Search result: Catalogue data in Spring Semester 2018

Chemistry Bachelor Information
4. Semester
Compulsory Subjects Examination Block I
NumberTitleTypeECTSHoursLecturers
529-0122-00LInorganic Chemistry IIO3 credits3GM. Kovalenko
AbstractThe lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers, i.e. crystal structures.
ObjectiveThe lecture follows Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers.
ContentSymmetry aspects of chemical bonding, point groups and representations for the deduction of molecular orbitals, energy assessment for molecules and solids, Sanderson formalism, derivation and understanding of band structures, densities of states, overlap populations, crystal symmetry, basic crystal structures and corresponding properties, visual representations of crystal structures.
Lecture notessee Moodle
Literature1. I. Hargittai, M. Hargittai, "Symmetry through the Eyes of a Chemist", Plenum Press, 1995;
2. R. Hoffmann, "Solids and Surfaces", VCH 1988;
3. U. Müller, "Anorganische Strukturchemie", 6. Auflage, Vieweg + Teubner 2008
Prerequisites / NoticeRequirements: Inorganic Chemistry I
529-0222-00LOrganic Chemistry IIO3 credits2V + 1UJ. W. Bode, A. Fedorov
AbstractThis course builds on the material learned in Organic Chemistry I or Organic Chemistry II for Biology/Pharmacy Students. Topics include advanced concepts and mechanisms of organic reactions and introductions to pericyclic and organometallic reactions. These topics are combined to the planning and execution of multiple step syntheses of complex molecules.
ObjectiveGoals of this course include the a deeper understanding of basic organic reactions and mechanism as well as advanced and catalytic transformations (for example, Mitsunobu reactions, Corey-Chaykovsky epoxidation, Stetter reactions, etc). Reactive intermediates including carbenes and nitrenes are covered, along with methods for their generation and use in complex molecule synthesis. Frontier molecular orbital theory (FMO) is introduced and used to rationalize pericyclic reactions including Diels Alder reactions, cycloadditions, and rearrangements (Cope, Claisen). The basic concepts and key reactions of catalytic organometallic chemistry, which are key methods in modern organic synthesis, and introduced, with an emphasis on their catalytic cycles and elementrary steps. All of these topics are combined in an overview of strategies for complex molecule synthesis, with specific examples from natural product derived molecules used as medicines.
ContentOxidation and reduction of organic compounds, redox netural reactions and rearrangments, advanced transformations of functional groups and reaction mechanismes, kinetic and thermodynamic control of organic reactions, carbenes and nitrenes, frontier molecular orbital theory (FMO), cycloadditions and pericyclic reactions, introduction to organometallic chemistry and catalytic cross couplings, introduction to peptide synthesis and protecting groups, retrosynthetic analysis of complex organic molecules, planning and execution of multi-step reaction.
Lecture notesThe lecture notes and additional documents including problem sets are available as PDF files online, without charge. Link: Link
LiteratureClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Restricted registration - show details O4 credits4GB. H. Meier, M. Ernst
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be distributed. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
402-0044-00LPhysics IIO4 credits3VT. Esslinger
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: electromagnetism, optics, introduction to modern physics.
ObjectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentElectromagnetism (electric current, magnetic fields, electromagnetic induction, magnetic materials, Maxwell's equations)
Optics (light, geometrical optics, interference and diffraction)
Short introduction to quantum physics
Lecture notesThe lecture follows the book "Physik" by Paul A. Tipler.
LiteraturePaul A. Tipler and Gene Mosca
Physik
Springer Spektrum Verlag
529-0058-00LAnalytical Chemistry IIO3 credits3GD. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
ObjectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Lecture notesScript will be available
LiteratureLiterature will be within the script.
Prerequisites / NoticeExercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended.
Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester)
529-0625-00LChemical EngineeringO3 credits3GW. J. Stark
AbstractChemical Engineering provides an introduction to production and process design. Beyond different types and operation of chemical or bio-reactors, issues of scaling, new synthesis methods and problems of industrial production are addressed. An introduction in heterogeneous catalysis and transport of impulse, mass and energy connect the new concepts to the basic education in chemistry and biology.
ObjectiveIntended for chemists, chemical engineers, biochemists and biologists, the course Chemical and Bioengineering 4th semester addresses the basics of production and process design. Starting with different reactors, process steps and unit operations in production, the industrial scale usage of chemicals and reagents are discussed and further illustrated by examples. Material and energy balances and the concept of selectivity are used to broaden the students view on the complexity of production and show how modern engineering can contribute to an environmentally sustainable production. In the second part of the lecture, reactors, single cells or living matter are discussed in terms of transport properties. Beyond metabolism or chemical processes, transport of impulse, mass and energy heavily influence chemical and biological processes. They are introduced simultaneously and provide a basis for the understanding of flow, diffusion and heat transport. Dimensionless numbers are used to implement transport properties in unit operations and process design. An introduction to heterogeneous catalysis connects the acquired concepts to chemistry and biology and shows how powerful new processes arise from combining molecular understanding and transport.
ContentElements of chemical transformations: preparation of reactants, reaction process, product work-up and recycling, product purification; continuous, semibatch and batch processes; material balances: chemical reactors and separation processes, multiple systems and multistage systems; energy balances: chemical reactors and separation processes, enthalpy changes, coupled material and energy balances; multiple reactions: optimisation of reactor performance, yield and selectivity; mass transport and chemical reaction: mixing effects in homogeneous and heterogeneous systems, diffusion and reaction in porous materials; heat exchange and chemical reaction: adiabatic reactors, optimum operating conditions for exothermic and endothermic equilibrium reactions, thermal runaway, reactor size and scale up.
Lecture notesSupporting material to the course is available on the homepage Link
LiteratureLiterature and text books are announced at the beginning of the course.
Laboratory Courses
NumberTitleTypeECTSHoursLecturers
529-0054-00LPhysical and Analytical ChemistryO10 credits15PE. C. Meister, R. Zenobi, M. Badertscher, M.‑O. Ebert, B. Hattendorf
AbstractPractical introduction to important experimental methods in physical and analytical chemistry.
ObjectiveThe students have to carry out selected experiments in physical chemistry and evaluate measurement data.
They acquire a good knowledge about the most important practical techniques in analytical chemistry.
Laboratory reports have to be written to each experiment.
ContentPhysical chemistry part:
Short recapitulation of statistics and analysis of measurement data. Writing experimental reports with regard to publication of scientific works. Basic physical chemistry experiments (a maximum of six experiments form the following themes): 1. Phase diagrams (liquid-vapour and solid-liquid phase diagrams, cryoscopy); 2. electrochemistry and electronics; 3. quantum chemistry studies; 4. kinetics; 5. thermochemistry; 6. speed of sound in gases and liquids; 7. surface tension.

Analytical chemistry part:
1. Introduction to the concept of sampling, quantitative elemental analysis and trace analysis, atomic spectroscopic methods, comparative measurements with electrochemical methods; 2. Separation methods, their principles and optimisation: comparison of the different chromatographic methods, effect of the stationary and mobile phases, common errors/artefacts, liquid chromatography, gas chromatography (injection methods). 3. Spectroscopic methods in organic structure determination: recording of IR and UV/VIS spectra, recording technique in NMR

Mandatory exercises in spectroscopy in an accompanying tutorial 529-0289-00 "Instrumentalanalyse organischer Verbindungen" are an integral part of this course.
Lecture notesDescriptions for experiments available online.
LiteratureFür PC-Teil: Erich Meister, Grundpraktikum Physikalische Cheme, 2. Aufl. Vdf UTB, Zürich 2012.
Prerequisites / NoticePrerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)" in parallel to the lab class, or completed in an earlier semester. The course 529-0289-00L "Instumentalanalyse organischer Verbindungen" is an obligatory component of the lab class / praktikum.
  •  Page  1  of  1