# Search result: Catalogue data in Spring Semester 2017

Mechanical Engineering Bachelor | ||||||

6. Semester | ||||||

Focus Specialization | ||||||

Energy, Flows and Processes Focus Coordinator: Prof. Christoph Müller In order to achieve the required 20 credit points for the Focus Specialization Energy, Flows and Processes you need to choose at least 2 of the 4 compulsory courses (HS/FS) and at least 2 of the elective courses (HS/FS). One course could be selected among all the courses offered by D-MAVT (Bachelor and Masters). | ||||||

Compulsory Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

151-0208-00L | Computational Methods for Flow, Heat and Mass Transfer Problems | W+ | 4 credits | 2V + 2U | P. Jenny | |

Abstract | Numerical methods for the solution of flow, heat and mass transfer problems are presented and practised by analytical and computer solutions for simple examples. Subjects: solution process, physical and mathematical models, basic equations, discretization methods, numerical solution of advection, diffusion and Poisson equations, turbulent flows. | |||||

Objective | Knowledge of and practical experience with important discretisation and solution methods for computational fluid dynamics and heat and mass transfer problems | |||||

Content | Aufbauend auf den Lehrveranstaltungen über Fluiddynamik, Thermodynamik, Computational Methods for Engineering Application I (empfehlenswertes Wahlfach, 4. Semester) und Informatik (Programmieren) werden numerische Methoden für Berechnungsaufgaben der Fluiddynamik, Energie- und Verfahrenstechnik dargestellt und an einfachen Beispielen geübt. 1. Einleitung Uebersicht, Anwendungen Problemlösungsprozess, Fehler 2. Rekapitulation der Grundgleichungen Formulierung, Anfangs- und Randbedingungen 3. Numerische Diskretisierungsverfahren Finite-Differenzen- und Finite-Volumen-Verfahren Grundbegriffe: Konsistenz, Stabilität, Konvergenz 4. Lösung der grundlegenden Gleichungstypen Wärmeleitungs/Diffusionsgleichung (parabolisch) Poisson-Gleichung (elliptisch) Advektionsgleichung/Wellengleichung (hyperbolisch) und Advektions-Diffusions-Gleichung 5. Berechnung inkompressibler Strömungen 6. Berechnung turbulenter Strömungen | |||||

Lecture notes | Lecture notes are available (in German) | |||||

Literature | a list of references is supplied | |||||

Prerequisites / Notice | It is crucial to actively solve the analytical and practical (programming) exercises. | |||||

151-0942-00L | Introduction to Chemical Engineering | W+ | 4 credits | 3G | M. Mazzotti | |

Abstract | The class aims at bridging chemistry and engineering by presenting some fundamental aspects of chemical engineering. In particular, topics from the broad areas of chemical engineering thermodynamics, separation process technology, and chemical reaction engineering are covered. Though at an introductory level, the different topics are presented rigorously and quantitatively. | |||||

Objective | The students will be able to understand the interplay between natural sciences (chemistry and physics) and the engineering aspects of chemical processes. They will also understand how they can describe the relevant phenomena and mechanisms using proper mathematical models, and thus gaining insight on them. | |||||

Content | List of specific topics addressed: - multicomponent multiphase equilibria (chemical potential), - binary liquid-vapor equilibria, - solubility of solids in solution, - equilibrium of chemical reactions, - flash evaporation, - solid formation from solution (nucleation and growth of crystals), - fundamentals of kinetic gas theory (Maxwell's velocity distribution), - ideal reactors (CSTR, batch, PFR), - heat transfer effects in ideal reactors | |||||

Lecture notes | The students will be provided with lecture notes prepared for the class; a few additional and optional references will also be recommended. | |||||

Elective Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0054-00L | Thermal Design and Optimization Course will no longer take place after FS17. Prerequisites: Thermodynamics I (151-0051-00L) , Thermodynamics II (151-0052-00L) and Thermodynamics III (151-0261-00L) | W | 4 credits | 2V + 2U | P. Rudolf von Rohr | |

Abstract | The content of the course is focused on the exergetically optimized dimensioning and the constructive design of one and two phase heat exchanger systems. | |||||

Objective | Fundamentals on heat exchanger an heat exchanger systems design focusing on minimization of exergy losses is presented. | |||||

Content | Introduction in exergy losses at heatexchangers, multiphase flow and heat exchange, condenser, evaporators, regenerators, gas-solid heat exchange, pinch methodology | |||||

Lecture notes | Script is available | |||||

Literature | for each chapter special literature is recommended | |||||

Prerequisites / Notice | The fundamental courses in thermodynamics are neccessary to follow this course. | |||||

151-0206-00L | Energy Systems and Power Engineering | W | 4 credits | 2V + 2U | R. S. Abhari, A. Steinfeld | |

Abstract | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||

Objective | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||

Content | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology. | |||||

Lecture notes | Vorlesungsunterlagen werden verteilt | |||||

151-0966-00L | Introduction to Quantum Mechanics for Engineers | W | 4 credits | 2V + 2U | D. J. Norris | |

Abstract | This course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering. | |||||

Objective | To work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated. | |||||

Content | Fundamentals of Quantum Mechanics - Historical Perspective - Schrödinger Equation - Postulates of Quantum Mechanics - Operators - Harmonic Oscillator - Hydrogen atom - Multielectron Atoms - Crystalline Systems - Spectroscopy - Approximation Methods - Applications in Engineering | |||||

Lecture notes | Class Notes and Handouts | |||||

Literature | Text: David J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Pearson International Edition. | |||||

Prerequisites / Notice | Analysis III, Mechanics III, Physics I, Linear Algebra II | |||||

151-0135-00L | Additional Case for the Focus Specialization Exclusive for D-MAVT Bachelor's students in Focus Specialization. For enrollment, please contact the D-MAVT Student Administration. | W | 1 credit | 2A | Professors | |

Abstract | Independent studies on a defined field within the selected Focus Specialization. | |||||

Objective | Independent studies on a defined field within the selected Focus Specialization. | |||||

Mechatronics Focus Coordinator: Prof. Bradley Nelson To achieve the 20 credits for Focus Specialization Mechatronics, 151-0640-00L Studies on Mechatronics is compulsory. | ||||||

Compulsory Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0640-00L | Studies on Mechatronics The following professors can be chosen and please contact the professor directly: M. Chli, R. D'Andrea, J. Dual, E. Frazzoli, R. Gassert, C. Hierold, M. Hutter, W. Karlen, J. Lygeros, M. Meboldt, B. Nelson, C. Onder, M. Pollefeys, D. Poulikakos, R. Riener, R.Y. Siegwart, L. Thiele, K. Wegener and M. Zeilinger This course is not available to incoming exchange students. | O | 5 credits | 5A | Professors | |

Abstract | Overview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences. | |||||

Objective | The goal of this class is to familiarize the students with this fascinating but rapidly evolving engineering discipline. The students learn to find, read and critically evaluate the pertinent literature and methods through in depth studying, presenting, debating of and writing about selected topics or case studies addressing mechatronics engineering. | |||||

Content | Overview of Mechatronics topics and study subjects. Identification of minimum ten pertinent refereed articles or works in the literature in consultation with supervisor orinstructor. After four weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After detailed feedback on the substance and technical writing on the proposal by the instructor, project commences. Three to four weeks prior to the end of the semester, a 15 minute oral progress report (presentation) is given by the student that is critiqued by the instructor with detailed comments on substance and effectiveness of lecture and response on questions from audience. At the last day of the semester the student submits a written report that is no longer than 10-pages text following the format of a representative journal article. Throughout the semester the student attends and actively participates in the interactive class lectures given in the form of seminars and debates with active question and answer sessions inviting student and instructor participation. | |||||

Literature | will be available | |||||

Elective Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0206-00L | Energy Systems and Power Engineering | W | 4 credits | 2V + 2U | R. S. Abhari, A. Steinfeld | |

Abstract | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||

Objective | ||||||

Content | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology. | |||||

Lecture notes | Vorlesungsunterlagen werden verteilt | |||||

151-0516-00L | Non-smooth Dynamics | W | 5 credits | 5G | C. Glocker | |

Abstract | Inequality problems in dynamics, in particular friction and impact problems with discontinuities in velocity and acceleration. Mechanical models of unilateral contacts, friction, sprag clutches, pre-stressed springs. Formulation by set-valued maps as normal cone inclusions and proximal point problems. Numerical time integration and Gauss-Seidel methods for inequalities. | |||||

Objective | The lecture provides the students an introduction to modern methods for inequality problems in dynamics. The contents of the lecture are fitted to frictional contact problems in mechanics, but can be transferred to a large class of inequality problems in technical sciences. The purpose of the lecture is to acquaint the students with a consistent generalization of classical mechanics towards systems with discontinuities, and to make them familiar with inequalities treated as set-valued constitutive laws. | |||||

Content | 1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung. 2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung. 3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten. 4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung. 5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze. 6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon. 7. Numerische Behandlung: Massgleichung, Zeitdiskretisierung nach Moreau, Inklusionsproblem in lokalen Koordinaten, Prox-Problem, Gauss-Seidl-Iteration. | |||||

Lecture notes | Es gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben. | |||||

Prerequisites / Notice | Kinematik und Statik & Dynamics | |||||

151-0540-00L | Experimental Mechanics | W | 4 credits | 2V + 1U | J. Dual | |

Abstract | 1. General aspects like transfer functions, vibrations, modal analysis, statistics, digital signal processing, phase locked loop, 2. Optical methods 3. Piezoelectricity 4. Electromagnetic excitation and detection 5. Capacitive Detection | |||||

Objective | Understanding, quantitative modelling and practical application of experimental methods for producing and measuring mechanical quantities (motion, deformation, stresses,..) | |||||

Content | 1. General Aspects: Measurement chain, transfer functions, vibrations and waves in continuous systems, modal analysis, statistics, digital signal analysis, phase locked loop. 2. Optical methods ( acousto optic modulation, interferometry, holography, photoelasticity, shadow optics, Moire methods ) 3. Piezoelectric materials: basic equations, applications, accelerometer ) 4. Electomagnetic excitation and detection, 5. Capacitive detection Practical training and homeworks | |||||

Lecture notes | no | |||||

Prerequisites / Notice | Prerequisites: Mechanics I to III, Physics | |||||

151-0630-00L | Nanorobotics | W | 4 credits | 2V + 1U | S. Pané Vidal, B. Nelson | |

Abstract | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||

Objective | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. | |||||

151-0641-00L | Introduction to Robotics and Mechatronics Number of participants limited to 60. Enrollment is only valid through registration on the MSRL Website (www.msrl.ethz.ch) and will open on 12 December 2016. Registration per e-mail is no longer accepted! | W | 4 credits | 2V + 2U | B. Nelson | |

Abstract | The aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use. | |||||

Objective | The aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use, and forward and inverse kinematics. Throughout the course students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. | |||||

Content | An ever increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices. The aim of this lecture is to expose students to the fundamentals of these systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use, and forward and inverse kinematics. Throughout the course students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. | |||||

Prerequisites / Notice | The registration is limited to 60 students. There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to be familiar with C programming. | |||||

151-1224-00L | Oil-Hydraulics and Pneumatics | W | 4 credits | 2V + 2U | J. Lodewyks, K. Wegener | |

Abstract | Introduction to the physical and technical basics of oilhydraulic and pneumatic systems and their components as pumps, motors, cylinders and control valves, with emphasis on servo- and proportional techniques and feedback- controlled drives. In parallel an overview on application examples will be given | |||||

Objective | the student - can interpret and explain the function of an oilhydraulic or pneumatic system and can create basic circuit concepts - can discribe the architecture and function of needed components and can select and design them to desired properties - can simulate the dynamical behaviour of a servohydraulic cylinder- drive and can design an optimal state-feedback-control with observer | |||||

Content | Significans of hydraulic and pneumatic systems, general definitions and typical application examples. Review of important fluid-mechanical principles as compressibility, flow through orifices and friction losses in line-systems. Components of hydraulic and pneumatic systems as pumps, motors, cylinders, control valves for direction, pressure and flow, proportional- and servo-valves, their function and structural composition. Basic circuit concepts of hydraulic and pneumatic control systems. Dynamical behaviour and state-feedback-control of servohydraulic and -pneumatic drives. Exercices Design of a oilhydraulic drive-system Measurement of the flow characteristic of an orifice, a pressure valve and a pump. Simulation and experimental investigation of a state-feedback-controlled servo-cylinder-drive. | |||||

Lecture notes | Autography Oelhydraulik Skript Zustandsregelung eines Servohydraulischen Zylinderantriebes Skript Elemente einer Druckluftversorgung Skript Modellierung eines Servopneumatischen Zylinderantriebes | |||||

Prerequisites / Notice | The course is suitable for students as of 5th semester. | |||||

227-0124-00L | Embedded Systems | W | 6 credits | 4G | L. Thiele | |

Abstract | Computer systems for controlling industrial devices are called embedded systems (ES). Specifically the following topics will be covered: Design methodology, software design, real-time scheduling and operating systems, architectures, distributed embedded systems, low-power and low-energy design, architecture synthesis. | |||||

Objective | Introduction to industrial applications of computer systems; understanding specific requirements and problems arising in such applications. The focus of this lecture is on the implementation of embedded systems using formal methods and computer-based synthesis methods. | |||||

Content | Computer systems for controlling industrial devices are called embedded systems (ES). ES not only have to react to random events in their environment in a timely manner, they also have to calculate control values from continuous sequences of measurements. Embedded computer systems are connected to their environment though sensors and actors. The great interest in the systematic design of heterogeneous reactive systems is caused by the growing diversity and complexity of applications for ES, the requirement for low development and testing costs, and by progress in key technologies. Specifically the following topics will be covered: Design methodology, software design, real-time scheduling and operating systems, architectures, distributed embedded systems, low-power and low-energy design, architecture synthesis. See: http://www.tik.ee.ethz.ch/tik/education/lectures/ES/ . | |||||

Lecture notes | Material/script, publications, exercise sheets, podcast. See: http://www.tik.ee.ethz.ch/tik/education/lectures/ES/ . | |||||

Literature | [Mar07] P. Marwedel. Eingebettete Systeme. Springer Verlag, Paperback, December 2007. ISBN 978-3-540-34048-5 [Mar11] P. Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer Verlag, Paperback, 2011. ISBN 978-94-007-0256-1 [Tei07] J. Teich. Digitale Hardware/Software-Systeme: Synthese und Optimierung. Springer Verlag, 2007. ISBN 3540468226 [But11] G.C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and applications. Springer Verlag, Berlin, 2011. ISBN-10: 1461406757, ISBN-13: 9781461406754 [Wolf12] W. Wolf. Computers as components: principles of embedded computing system design. Morgan Kaufmann, 2012. ISBN-10: 0123884365, ISBN-13: 978-0123884367 | |||||

Prerequisites / Notice | Prerequisites: Basic course in computer engineering; knowledge about distributed systems and concepts for their description. | |||||

227-0516-01L | Electrical Drive Systems I | W | 6 credits | 4G | P. Steimer, A. Omlin, C. A. Stulz | |

Abstract | In the course "Antriebssysteme I", a complete electrical drive including its main components is investigated. This includes mainly electrical machines, power seminconductors, power electronics converters and control algorithms for the complete drive system. Regarding the machines, the main focus is on the asynchronous machine, but also other concepts are covered. | |||||

Objective | The students understand a complete electrical drive system including its main components like electrical machines, converters and controls. | |||||

Content | Fundamentals in mechanics and magnetic circuits; Induction machine and synchronous machine; DC machine; Power semiconductors; Converter topologies; Controls (i.e. field oriented control). | |||||

Lecture notes | Lecture notes will be distributed (hardcopy und elektronisch) | |||||

Prerequisites / Notice | Prerequisites: Power Electronics (fall) or equivalent. Visit of ABB Power Electronics and Medium Voltage Drives | |||||

151-0135-00L | Additional Case for the Focus Specialization Exclusive for D-MAVT Bachelor's students in Focus Specialization. For enrollment, please contact the D-MAVT Student Administration. | W | 1 credit | 2A | Professors | |

Abstract | Independent studies on a defined field within the selected Focus Specialization. | |||||

Objective | Independent studies on a defined field within the selected Focus Specialization. | |||||

Microsystems and Nanoscale Engineering Focus Coordinator: Prof. Christofer Hierold | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0060-00L | Thermodynamics and Energy Conversion in Micro- and Nanoscale Technologies | W | 4 credits | 2V + 2U | T. Schutzius, H. Eghlidi | |

Abstract | The lecture deals with both: the thermodynamics in nano- and microscale systems and the thermodynamics of ultra-fast phenomena. Typical areas of applications are microelectronics manufacturing and cooling, laser technology, manufacturing of novel materials and coatings, surface technologies, wetting phenomena and related technologies, and micro- and nanosystems and devices. | |||||

Objective | The student will acquire fundamental knowledge of micro and nanoscale interfacial thermofluidics including light interaction with surfaces. Furthermore, the student will be exposed to a host of applications ranging from superhydrophobic surfaces and microelectronics cooling to biofluidics and solar energy, all of which will be discussed in the context of the course. | |||||

Content | Thermodynamic aspects of intermolecular forces, Molecular dynamics; Interfacial phenomena; Surface tension; Wettability and contact angle; Wettability of Micro/Nanoscale textured surfaces: superhydrophobicity and superhydrophilicity. Physics of micro- and nanofluidics. Principles of electrodynamics and optics; Optical waves at interfaces; Plasmonics: principles and applications. | |||||

Lecture notes | yes | |||||

151-0516-00L | Non-smooth Dynamics | W | 5 credits | 5G | C. Glocker | |

Abstract | Inequality problems in dynamics, in particular friction and impact problems with discontinuities in velocity and acceleration. Mechanical models of unilateral contacts, friction, sprag clutches, pre-stressed springs. Formulation by set-valued maps as normal cone inclusions and proximal point problems. Numerical time integration and Gauss-Seidel methods for inequalities. | |||||

Objective | The lecture provides the students an introduction to modern methods for inequality problems in dynamics. The contents of the lecture are fitted to frictional contact problems in mechanics, but can be transferred to a large class of inequality problems in technical sciences. The purpose of the lecture is to acquaint the students with a consistent generalization of classical mechanics towards systems with discontinuities, and to make them familiar with inequalities treated as set-valued constitutive laws. | |||||

Content | 1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung. 2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung. 3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten. 4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung. 5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze. 6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon. 7. Numerische Behandlung: Massgleichung, Zeitdiskretisierung nach Moreau, Inklusionsproblem in lokalen Koordinaten, Prox-Problem, Gauss-Seidl-Iteration. | |||||

Lecture notes | Es gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben. | |||||

Prerequisites / Notice | Kinematik und Statik & Dynamics | |||||

151-0540-00L | Experimental Mechanics | W | 4 credits | 2V + 1U | J. Dual | |

Abstract | 1. General aspects like transfer functions, vibrations, modal analysis, statistics, digital signal processing, phase locked loop, 2. Optical methods 3. Piezoelectricity 4. Electromagnetic excitation and detection 5. Capacitive Detection | |||||

Objective | Understanding, quantitative modelling and practical application of experimental methods for producing and measuring mechanical quantities (motion, deformation, stresses,..) | |||||

Content | 1. General Aspects: Measurement chain, transfer functions, vibrations and waves in continuous systems, modal analysis, statistics, digital signal analysis, phase locked loop. 2. Optical methods ( acousto optic modulation, interferometry, holography, photoelasticity, shadow optics, Moire methods ) 3. Piezoelectric materials: basic equations, applications, accelerometer ) 4. Electomagnetic excitation and detection, 5. Capacitive detection Practical training and homeworks | |||||

Lecture notes | no | |||||

Prerequisites / Notice | Prerequisites: Mechanics I to III, Physics | |||||

151-0622-00L | Measuring on the Nanometer Scale | W | 2 credits | 2G | A. Stemmer | |

Abstract | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||

Objective | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||

Content | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||

Lecture notes | Class notes and special papers will be distributed. | |||||

Prerequisites / Notice | This course is taught together with T. Wagner. |

- Page 1 of 4 All