Search result: Catalogue data in Autumn Semester 2017

Mechanical Engineering Master Information
Core Courses
Mechanics, Materials, Structures
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture notesLink
Class notes, handouts
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 credits3GA. Kunz
AbstractThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
ObjectiveVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
ContentIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
Lecture notesThe handout is available in German and English.
Prerequisites / NoticePrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
151-0349-00LFatigue Strength of Materials, Components and StructuresW4 credits3GM. Guillaume, R. E. Koller
AbstractFatigue of materials is playing a key role in light weight structures. All applications are affected that are exposed to oscillating loads. The lecture will present the most important methods for analyzing the fatigue strength under service load conditions. This starts with the conventional assessment of a components endurance limit and ends with the application of the damage tolerance philosophy.
ObjectiveGoals of the lecture

An introduction to the most important terms and phenomena related to fatigue damages of metallic components will be given and explained by practical examples. Methods for assessment of endurance strength, finite life fatigue strength, crack initiation and crack growth will be discussed. The lecture shall demonstrate how to solve fatigue problems in practice.
Examples like the ICE disaster at Eschede or structural problems of the Combino tram demonstrate the significance of this subject. The fatigue behavior of lightweight structures for vehicles and aircrafts has to be considered during the component design process. Designing the static strength of a component alone is not sufficient since fatigue damages of such components may cause extremely high costs.
Structural components of modern aircraft like Airbus A380 or A400M are designed with respect to crack growth using the damage tolerance philosophy.
Understanding fatigue strength and its phenomena requires broad knowledge of material behavior, services loads, manufacturing effects as well as of analysis and test methods. Fatigue strength is a highly interdisciplinary area of work. For this the most important tools and methods shall be presented.
Content1. INTRODUCTION, OVERVIEW, MOTIVATION
1.1 Preface (General introduction and history survey) (Schijve; Chapter 1)
1.2 Standards and Guidelines
1.3 Examples of damage events • Comet-Accident (Pressure cycles, stress concentration)
• Aloha-Incident at Hawaii (Multiple site damage)
• Accident of an aerial passenger tramway (Fretting corrosion on axle)
• ICE-Accident (Wheel failure)
1.4 Presentations
• DVD "MTW Materialermüdung (1995, 21')",
• DVD "F/A-18 Full Scale Fatigue Test (2004, 12')",
• DVD "Sicherheit von Seilbahnen (1996, 7')" with discussion

2. LOADING
2.1 Fatigue strength overview
2.2 Significance of operational loading
2.3 Types of load histories(Schijve; Chapter 9)
2.4 Terms and definitions (Schijve; Chapter 9)
2.5 Measurement of operational loadings (Schijve; Chapter 9)
2.6 Counting algorithms (Schijve; Chapter 9)
2.7 Frequency distributions or spectra (Schijve; Chapter 9)
2.8 Impact of spectrum shape
2.9 Design Spectra (Schijve; Chapter 13)

3. MATERIAL
3.1 Fatigue strength overview
3.2 Evaluation of material properties for cyclic loading (Schijve; Chapter 13)
3.3 Fatigue properties (Schijve; Chapter 6)
3.4 Wöhler-Diagram (Schijve; Chapter 6, 7)
3.5 Scatter of fatigue properties (Schijve; Chapter 12)
3.6 Mean stress effect (Schijve; Chapter 6)
3.7 Damage mechanisms & matierial selection (Schijve; Chapter 2)
3.8 Environmental effects (Schijve; Chapter 16, 17)
3.9 Specific fatigue properties (Schijve; Chapter 6)

4. STRUCTURAL COMPONENT
4.1 Fatigue strength overview
4.2 Notches (Schijve; Chapter 3, 7)
4.3 Residual stresses (Schijve; Chapter 4)
4.4 Size effect
4.5 Surface condition and surface layers (Schijve; Chapter 7, 14)
4.6 Fretting corrosion (Schijve; Chapter 15)
4.7 Summary of fatigue strength improving methods (Schijve; Chapter 14)

5. SAFETY FACTORS (Schijve; Chapter 19)

6. FATIGUE STRENGTH ASSESSMENT
6.1 Fatigue strength overview
6.2 Assessment concepts for fatigue lifetime prediction
6.3 Assessment of the endurance strength
6.4 Finite life fatigue strength assessment using the nominal stress concept (Schijve; Chapter 10)
6.5 Local stress-strain concept (Schijve; Chapter 10)
6.6 Fracture mechanics concept (Schijve; Chapter 5, 8, 11)
6.7 Accuracy of concepts for fatigue lifetime assessment

7. STRUCTURAL INTEGRITY CONCEPTS
7.1 Safe life design (Mirage III, Pressure Vessel)
7.2 Fail safe design (modern aircraft construction)
7.3 Damage tolerance (approach according to US Air Force)
7.4 F/A-18 design philosophy
7.5 Summary
Lecture notesAll lecture chapters are on Powerpoint presentations. The chapters will be available as presentation handouts at the first day for a fee of CHF 20.-
LiteratureRecommended books as supplement to the lecture:

Schijve, Jaap
Fatigue of Structures and Materials
Springer Verlag, Berlin, ISBN 978-1-4020-6807-2 (Hardcover)

Broek, David
The Practical Use of Fracture Mechanics
Springer Netherlands, ISBN 978-90-247-3707-9 (Hardcover)
Prerequisites / NoticeDepending on actual fatigue tests a Laboratory visitation at Empa in Dübendorf may be organized.
151-0353-00LMechanics of Composite Materials Information W4 credits2V + 1UG. Kress
AbstractModelling of stiffness and strength of fiber-reinforced plastics and laminates made thereof as well as simple structures is considered. For free-edge effects and periodic structures numerically efficient FEM approaches for generalized plane strain and unit-cell modelling are explained. Finally, the mechanical interpretation of experimental measurement results is treated.
ObjectiveThe objective is to impart understanding of the mechanical response of structures made from anisotropic and heterogeneous fiber-reinforced composite materials with all the peculiarities which are not known from metals. The course shall incite fascination with the multifaceted and exciting modelling questions in this field, providing a basis for research. On the other hand the course provides qualification for composite-materials product development within an industrial environment.
Content1. Introduction and elastic anisotropy
2. Laminate theory
3. Thick-walled laminates and interlaminar stresses
4. Edge effects at multidirectional laminates
5. Structural problems and simplified finite-element modelling
6. Micromechanics
7. Failure hypotheses and damage prediction
8. Damage progression analysis
9. Static-strength notch-size influence
10. Fatigue Response
11. Design and sizing, sandwich theory
12. Plain-weave non-linear mechanical model
13. Composite materials mechanical testing
Lecture notesScript and all other course material is available on MOODLE:

Link
LiteratureThe lecture material is covered by the script and further literature is referenced in there.
Prerequisites / NoticeNone
151-0357-00LRopeway TechnologyW4 credits3GG. Kovacs
AbstractRopeways represent a public transport system where steel wired ropes play a central role. Such systems come to a favorite transport solution when the costs for conventional systems become out of scale due to difficult and impossible terrestrial surface (alpine terrain).
Additionally ropeways are environment friendly, very energy efficient and offer a very high safety level.
ObjectiveCable cars make use of extensive mechanical systems, which because of their operational location, are exposed to difficult meteorological and topographical conditions. In order to guarantee the requisite safety and reliability of the equipment, the components and their interaction in the system must fulfil stringent functional requirements. This is particularly the case because of the significant distance (2-4km) between the individual structures.
The lectures with related exercises offer an excellent opportunity to apply the learned theoretical basic principles of mechanics and engineering in plant construction. Not only the function and resistance of individual components will be studied, but also complex interactions, which are imperative for the safe and smooth running of the equipment. It also includes the teaching of the basics of project planning and design, as well as the evaluation of systems in a distinctly interdisciplinary manner. For the manufacturer of a cable car installation the integration of sub-assemblies making use of very different technologies always poses a particular challenge. For this reason, the methodology for the handling of these typical engineering assignments is important and makes up a significant part of the lecture content.
ContentCable cars and cable cranes: Construction methods and areas of application. The use of mechanical principles in system engineering, Swiss building and business regulations, planning and equipment with special consideration for business and the environment: steel cables (construction, evaluation, damage, inspection), drive mechanisms, brakes, vehicles, construction over an extended area. Calculation of the supporting cable with weight strain and with fixed mountings on both sides. Excursions.
Lecture notesSEILBAHNEN I
151-0360-00LProcedures for the Analysis of StructuresW4 credits2V + 1UG. Kress
AbstractBasic theories for structure integrity calculations are presented with focus on strength, stability, fatigue and elasto-plastic structural analysis.
Theories and models for one dimesional and planar structures are presented based on energy theorems.
ObjectiveBasic principles applied in structural mechanics. Introduction to the theories of planar structures. Development of an understanding of the relationship between material properties, structural theories and design criteria.
Content1. Basic problem of continuum mechanics and energy principles: structural theories, homogenization theories; finite elements; fracture mechanics.
2.Structural theories for planar structures and stability: plane-stress, plate theory, buckling of plates (non-linear plate theory).
3.Strength of material theories and material properties: ductile behaviour, plasticity, von Mises, Tresca, principal stress criterion; brittle behaviour; viscoplastic behaviour, creep resistance.
4. Structural design: fatigue and dynamic structural analysis.
Lecture notesScript and all other course material available on MOODLE
Prerequisites / Noticenone
151-0368-00LAeroelasticityW4 credits2V + 1UF. Campanile
AbstractIntroduction to the basics and methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads.
ObjectiveThe course will give you a physical basic overview of current-structure phenomena. Furtermore you will get to know the most important phenomena in the statistical and dynamical aeroelastic as well as an introduction to the methods for mathematical descriptions and for the wording of quantitative forecasts.
ContentElemente der Profilaerodynamik. Aeroelastische Divergenz am starren Streifenmodell. Aeroelastische Divergenz eines kontinuierlichen Flügels. Allgemeines über statische Aeroelastik.
Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene.
Grundelemente der instationären Aerodynamik.
Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns.
Einführung in die Modalanalyse
Einfühung in weitere Phänomene der dynamischen Aeroelastik.
LiteratureY. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions.
151-0509-00LMicroscale Acoustofluidics Restricted registration - show details
Number of participants limited to 30.
W4 credits3GJ. Dual
AbstractIn this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.
ObjectiveUnderstanding acoustophoresis, the design of devices and potential applications
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab session and hand in homework.
151-0513-00LMechanics of Soft Materials and TissuesW4 credits3GA. E. Ehret
AbstractAn introduction to concepts for the constitutive modelling of highly deformable materials with non-linear properties is given in application to rubber-like materials and soft biological tissues. Related experimental methods for materials characterization and computational methods for simulation are addressed.
ObjectiveThe objective of the course is to provide an overview of the wide range of non-linear mechanical behaviors displayed by soft materials and tissues together with a basic understanding of their physical origin, to familiarize students with appropriate mathematical concepts for their modelling, and to illustrate the application of these concepts in different fields in mechanics.
ContentSoft solids: rubber-like materials, gels, soft biological tissues
Non-linear continuum mechanics: kinematics, stress, balance laws
Mechanical characterization: experiments and their interpretation
Constitutive modeling: basic principles
Large strain elasticity: hyperelastic materials
Rubber-elasticity: statistical vs. phenomenological models
Biomechanics of soft tissues: composites, anisotropy, heterogeneity
Dissipative behavior: examples and the concept of internal variables.
Lecture notesAccompanying learning materials will be provided or made available for download during the course.
LiteratureRecommended text:
G.A. Holzapfel, Nonlinear Solid Mechanics - A continuum approach for engineering, 2000
L.R.G. Treloar, The physics of rubber elasticity, 3rd ed., 2005
P. Haupt, Continuum Mechanics and Theory of Materials, 2nd ed., 2002
Prerequisites / NoticeA good knowledge base in continuum mechanics, ideally a completed course in non-linear continuum mechanics, is recommended.
151-0519-00LComputational Solid Mechanics Information W4 credits4GD. Kochmann
AbstractTheoretical foundations and numerical applications of computational solid mechanics with a focus on the finite element method and related techniques, including the development and implementation of a finite element code in C++.
ObjectiveTo acquire the theoretical background and the practical implementation experience required to develop and use computational codes and to computationally solve problems of solid mechanics.
ContentTheoretical concepts of computational continuum mechanics (continuum mechanics in small and finite strains, constitutive modeling, variational methods, finite elements and finite differences, elastodynamics, initial boundary value problems), implementation strategies and details (coding in C++, development of a finite element code including material models, elements, assemblers, solvers, etc.) and application of the code to solve initial boundary value problems.
Lecture notesNotes will be provided.
LiteratureNo textbook, helpful reference literature will be announced.
Prerequisites / NoticeA background in solid mechanics is required (e.g., Mechanics 1, 2 and 3 or equivalent); a background in continuum mechanics is helpful.
151-0523-00LRailway Vehicle DynamicsW4 credits2V + 1UO. Polach
AbstractAfter an introduction in to the railway vehicle design, the modelling of the contact between wheel and rail, the building of a simulation model and the fundamentals of the track guiding will be explained. The applications of simulations in the development of railway vehicles will be presented and illustrated on examples.
ObjectiveDevelopment of the theoretical basics regarding the track guiding and the vehicle running dynamics. Understanding the background of multi-body dynamics simulation tools and their application in the development of railway vehicles.
ContentIntroduction in to railway vehicle technology: Vehicle concepts, bogies, suspension systems, brakes, drives.
Use of multi-body simulations in the railway vehicle industry. Simulation programmes.
Vehicle model: Model building, modelling of coil springs, rubber to metal springs, air springs and suspension components with friction.
Wheel/rail contact: Contact geometry, contact area, normal forces, tangential forces.
Track models. Modelling of track irregularities.
Linearization of the contact geometry wheelset-track.
Fundamentals of track guiding.
Eigenbehaviour, calculation of eigenvalues.
Linearised and nonlinear calculation of running stability: Methods and assessment criteria. Influence of vehicle design on the running stability.
Curving: Fundamentals, quasi-static solution, dynamic simulation, assessment criteria. Influence of vehicle design on the vehicle performance in curve.
Ride comfort assessment.
Testing and simulations for the acceptance of running characteristics of railway vehicles. Validation of simulation models for the application in context of vehicle acceptance.
Lecture notesScript will be provided.
Prerequisites / NoticeFundamentals of mechanics and physics.
151-0524-00LContinuum Mechanics IW4 credits2V + 1UE. Mazza
AbstractThe lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elsticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and eperiments.
ObjectiveBasic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.
ContentAnisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten.
Lecture notesyes
151-0525-00LWave Propagation in SolidsW4 credits2V + 1UJ. Dual, D. Mohr
AbstractPlane Waves, harmonic waves, Fourier analysis and synthesis, dispersion, distorsion, damping, group and phase velocity, transmission and reflection, impact, waves in linear elastic continua, elastic plastic waves, experimental and numerical methods in wave propagation.
ObjectiveStudents learn, which technical problems must be approached using the methods used in wave propagation in solids. Furthermore, they learn to use these methods and develop an intuitive feeling for phenomena that can be expected in various situations.
ContentWave Propagation in solids including applications.
Content: Phenomenology of wave propagation ( plane waves, harmonic waves, harmonic analysis and synthesis, dispersion, attenuation, group and phase velocity), transmission and reflection, impact problems, waves in linear elastic media ( P- Waves, S-Waves, Rayleigh waves, guided waves), elastic plastic waves, experimental and numerical methods.
Lecture notesHandouts
LiteratureVarious books will be recommended pertaining to the topics covered.
Prerequisites / NoticeLanguage according to the wishes of students.
151-0532-00LNonlinear Dynamics and Chaos I Information W4 credits2V + 2UF. Kogelbauer
AbstractBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
ObjectiveThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Content(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
Lecture notesThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Prerequisites / Notice- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
151-0535-00LOptical Methods in Experimental MechanicsW4 credits3GE. Hack, R. Brönnimann
AbstractThe lecture introduces optical methods to assess the mechanical behaviour of a structure, to determine material parameters, and to validate results from numerical simulations. Focus is on camera-based techniques for deformation, strain and stress analysis. Applications, strengths and limitations are discussed. The lecture includes two afternoons of hands-on experience at Empa in Dübendorf.
ObjectiveThe students are able to design basic optical set-ups and describe the process of image formation. They understand the working principle of various optical techniques for shape, deformation and strain measurement. Most notably, they can explain how the measurand is transformed into an interference signal, a change of polarization or of surface temperature. They know the main application fields of the individual techniques. They are able to choose the most appropriate technique for solving a measurement task and to estimate its expected resolution. Through the hands-on experience the students gain a deeper and sustained understanding of the content by applying the theoretical foundations to tangible measurement tasks.
ContentAfter an introduction into optics and image acquisition the lecture explains how to transform mechanical quantities such as strain, stress or deformation into an image content. The measurement techniques make use of a variety of optical principles:

- Triangulation (Digital Image Correlation, Fringe Projection)
- Interference (Speckle Pattern Interferometry, Shearography)
- Diffraction (Moiré-Interferometry, Fiber Bragg Grating)
- Birefringence (Photoelasticity)
- Infrared radiation (Thermal Stress Analysis)

In addition, dynamic measurements in the context of modal analysis and transient events are explained. The calibration of imaging optical methods and their application to the validation of numerical simulations are discussed.

The content is structured as follows:
1. Imaging methods: an introduction
2. Digital Image Correlation
3. White light structured light techniques
4. Diffraction and interferometry
5. Speckle pattern interferometry
6. Modal analysis and transient deformations
7. Applications to microsystems and interfaces
8. Stress analysis: Photoelasticity
9. Stress analysis: Thermoelasticity
10. Calibration and Validation of numerical models
11. Fibre based methods

The lecture includes two afternoons at Empa, where the student will gain first-hand experience with optical methods. Hands-on laboratory includes e.g. Digital Image Correlation, Speckle pattern interferometry, Thermal Stress Analysis, Fibre optic sensors, Fringe projection, depending on availability of the equipment and the interest of the students.
Lecture notesCopies of the presented slides will be made available on-line through ILIAS. Each lecture contains a set of exercises. You will be invited to a private blog which will stimulate the discussion of the lecture and the exercises. Standard solutions for the exercises will be posted with a time lag.
LiteratureA good overview on the optical methods is presented in the following text books:

Toru Yoshizawa, Ed., Handbook of Optical Metrology, 2nd edition, 2015, CRC Press, Boca Raton
ISBN 978-1-4665-7359-8

Pramod Rastogi, Erwin Hack, Eds., Optical Methods for Solid Mechanics: A Full-Field Approach
2012, Wiley-VCH, Berlin
ISBN 978-3-527-41111-5

W. N. Sharpe Jr., Ed., Handbook of Experimental Solid Mechanics
2009, Springer, New York
ISBN 978-0-387-26883-5
Prerequisites / NoticeBasic knowledge of optics and interferometry as taught in basic physics courses are advantageous.

The two afternoons with hands-on experience are central elements of the lecture.
151-0550-00LAdaptive Materials for Structural Applications Information W4 credits3GP. Ermanni, A. Bergamini
AbstractAdaptive materials offer appealing ways to extend the design space of structures by introducing time-variable properties into them. In this course, the physical working principles of selected adaptive materials are analyzed and simple models for describing their behavior are presented. Some applications are illustrated, also with laboratory experiments where possible.
ObjectiveThe study of adaptive materials covers topics that range from chemistry to theoretical mechanics.

The aim of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.
ContentThis course will provide the students with an insight into the properties and physical phenomena which lead to the features of adaptive materials. Starting from chemomechanical (skeletal muscles), the physical behavior of a wide range of adaptive materials, thermo- and photo-mechanical, electro-mechanical, magneto-mechanical and meta-materials will be thoroughly discussed and analyzed. Up-to-date results on their performance and their implementation in mechanical structures will be detailed and studied in laboratory sessions. Analytical tools and energy based considerations will provide the students with effective instruments for understanding adaptive materials and assess their performance when integrated in structures or when arranged in particular fashions.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Chemo-mechanical coupling: Energy conversion in skeletal muscle and other chemomechanical systems,optional: and photo-mechanical coupling, azopolymers.

Thermo-mechanical coupling: Shape memory alloys / polymers

Electromechanical coupling(1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect
Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials - electromagnetic, acoustical and other metamaterials

Magneto-mechanical coupling: Magnetostrictive effect, mSMA, magnetorheological fluids, ferrofluids

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,...
Lecture notesLecture notes (manuscript and handouts) will be provided
151-0573-00LSystem Modeling Information W4 credits2V + 2UG. Ducard
AbstractIntroduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.
ObjectiveLearn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.
ContentThis class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.
Lecture notesThe handouts in English will be sold in the first lecture.
LiteratureA list of references is included in the handouts.
151-0655-00LSkills for Creativity and InnovationW4 credits3GI. Goller, C. Kobe
AbstractThis lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.
Objective- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams
ContentBasic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer
Lecture notesSlides, script and other documents will be distributed via moodle.ethz.ch
(access only for students registered to this course)
LiteratureGoller, I. & Bessant, J. (2017). Creativity for Innovation Management. Routledge. (ISBN-13: 978-1138641327)
As well as material handed out in the lecture
151-0703-00LOperational Simulation of Production LinesW4 credits2V + 1UP. Acél
AbstractThe student learns the application of the event-driven and computer-based simulation for layout and operational improvement of production facilities by means of practical examples.
ObjectiveThe student learns the right use of (Who? When? How?) of the event-driven and computer-based simulation in the illustration of the operating procedures and the production facilities.
Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples.
The student should make his first experiences in the use of computer-based simulation.
Content- Application and application areas of the event-driven simulation
- Exemplary application of a software tool (Technomatrix-Simulation-Software)
- Internal organisation and functionality of simulation tools
- Procedure for application: optimizing, experimental design planning, analysis, data preparation
- Controlling philosophies, emergency concepts, production in sequence, line production, rescheduling
- Application on the facilities projecting

The knowledge is enhanced by practice-oriented exercises and an excursion. A guest speaker will present a practical example.
Lecture noteswill be distributed simultaneously during lecture (+ PDF)
Prerequisites / NoticeRecommended for all Bachelor-Students in the 5th semester and Master-Students in the 7th semester.
151-0705-00LManufacturing IW4 credits2V + 2UK. Wegener, M. Boccadoro, F. Kuster
AbstractDeeper insight in manufacturing processes: drilling, milling, grinding, honing, lapping, electro erosion and electrochemical machining. Stability of processes, process chains and process choice.
ObjectiveDeepened discussion on the machining processes and their optimisation. Outlook on additional areas such as NC-Technique, dynamics of processes and machines, chatter as well as process monitoring.
ContentDeepened insight in the machining processes and their optimisation, chip removal by undefined cutting edge such as grinding, honing and lapping, machining processes without cutting edges such as EDM, ECM, outlook on additional areas as NC-technique, machine- and process dynamics including chatter and process monitoring
Lecture notesyes
Prerequisites / NoticePrerequisites: Recommendation: Lecture 151-0700-00L Manufacturing elective course in the 4th semester.
Language: Help for English speaking students on request as well as english translations of the slides shown.
  •  Page  1  of  3 Next page Last page     All