Search result: Catalogue data in Autumn Semester 2016

Health Sciences and Technology Master Information
Major in Medical Technology
Elective Courses II
151-0255-00LEnergy Conversion and Transport in BiosystemsW4 credits2V + 1UD. Poulikakos, A. Ferrari
AbstractTheory and application of thermodynamics and energy conversion in biological systems with focus on the cellular level.
ObjectiveTheory and application of energy conversion at the cellular level. Understanding of the basic features governing solutes transport in the principal systems of the human cell. Connection of characteristics and patterns from other fields of engineering to biofluidics. Heat and mass transport processes in the cell, generation of forces, work and relation to biomedical technologies.
ContentMass transfer models for the transport of chemical species in the human cell. Organization and function of the cell membrane and of the cell cytoskeleton. The role of molecular motors in cellular force generation and their function in cell migration. Description of the functionality of these systems and of analytical experimental and computational techniques for understanding of their operation. Introduction to cell metabolism, cellular energy transport and cellular thermodynamics.
Lecture notesMaterial in the form of hand-outs will be distributed.
LiteratureLecture notes and references therein.
151-0604-00LMicrorobotics Information
Does not take place this semester.
W4 credits3GB. Nelson
AbstractMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
ObjectiveThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
ContentMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
Lecture notesThe powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically.
Prerequisites / NoticeThe lecture will be taught in English.
227-0385-10LBiomedical ImagingW6 credits5GS. Kozerke, K. P. Prüssmann, M. Rudin
AbstractIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
ObjectiveTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Content- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
Lecture notesLecture notes and handouts
LiteratureWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Prerequisites / NoticeAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0391-00LMedical Image AnalysisW3 credits2GP. C. Cattin, M. A. Reyes Aguirre
AbstractIt is the objective of this lecture to introduce the basic concepts used
in Medical Image Analysis. In particular the lecture focuses on shape
representation schemes, segmentation techniques, and the various image registration methods commonly used in Medical Image Analysis applications.
ObjectiveThis lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas.
Prerequisites / NoticeBasic knowledge of computer vision would be helpful.
227-0393-10LBioelectronics and Biosensors
New course. Not to be confounded with 227-0393-00L last offered in the Spring Semester 2015.
W6 credits2V + 2UJ. Vörös, M. F. Yanik, T. Zambelli
AbstractThe course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
ObjectiveDuring this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
ContentL1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning
LiteraturePlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Prerequisites / NoticeSupervised exercises solving real-world problems. Some Matlab based exercises in groups.
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 credits3GM. Stampanoni, P. A. Kaestner
AbstractThe lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.
ObjectiveIntroduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications
ContentSynchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.
Lecture notesAvailable online
LiteratureWill be indicated during the lecture.
227-0969-00LMethods & Models for fMRI Data Analysis Information W6 credits4VK. Stephan
AbstractThis course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data.
ObjectiveTo obtain in-depth knowledge of the theoretical foundations of SPM
and DCM and of their application to empirical fMRI data.
ContentThis course teaches state-of-the-art methods and models for fMRI data analysis. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of studies in psychiatry, neurology and neuroeconomics.
327-0505-00LSurfaces, Interfaces and their Applications I Information W3 credits2V + 1UN. Spencer, M. P. Heuberger, L. Isa
AbstractAfter being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion.
ObjectiveTo gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems.
ContentIntroduction to Surface Science
Physical Structure of Surfaces
Surface Forces (static and dynamic)
Adsorbates on Surfaces
Surface Thermodynamics and Kinetics
The Solid-Liquid Interface
Electron Spectroscopy
Vibrational Spectroscopy on Surfaces
Scanning Probe Microscopy
Introduction to Tribology
Introduction to Corrosion Science
Lecture notesScript Download:
LiteratureScript (20 CHF)
Book: "Surface Analysis--The Principal Techniques", Ed. J.C. Vickerman, Wiley, ISBN 0-471-97292
Prerequisites / NoticeChemistry:
General undergraduate chemistry
including basic chemical kinetics and thermodynamics

General undergraduate physics
including basic theory of diffraction and basic knowledge of crystal structures
327-2125-00LMicroscopy Training SEM I - Introduction to SEM Restricted registration - show details
Number of participants limited to 6.
The participants will be chosen based on a short motivation letter. Please send this letter to S. Rodighiero (main lecturer) as soon as possible.
W1 credit3PS. Rodighiero, A. G. Bittermann, K. Kunze, J. Reuteler
AbstractThe introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists.
Objective- Set-up, align and operate a SEM successfully and safely.
- Accomplish imaging tasks successfully and optimize microscope performances.
- Master the operation of a low-vacuum and field-emission SEM and EDX instrument.
- Perform sample preparation with corresponding techniques and equipment for imaging and analysis
- Acquire techniques in obtaining secondary electron and backscatter electron micrographs
- Perform EDX qualitative and semi-quantitative analysis
ContentDuring the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.
This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized.

- Discussion of students' sample/interest
- Introduction and discussion on Electron Microscopy and instrumentation
- Lectures on electron sources, electron lenses and probe formation
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM
- Brief description and demonstration of the SEM microscope
- Practice on beam/specimen interaction, image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping
- Practice on real-world samples and report results
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2126-00LMicroscopy Training TEM I - Introduction to TEM Restricted registration - show details
Does not take place this semester.
Number of participants limited to 6.

The participants will be chosen based on a short motivation letter. Please send this letter to S. Rodighiero (main lecturer).
W1 credit3P
AbstractThe introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions.
Objective- Overview of TEM theory, instrumentation, operation and applications.
- Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully.
- Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras.
- To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns.
- Overview of techniques for specimen preparation.
ContentUsing two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods.

- Introduction and discussion on Electron Microscopy and instrumentation.
- Lectures on electron sources, electron lenses and probe formation.
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM.
- Brief description and demonstration of the TEM microscope.
- Practice on beam/specimen interaction, image formation, Image contrast (and image processing).
- Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM).
- Student participation on sample preparation techniques.
- Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities.
- TEM alignment, calibration, correction to improve image contrast and quality.
- Electron diffraction.
- Practice on real-world samples and report results.
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
363-0790-00LTechnology Entrepreneurship Information W2 credits2VU. Claesson, B. Clarysse
AbstractTechnology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding.
This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.
ObjectiveThis course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.
ContentSee course website: Link
Lecture notesLecture slides and case material
376-0815-00LWriting your Master's Thesis: Natural Sciences and Engineering C1-C2 Restricted registration - show details
Does not take place this semester.
Your course regristration is only valid with a simultaneous online registration at the language center (

Number of participants limited to 15 (3 courses are available).

Attention: Registration is only possible from 12.9. (from 11.30h) - 15.9.2016
W2 credits2VS. Milligan
AbstractWe'll prepare you to produce your MSc thesis. You'll learn how to structure your thesis, write scientific English, and manage your writing efficiently. You'll receive detailed feedback on work in progress.
ObjectiveBy the end of the course students are able to plan, draft, and edit academic English papers and theses; structure and write clear texts in a style which is acceptable to their academic discourse community; manage the writing process efficiently; select formal vocabulary and use it in a generally accurate and correct manner; choose and use generally suitable grammatical structures, punctuation, and orthographic conventions, assess their own effectiveness as writers of academic English, and identify areas in which further development is needed.
ContentThe course covers the writing context; the writing process; structuring sentences, paragraphs, longer sections (such as introduction, methods, results, and discussion), and whole texts; presenting and integrating non-textual elements such as graphs and tables; and editing and correcting drafts and proofs. Each lesson comprises a mixture of elements, including specialist input, individual tasks, pairwork, and groupwork. Active participation is expected.
363-1065-00LDesign Thinking: Human-Centred Solutions to Real World Challenges Restricted registration - show details
Due to didactic reasons, the number of participants is limited to 30.

All interested students are invited to apply for this course by sending a one-page motivation letter until 14.9.16 to Florian Rittiner (

Additionally please enroll via mystudies. Places will be assigned after the first lecture on the basis of your motivation letter and commitment for the class.
W5 credits5GA. Cabello Llamas, F. Rittiner, S. Brusoni, C. Hölscher, M. Meboldt
AbstractThe goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application:
ObjectiveDuring the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders.
- Engage in collaborative ideation with a multidisciplinary (student) team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
ContentThe purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit:
Prerequisites / NoticeClass attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.
376-1103-00LFrontiers in NanotechnologyW4 credits4VV. Vogel, further lecturers
AbstractMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
ObjectiveBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
ContentStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
Lecture notesAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
376-1177-00LHuman Factors IW2 credits2VM. Menozzi Jäckli, R. Huang, M. Siegrist
AbstractEvery day humans interact with various systems. Strategies of interaction, individual needs, physical & mental abilities, and system properties are important factors in controlling the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's satisfaction & overall performance.
ObjectiveThe goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.
Content- Physiological, physical, and cognitive factors in sensation and perception
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance and well-being
- Human factors and ergonomics in system designs, product development and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks
Literature- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
376-1179-00LApplications of Cybernetics in ErgonomicsW1 credit1UM. Menozzi Jäckli, Y.‑Y. Hedinger Huang, R. Huang
AbstractCybernetics systems have been studied and applied in various research fields, such as applications in the ergonomics domain. Research interests include the man-machine interaction (MMI) topic which involving the performance in multi-model interactions, quantification in gestalt principles in product development; or the information processing matter.
ObjectiveTo learn and practice cybernetics principles in interface designs and product development.
Content- Fitt's law applied in manipulation tasks
- Hick-Hyman law applied in design of the driver assistance systems - Vigilance applied in quality inspection
- Accommodation/vergence crosslink function
- Cross-link models in neurobiology- the ocular motor control system
- Human performance in optimization of production lines
LiteratureGavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012)
376-1219-00LRehabilitation Engineering II: Rehabilitation of Sensory and Vegetative FunctionsW3 credits2VR. Riener, R. Gassert, L. Marchal Crespo
AbstractRehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.
ObjectiveProvide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
ContentIntroduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
LiteratureIntroductory Books:

An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007.

Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000.

Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS).

Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008.

The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.

Selected Journal Articles and Web Links:

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432
Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and
Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at:

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.

The vOICe.

VideoTact, ForeThought Development, LLC.
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
376-1279-00LVirtual Reality in Medicine Restricted registration - show details
Does not take place this semester.
W3 credits2VR. Riener
AbstractVirtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions.
ObjectiveProvide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation.
ContentVirtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment.

Target Group:
Students of higher semesters and PhD students of
- Robotics, Systems and Control Master
- Biomedical Engineering/Movement Science and Sport
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome!
LiteratureBook: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer.
Prerequisites / NoticeThe course language is English.
Basic experience in Information Technology and Computer Science will be of advantage
More details will be announced in the lecture.
376-1351-00LMicro/Nanotechnology and Microfluidics for Biomedical ApplicationsW2 credits2VE. Delamarche
AbstractThis course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beamers for patterning proteins, hard-disk technology for biosensing and scanning microfluidics for analyzing tissue sections are just a few examples of the covered topics.
ObjectiveThe main objective of the course is to introduce micro/nanotechnology and microfluidics to students having a background in the life sciences. The course should familiarize the students with the techniques used in micro/nanotechnology and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and medical applications. The second objective is to have life students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed.
ContentMostly formal lectures (2 × 45 min), with a 2 hour visit and introduction to cleanroom and micro/nanotechnology instruments, last 3 sessions would be dedicated to the presentation and evaluation of projects by students (3 students per team).
Prerequisites / NoticeNanotech center and lab visit at IBM would be mandatory, as well as attending the student project presentations.
  •  Page  1  of  2 Next page Last page     All