Suchergebnis: Katalogdaten im Herbstsemester 2016

Umweltnaturwissenschaften Bachelor Information
Naturwissenschaftliche und technische Wahlfächer
Naturwissenschaftliche Module
Methoden der statistischen Datenanalyse
NummerTitelTypECTSUmfangDozierende
701-0105-00LMathematik VI: Angewandte Statistik für UmweltnaturwissenschaftenW3 KP2GC. Bigler, U. Brändle, M. Kalisch, L. Meier
KurzbeschreibungStatistische Verfahren aus aktuellen Publikationen der Umweltnaturwissenschaften werden vorgestellt und angewendet. Die Teilnehmenden können Methoden nachvollziehen und beschreiben, Datensätze bereinigen, diese mit dem Softwarepaket R analysieren und Resultate in geeigneter Form darstellen. Sie können Stärken und Schwächen behandelter Verfahren für gegebene Anwendungsgebiete beschreiben.
LernzielDie Studierenden können
- geeignete statistische Methoden für die Datenanalyse in ihrem Fachgebiet nutzen.
- Datensätze mit Hilfe von explorativen Methoden charakterisieren.
- Datensätze auf ihre Tauglichkeit für die Beantwortung einer gegebenen Fragestellung prüfen, für den Import in ein Statistikprogramm aufbereiten und die Analyse durchführen.
- statistische Auswertungen interpretieren und für Präsentationen und Publikationen grafisch aufbereiten.
- Grundlagen von statistischen Methoden in aktuellen Papers beschreiben.
- das Softwarepaket R für statistische Analysen anwenden
InhaltStatistische Methoden: Regression (lineare Modelle; generalisierte lineare Modelle; GLMs); Varianzanalyse; gemischte Modelle für gruppierte Daten (mixed-effects models); Fragebogenstatistik; Tests (t Test; Chiquadrat Test; Fisher Test); Power-Analyse

Werkzeuge: Explorative Datenanalyse für Hypothesenbildung; Auswahlverfahren für geeignete statistische Verfahren; Datenaufbereitung (Excel -> R; Datenbereinigung); graphische Darstellung von Resultaten; statistische Verfahren in Publikationen erkennen
Wir arbeiten mit dem Softwarepaket R.

Form: Im Wochenrhythmus finden alternierend Einführungen in eine neue Methode und Übungsstunden zum Thema statt.
Voraussetzungen / BesonderesBesuch von "Mathematik IV: Statistik" oder vergleichbare Lehrveranstaltung
701-1671-00LSampling Techniques for Forest InventoriesW3 KP2VD. Mandallaz
KurzbeschreibungIntroduction to design and model assisted sampling theory for finite populations as well as to the infinite population model for forest inventory. Two-phase two-stage forest inventories with simple or cluster sampling. Small area estimation. Presentation of the Swiss National Inventory.
Short introduction to Kriging techniques.
LernzielStudents should have a good understanding of the concepts of general sampling theory in a modern framework. They should also master the specific problems arising in forest inventory and be able, if necessary, to read more specialized books or research papers.
InhaltInclusion probabilities. Horwitz-Thompson estimates. Simple random sampling. Stratified sampling. PPS sampling and multi-stage sampling. Model assisted procedures. Formalism of sampling theory in forest inventory. One-phase simple and cluster sampling schemes. Two-phase two-sampling schemes. Model-dependent and model assisted procedures. Small area estimation. Kriging techniques. The Swiss National Forest Inventory.
SkriptSampling techniques for forest inventories. Daniel Mandallaz, Chapman and Hall. A free electronic copy of the book is also available. A PDF file containing parts of the book will be mailed to the participants
LiteraturSampling methods for multiresource forest inventory. H.T. Schreuder, T.G. Gregoire, G.B. Wood, 1993, Wiley.
Model assisted survey sampling, C.E. Särndal, B. Swenson, J. Wretman, 2003, Springer.
Sampling methods, remote sensing and GIS multisource forest inventory
M. Köhl, S. Magnussen, M. Marchetti, 2006, Springer.
Sampling techniques for forest inventories, Daniel Mandallaz, 2007, Chapman and Hall.
T.G. Gregoire, H.T. Valentine. Sampling strategies for natural resources and the environment, Chapman and Hall.
Voraussetzungen / BesonderesA simulation software will be used throughtout the lectures to illustrate the theoretical developments. Upon request a half day field demonstration can be organized at the WSL outside the lecture time. A repetitorium for the exam is also offered.
401-0625-01LApplied Analysis of Variance and Experimental Design Information W5 KP2V + 1UL. Meier
KurzbeschreibungPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
LernzielParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
InhaltPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
LiteraturG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
401-0649-00LApplied Statistical Regression Information W5 KP2V + 1UM. Dettling
KurzbeschreibungThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
LernzielThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
InhaltThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
SkriptA script will be available.
LiteraturFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
401-6215-00LUsing R for Data Analysis and Graphics (Part I) Information W1 KP1GA. Drewek, A. J. Papritz
KurzbeschreibungThe course provides the first part an introduction to the statistical software R for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.
LernzielThe students will be able to use the software R for simple data analysis.
InhaltThe course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.
SkriptAn Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf
Voraussetzungen / BesonderesThe course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
https://moodle-app2.let.ethz.ch/enrol/users.php?id=1145
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
401-6217-00LUsing R for Data Analysis and Graphics (Part II) Information W1 KP1GA. Drewek, A. J. Papritz
KurzbeschreibungThe course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.
Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.
LernzielThe students will be able to use the software R efficiently for data analysis.
InhaltThe course provides the second part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org
SkriptAn Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf
Voraussetzungen / BesonderesBasic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
https://moodle-app2.let.ethz.ch/enrol/users.php?id=1145
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
  •  Seite  1  von  1