Search result: Catalogue data in Autumn Semester 2017

Civil Engineering Master Information
3. Semester
Major Courses
Major in Construction and Maintenance Management
NumberTitleTypeECTSHoursLecturers
101-0549-00LSelected Topics on Legal Aspects in Civil EngineeringW+3 credits2GH. Briner, D. Trümpy
AbstractBasic knowledge in public and private law of civil engineering. Examples of the subjects treated: space management, protection of the environment, legal procedures, standards for building technology and contracts.
ObjectivePart 1: The students shall acquire basic knowledge of the public law concerning civil engineering:
space management, conception of buildings, protection of the environment, procedures
Part 2: The students shall acquire basic knowledge of the private law concerning civil engineering
ContentTeil 1: Jede Lektion behandelt für ein bestimmtes Stadium des Projekts ein Thema des öffentlichen Baurechts wie Bau- und Zonenordnungen, Quartierpläne, Umweltverträglichkeitsprüfungen, Baubewilligungsverfahren etc..
Teil 2: Grundzüge des privaten Baurechts wie Abnahme und Genehmigung von Bauwerken, Vollmacht des Architekten / Ingenieurs zu Rechtshandlungen namens des Bauherrn, Mängelrüge im Bauwesen, Mehrheit ersatzpflichtiger Baubeteiligter, Generalunternehmervertrag, Haftung des Baumaterialverkäufers, Bauhandwerkerpfandrecht, Grundzüge der SIA-Norm 118, Baukonsortium, technische Normen, internationale Bauverträge, Architekten / Ingenieure als Gerichtsexperten, Aspekte des Bauzivilprozesses
Lecture notesD. Trümpy: Tafeln zu den Grundzügen des schweizerischen Bauvertragsrechts (Vorlesungsunterlage)
H. Briner: Tafeln zu den Grundzügen des öffentlichen Raumplanungs-, Bau- und Umweltrechts (Vorlesungsunterlage)
Literature- Stöckli P./Siegenthaler Th. (Hrsg.) Die Planerverträge, Schulthess 2013
- Gauch Peter, Werkvertrag, 5. Auflage, Schulthess 2011
- Lendi, M.; Nef, U.Chr.; Trümpy, D. (Hrsg.): Das private Baurecht in der Schweiz, vdf Zürich 1994
- Trümpy, D.: Architektenvertragstypen unter Berücksichtigung der Ausgabe 1984 der SIA-Ordnung 102, Zürcher Studien zum Privatrecht Nr. 67, Zürich 1989
Prerequisites / NoticeDie Teilnehmer sollen stets ein Exemplar der SIA-Norm 118, der SIA-LHO 103 sowie die Gesetzesausgaben von OR und ZGB bei sich haben.
101-0577-00LAn Introduction to Sustainable Development in the Built EnvironmentO3 credits2GG. Habert
AbstractIn 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
in 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment
ObjectiveAt the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
ContentThe following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development
Lecture notesAll relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.
LiteratureA list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
101-0587-00LWorkshop on Sustainable Building Certification Restricted registration - show details
Number of participants limited to 25
W+3 credits2GD. Kellenberger, G. Habert
AbstractBuilding labels are used to certify buildings and neighbourhoods in term of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minergie). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed.
ObjectiveAfter this course, the students are able to understand and use the different certification labels.
They have a clear view of what the labels take into consideration and what they don't.
ContentThree buildings case study will be presented.

Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), SNBS, MINERGIE-ECO and 2000-Watt-Society (Swiss standards) will be presented and explained by experts.

After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality).
Lecture notesThe slides from the presentations will be made available.
LiteratureAll documents for certification labels as well as detail plans of the buildings will be available for the students.
101-0439-00LIntroduction to Economic Analysis - A Case Study Approach with Cost Benefit Analysis in Transport
Remark:
Former Title "Introduction to Economic Policy - A Case Study Approach with Cost Benefit Analysis in Transport".
W6 credits4GK. W. Axhausen, R. Schubert
AbstractThe course presents basic economic principles as well as cost benefit analyses in transport; it also introduces methods used to derive the monetary values of non-market goods.
ObjectiveFamiliarity with basic microeconomic and macroeconomic principles and with the essential methods of project appraisal
ContentBasic microeconomic and macroeconomic üpronciples; Cost-Benefit-Analyses; multi-criteria analyses; European guidelines; stated response methods; travel cost approach and others; Valuation of travel time savings; valuation of traffic safety
Lecture notesmoodle platform for the basic economic principles; handouts
LiteratureTaylor, M.P., Mankiw, N.G. (2014): Economics; Harvard Press

VSS (2006) SN 640 820: Kosten-Nutzen-Analysen im Strassenverkehr, VSS, Zürich.

Boardman, A.E., D.H. Greenberg, A.R. Vining und D.L. Weimer (2001) Cost – Benefit – Analysis: Concepts and Practise, Prentice-Hall, Upper Saddle River.

ecoplan and metron (2005) Kosten-Nutzen-Analysen im Strassenverkehr: Kommentar zu SN 640 820, UVEK, Bern.
101-0419-00LRailway Construction and MaintenanceW4 credits4GU. A. Weidmann, P. Güldenapfel, M. Kohler, M. J. Manhart, further speakers
AbstractTrack geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods
ObjectiveThe lecture gives a deeper insight into track geometry, the interaction between track and vehicles as well as in construction and dimensioning of the track. Methods for the diagnosis of the state of the track and its forcast are shown. State-of-the-art maintenance strategies and technologies are presented.
ContentTrack geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods
Lecture notesThe slides will be made available.
LiteratureA list with related technical literature will be handed out.
Prerequisites / NoticeThe lecture Railway Infrastructures (Transportation II) is recommended.
101-0507-00LInfrastructure Management 3: Optimisation Tools
Remark:
New title from HS17 on: Infrastructure Management 3: Optimisation Tools now in HS. Old title until FS17: Infrastructure Maintenance Management.
W+3 credits2GB. T. Adey
AbstractThis course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.
ObjectiveUpon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infastructure management problems
ContentPart 1:
Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies

Part 2:
Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models

Part 3:
Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies

Part 4:
Explanation of how operations research methods can be used to solve typical infrastructure management problems.
Lecture notesA script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.
Prerequisites / NoticeSuccessful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.
101-0520-00LProject Management: Project Execution to CloseoutW+3 credits2GJ. J. Hoffman
AbstractThe course will give Engineering students a comprehensive overview and enduring understanding of the techniques, processes, tool and terminology to manage the Project Triangle (time, cost Quality) and to organize,analyze,control and report a complex project from start of Project Execution to Project Completion. Responsibilities will be detailed in each phase of the execution.
ObjectiveA student after completing the course will have the understanding of the Project Management duties, responsibilities, actions and decisions to be done during the Execution phase of a complex project.
ContentExecution Phase of the Project
Engineering Management - Scope, EV Measurement, Reporting and Organization
Procurement and Transportation - Scope, EV Measurement, Reporting and Organization
Civil Construction and Erection - Scope, EV Measurement, Reporting and Organization
Financial Reporting and forecasting
Risk & Opportunity Identification Assessment and Quantification during Execution
Team Organization and Leadership
Risk and opportunity identification and quantification
Contract Claims and Delays
Execution Quality
Environmental Health and safety during execution
LiteratureRequired and suggested reading will be uploaded on weakly basis.
Prerequisites / NoticePrerequisite for this course is course Project Management: Pre-Tender to Contract Execution number 101-0517-01 G, unless otherwise approved by the lecturer.
  •  Page  1  of  1