonzalez, A. Fernandez Bremer, A. Gilli
AbstractThe course "Climate history and paleoclimatology gives an overview on climate through geological time and it provides insight into methods and tools used in paleoclimate research.
ObjectiveThe student will have an understanding of evolution of climate and its major forcing factors -orbital, atmosphere chemistry, tectonics- through geological time. He or she will understand interaction between life and climate and he or she will be familiar with the use of most common geochemical climate "proxies", he or she will be able to evaluate quality of marine and terrestrial sedimentary paleoclimate archives. The student will be able to estimate rates of changes in climate history and to recognize feedbacks between the biosphere and climate.
ContentClimate system and earth history - climate forcing factors and feedback mechanisms of the geosphere, biosphere, and hydrosphere.

Geological time, stratigraphy, geological archives, climate archives, paleoclimate proxies

Climate through geological time: "lessons from the past"

Cretaceous greenhouse climate

The Late Paleocene Thermal Maximum (PETM)

Cenozoic Cooling

Onset and Intensification of Southern Hemisphere Glaciation

Onset and Intensification of Northern Hemisphere Glaciation

Pliocene warmth

Glacial and Interglacials

Millennial-scale climate variability during glaciations

The last deglaciation(s)

The Younger Dryas

Holocene climate - climate and societies
  •  Page  1  of  1