Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Spring Semester 2017

Mathematics Master Information
Electives
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.
Electives: Pure Mathematics
Selection: Algebra, Topology, Discrete Mathematics, Logic
NumberTitleTypeECTSHoursLecturers
401-4142-17LAlgebraic CurvesW6 credits3GR. Pandharipande
AbstractI will discuss the classical theory of algebraic curves. The topics will include:
divisors, Riemann-Roch, linear systems, differentials, Clifford's theorem,
curves on surfaces, singularities, curves in projective space, elliptic curves,
hyperelliptic curves, families of curves, moduli, and enumerative geometry.
There will be many examples and calculations.
Objective
ContentLecture homepage: https://metaphor.ethz.ch/x/2017/fs/401-4142-17L/
LiteratureForster, "Lectures on Riemann Surfaces"

Arbarello, Cornalba, Griffiths, Harris, "Geometry of Algebraic Curves"

Mumford, "Curves and their Jacobians"
Prerequisites / NoticeFor background, a semester course in algebraic geometry should be
sufficient (perhaps even if taken concurrently). You should know the definitions
of algebraic varieties and algebraic morphisms and their basic properties.
401-3106-17LClass Field TheoryW6 credits2V + 1UJ. Fresán
AbstractClass Field Theory aims at describing the Galois group of the maximal abelian extension of global and local fields.
Objective
Literature[1] D. Harari, Cohomologie galoisienne et théorie du corps de classes, EDP Sciences, CNRS Éditions, Paris, 2017.
[2] K. Kato, N. Kurokawa, T. Saito, Number theory 2. Introduction to class field theory, Translations of Mathematical Monographs 240, AMS, 2011.
[3] J. S. Milne, Class Field Theory (available at http://www.jmilne.org/math/CourseNotes/cft.html)
[4] J-P. Serre, Local fields, Grad. Texts Math. 67. Springer-Verlag, 1979.
401-3033-00LGödel's TheoremsW8 credits3V + 1UL. Halbeisen
AbstractDie Vorlesung besteht aus drei Teilen:
Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.
Teil II behandelt den Gödel'schen Vollständigkeitssatz
Teil III behandelt die Gödel'schen Unvollständigkeitssätze
ObjectiveDas Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.
ContentSyntax und Semantik der Prädikatenlogik
Gödel'scher Vollständigkeitssatz
Gödel'sche Unvollständigkeitssätze
LiteratureErgänzende Literatur wird in der Vorlesung angegeben.
401-3058-00LCombinatorics IW4 credits2GN. Hungerbühler
AbstractThe course Combinatorics I and II is an introduction into the field of enumerative combinatorics.
ObjectiveUpon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.
ContentContents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.
Prerequisites / NoticeRecognition of credits as an elective course in the Mathematics Bachelor's or Master's Programmes is only possible if you have not received credits for the course unit 401-3052-00L Combinatorics (which was for the last time taught in the spring semester 2008).
401-3112-17LIntroduction to Number TheoryW4 credits2VC. Busch
AbstractThis course gives an introduction to number theory. The focus will be on algebraic number theory.
Objective
ContentThe following subjects will be covered:
- Euclidean algorithm, greatest common divisor, ...
- Congruences, Chinese Remainder Theorem
- Quadratic residues, Legendre symbol, law of quadratic reciprocity
- Quadratic number fields, integers and primes
- Units of quadratic number fields, Pell's equation, Dirichlet unit theorem
- Continued fractions and quadratic irrationalities, Theorem of Euler Lagrange, relation to units.
Literature- A. Fröhlich, M.J. Taylor, Algebraic number theory, Cambridge studies in advanced mathematics 27, Cambridge University Press, 1991
- S. Lang, Algebraic Number Theory, Second Edition, Graduate Texts in Mathematics, 110, Springer, 1994
- J. Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften 322, Springer 1999
- R. Remmert, P. Ullrich, Elementare Zahlentheorie, Grundstudium Mathematik, Basel Birkhäuser, 2008
- P. Samuel, Algebraic Theory of Numbers, Kershaw Publishing Company LTD, 1972 (Original edition in French at Hermann)
- J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, Springer 1973 (Original edition in French at Presses Universitaires de France)
Prerequisites / NoticeBasic knowledge of Algebra as taught in a course Algebra I + II.
  •  Page  1  of  1