Search result: Catalogue data in Autumn Semester 2016

Civil Engineering Master Information
1. Semester
Major Courses
Major in Hydraulic Engineering and Water Resources Management
NumberTitleTypeECTSHoursLecturers
101-0247-01LHydraulic structures II
Information: Enrolment of Hydraulic Engineering II is not recommended without having attended Hydraulic Engineering (101-0206-00L) previously since Hydraulic Engineering II is strongly based on Hydraulic Engineering (101-0206-00L).
O6 credits4GR. Boes
AbstractHydraulic structures and their function within a hydraulic scheme are explained. The basic concepts of their layout and design with regard to economy and safety are provided.
ObjectiveKnowledge of hydraulic structures and their function within a hydraulic scheme. Skills for the layout and design of hydraulic structures with regard to economy and safety.
ContentWeirs: Weir stability, gates, inflatable dams, appurtenant structures.
Conduits: Design of headraces, pressure shafts, and penstocks, constructive details and construction.
Power plants: Power house and turbine types, design, structure, construction.
Dams: Dam types, appurtenant structures (diversion, spillways, bottom outlet), dam type selection criteria, layout and design of gravity dams, buttress dams, arch dams, rockfill dams with central core or concrete face, measures in the foundation, mass concrete, RCC dams, reservoir siltation and sediment management, dam surveillance.
Artificial reservoirs: Purpose, layout, sealing, appurtenant structures, environmental aspects.
Lecture notesmanuscript and further documentation
Literatureis specified in the lecture and in the manuscript
Prerequisites / NoticeInformation: Enrolment of Hydraulic Engineering II is not recommended without having attended Hydraulic Engineering (101-0206-00L) previously since Hydraulic Engineering II is strongly based on Hydraulic Engineering (101-0206-00L).
101-0267-01LNumerical Hydraulics Information O3 credits2GM. Holzner
AbstractIn the course Numerical Hydraulics the basics of numerical modelling of flows are presented.
ObjectiveThe goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.
ContentThe basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied pratically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generelly available softwares such as Hydraulic Systems and HEC RAS for non-steady flows are used.
Lecture notesLecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.
LiteratureGiven in lecture
102-0237-00LHydrology IIW3 credits2GP. Burlando, S. Fatichi
AbstractThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
ObjectiveTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
ContentMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
Lecture notesParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteratureAdditional literature is presented during the course.
102-0455-01LGroundwater IW3 credits2GM. Willmann
AbstractThe course provides an introduction into quantitavie analysis of groundwater flow and transport. It is focussed on formulating flow and transport problems in groundwater, which are to be solved analytically or numerically.
Objectivea) Students understand the basic concepts of flow and contaminant transport processes and boundary conditions in groundwater.

b) Students are able to formulate simple practical flow and transport problems.

c) Students are able to understand and apply simple analytical solutions to simple flow and transport problems.

d) Students are able to use simple numerical codes to adequately solve simple flow (and transport) problems.
ContentIntrodiction, aquifers, groundwater use, sustainability, porosity.

Properties of porous media.
Exercises: Groundwater use, porosity, grain size analysis.

Flow properties, Darcy's law, filter.

Flow equations, stream function.
Exercises: Darcy's law.

Analytical solutions, confined aquifers, steady-state flow.
Exercises: Head isolines.

Use of superposition principles, transient flow, freee surface flow.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems I.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems II.
Exercises: Finite differece formulations to flow problems.

Transport processes.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems I.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems II.
Exercises: Analytical solutions to transport problems.

Path lines, groundwater protection.
Exercises: Analytical solutions to transport problems.

Groundwater remediation, groundwater management.
Exercises: Groundwater remediation.
Lecture notesFolien auf Internet unter Link

Altes Skript auf Internet Link

Weitere Texte auf Internet Link

Didaktische Software auf Internet unter Link
LiteratureJ. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979

P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

Krusemann, de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970

G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986
101-0258-00LRiver EngineeringO3 credits2GG. R. Bezzola
AbstractThe lecture addresses the fundamentals to quantitatively describe the flow of water, the transport of sediments and morphological changes like erosion or deposition in watercourses. Further addressed are the design and dimensioning of river engineering works to create and ensure sufficient capacity, channel stability as well as to ensure the ecological functions of the watercourse.
ObjectiveThe students shall
- be able to describe the interrelation between discharge, sediment transport and channel evolution quantitatively
- know the fundamentals and be able to apply the approaches and methods to treat river engineering problems associated with flood protection and river restoration
- be capable to design and dimension river engineering works needed to influence the processes in watercourses
ContentThe first part of the lecture treats the fundamentals required to deal with river engineering problems. Sampling methods for the river bed material and methods to calculate the discharge in alluvial rivers are presented. The process of river bed armoring and the principles of incipient motion, initiation of erosion as well as sediment transport (bed load, suspended load) are treated.
In the second part of the lecture, the procedures to quantify the sediment budget and the morphological changes (erosion, aggradation) in river systems are explained. Furthermore, the process of natural channel formation and the different plan forms of rivers (straight, meandering, braided) are discussed. Own chapters are dedicated to the topics of channel stability, bed forms, river morphology and scour.
The last part of the lecture concentrates on the design and dimensioning of river engineering works. The topics focussed on are the stabilization of banks and of the longitudinal profile of rivers.
Lecture notesLecture notes "River Engineering" (in German, 470 pages, including list of references)
LiteratureThe lecture notes contain a comprehensive list of references for further reading.
Prerequisites / NoticeStrongly recommended lectures:
Hydrology (102-0293-AAL), Hydraulics I (101-0203-01L) and Hydraulic Engineering (101-0206-00L)

A practical exercise (voluntary, unmarked) is offered to deepen the learned subjects.
This exercise bases on field data, which are partly collected by the students on a river in nature. Besides the collection of fundamentals and field data, the exercise comprehends the calculation of the stage-discharge relationship, of the critical discharges for initiation of bed load transport and bed erosion and of the annual sediment load in a given river reach.
  •  Page  1  of  1