Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2018

Rechnergestützte Wissenschaften Master Information
Kernfächer
Von den im HS und FS angebotenen Kernfächern müssen mindestens zwei Lerneinheiten erfolgreich abgeschlossen werden.

252-0543-01L Computer Graphics wird im HS 2018 letztmals als Kernfach angeboten.
NummerTitelTypECTSUmfangDozierende
401-4671-00LAdvanced Numerical Methods for CSEW9 KP4V + 2U + 1PR. Hiptmair, C. Jerez Hanckes
KurzbeschreibungThis course discusses modern numerical methods involving complex algorithms and intricate data structures that render an efficient implementation non-trivial. The focus will be on boundary element methods, hierarchical matrix techniques, convolution quadrature, and algebraic multigrid methods.
Lernziel- Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and sophisticated data structures in modern computer simulation technology.
- Knowledge about the main ideas and mathematical foundations underlying boundary element methods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.
- Familiarity with the algorithmic challenges arising with these methods and the main ways on how to tackle them.
- Knowledge about the algorithms' complexity and suitable data structures.
- Ability to understand details of given implementations.
- Skills concerning the implementation of algorithms and data structures in C++.
Inhalt1 Boundary Element Methods (BEM)
1.1 Elliptic Model Boundary Value Problem: Electrostatics . . . . . . . .
1.2 Boundary Representation Formulas . . . . . . . . . . . . . . . . . .
1.3 Boundary Integral Equations (BIEs) . . . . . . . . . . . . . . . . . .
1.4 Boundary Element Methods in Two Dimensions . . . . . . . . . . . . . . . . . . .
1.5 Boundary Element Methods on Closed Surfaces . . . . . . . . . . . . . . . . . . .
1.6 BEM: Various Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Local Low-Rank Compression of Non-Local Operators
2.1 Examples: Non-Local Operators . . . . . . . . . . . . . . . . . . . . .
2.2 Approximation of Kernel Collocation Matrices . . . . . . . . . . . . . . .
2.3 Clustering Techniques . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Hierarchical Matrices . . . . . . . . . . . . . . . . . . .
3 Convolution Quadrature
3.1 Basic Concepts and Tools
3.2 Convolution Equations: Examples . . . . . . . . . . . . . .
3.3 Implicit-Euler Convolution Quadrature . . . . . . . . . . . .
3.5 Runge-Kutta Convolution Quadrature . . . . . . . . . . . .
3.6 Fast Oblivious Convolution Quadrature . . . . . . . .
4 Algebraic Multigrid Methods
SkriptLecture material will be created during the course and will be made available online and in chapters.
LiteraturS. Sauter and Ch. Schwab, Boundary Element Methods, Springer 2010
O. Steinbach, Numerical approximation methods for elliptic boundary value problems, Springer 2008
M. Bebendorf, Hierarchical matrices: A means to efficiently solve elliptic boundary value problems, Springer 2008
W. Hackbusch, Hierarchical Matrices, Springer 2015
S. Boerm, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algorithms and Analysis, EMS 2010
S. Boerm, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel 2017
M. Hassell and F.-J. Sayas, Convolution Quadrature for Wave Simulations
J.-C. Xu and L. Zikatanov, Algebraic Multirgrid Methods, Acta Numerica, 2017
Ch. Wagner, Introduction to Algebraic Multigrid, Lecture notes IWR Heidelberg, 1999, https://perso.uclouvain.be/alphonse.magnus/num2/amg.pdf
Voraussetzungen / Besonderes- Familiarity with basic numerical methods
(as taught in the course "Numerical Methods for CSE").
- Knowledge about the finite element method for elliptic partial differential equations (as covered in the course "Numerical Methods for Partial Differential Equations").
252-0543-01LComputer Graphics Information W6 KP3V + 2UM. Gross, J. Novak
KurzbeschreibungThis course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes.
LernzielAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
InhaltThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering.
Skriptno
Voraussetzungen / BesonderesPrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
Vertiefungsgebiete
Astrophysik
NummerTitelTypECTSUmfangDozierende
401-7851-00LTheoretical Astrophysics (University of Zurich) Information
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST512

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W10 KP4V + 2UR. Teyssier
KurzbeschreibungThis course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure of stars, astrophysical turbulence, accretion disks and their stability, the foundations of radiative transfer, collisionless systems, the structure and stability of dark matter halos and galactic disks.
Lernziel
LiteraturCourse Materials:
1- The Physics of Astrophysics, Volume 1: Radiation by Frank H. Shu
2- The Physics of Astrophysics, Volume 2: Gas Dynamics by Frank H. Shu
3- Foundations of radiation hydrodynamics, Dimitri Mihalas and Barbara Weibel-Mihalas
4- Radiative Processes in Astrophysics, George B. Rybicki and Alan P. Lightman
5- Galactic Dynamics, James Binney and Scott Tremaine
Voraussetzungen / BesonderesPrerequisites:
Introduction to Astrophysics
Mathematical Methods for the Physicist
Quantum Mechanics
(All preferred but not obligatory)

Prior Knowledge:
Mechanics
Quantum Mechanics and atomic physics
Thermodynamics
Fluid Dynamics
Electrodynamics
401-7855-00LComputational Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST245

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W6 KP2VL. M. Mayer
Kurzbeschreibung
LernzielAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
Inhalt1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics
LiteraturGalactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)
Voraussetzungen / BesonderesSome knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial
Atmosphärenphysik
NummerTitelTypECTSUmfangDozierende
701-0023-00LAtmosphäre Information W3 KP2VE. M. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
651-4053-05LBoundary Layer MeteorologyW4 KP3GM. Rotach, P. Calanca
KurzbeschreibungThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
LernzielOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Inhalt- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Skriptavailable (i.e. in English)
Literatur- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Voraussetzungen / BesonderesUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 KP2V + 1UH. Wernli, L. Papritz
KurzbeschreibungDie Vorlesung vermittelt die Grundlagen der Dynamik von aussertropischen Wettersystemen (quasi-geostrophische Dynamik, potentielle Vorticity, Rossby-Wellen, barokline Instabilität). Grundlegende Konzepte werden formal eingeführt, quantitativ angewendet und mit realen Beispielen illustriert und vertieft. Übungen (quantitativ und qualitativ) sind ein wesentlicher Bestandteil des Kurses.
LernzielVerständnis für dynamische Prozesse in der Atmosphäre sowie deren
mathematisch-physikalische Formulierung.
InhaltDie Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird.
SkriptDynamics of large-scale atmospheric flow
Literatur- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, Umwelt Fluiddynamik
401-5930-00LSeminar in Physics of the Atmosphere for CSEW4 KP2SH. Joos, C. Schär
KurzbeschreibungDie Studierenden dieses Kurses erhalten eine Einführung in Präsentationstechniken (Vortrag und Posterpräsentation) und trainieren das Erlernte, indem sie einen Kurzvortrag über eine klassiche oder aktuelle wissenschaftliche Publikation machen.
Lernziel
Chemie
NummerTitelTypECTSUmfangDozierende
529-0004-01LComputer Simulation in Chemistry, Biology and Physics Information W6 KP4GP. H. Hünenberger
KurzbeschreibungMolecular models, Force fields, Boundary conditions, Electrostatic interactions, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
LernzielIntroduction to computer simulation of (bio)molecular systems, development of skills to carry out and interpret computer simulations of biomolecular systems.
InhaltMolecular models, Force fields, Spatial boundary conditions, Calculation of Coulomb forces, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
SkriptAvailable (copies of powerpoint slides distributed before each lecture)
LiteraturSee: www.csms.ethz.ch/education/CSCBP
Voraussetzungen / BesonderesSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: www.csms.ethz.ch/education/CSCBP
529-0003-01LAdvanced Quantum ChemistryW6 KP3GM. Reiher, S. Knecht
KurzbeschreibungAdvanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.
Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
LernzielThe aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.
Inhalt1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation
SkriptA set of detailed lecture notes will be provided, which will cover the whole course.
Literatur1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
[english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661
http://onlinelibrary.wiley.com/doi/10.1002/qua.24309/abstract
5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750
http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp01883j
6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583
http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2010.6125
7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512
http://pra.aps.org/abstract/PRA/v83/i5/e052512

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson
C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000
D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994
E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990
Voraussetzungen / BesonderesStrongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
401-5940-00LSeminar in Chemistry for CSE Information W4 KP2SP. H. Hünenberger, M. Reiher
KurzbeschreibungThe student will carry out a literature study on a topic of his or her liking (suggested by or in agreement with the supervisor) in the area of computer simulation in chemistry (Prof. Hünenberger) or of quantum chemistry (Prof. Reiher), the results of which are to be presented both orally and in written form.

For more information:
http://www.csms.ethz.ch/education/CSE_seminar.html
Lernziel
Fluiddynamik
Eine der beiden Lerneinheiten
151-0103-00L Fluiddynamik II
151-0109-00L Turbulent Flows
ist obligatorisch.
Studierenden, welche deutschsprachigen Lehrveranstaltungen folgen können, wird 151-0103-00L Fluiddynamik II empfohlen.
NummerTitelTypECTSUmfangDozierende
151-0103-00LFluiddynamik IIO3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0182-00LFundamentals of CFD MethodsW+4 KP3GA. Haselbacher
KurzbeschreibungThis course is focused on providing students with the knowledge and understanding required to develop simple computational fluid dynamics (CFD) codes to solve the incompressible Navier-Stokes equations and to critically assess the results produced by CFD codes. As part of the course, students will write their own codes and verify and validate them systematically.
Lernziel1. Students know and understand basic numerical methods used in CFD in terms of accuracy and stability.
2. Students have a basic understanding of a typical simple CFD code.
3. Students understand how to assess the numerical and physical accuracy of CFD results.
Inhalt1. Governing and model equations. Brief review of equations and properties
2. Overview of basic concepts: Overview of discretization process and its consequences
3. Overview of numerical methods: Finite-difference and finite-volume methods
4. Analysis of spatially discrete equations: Consistency, accuracy, stability, convergence of semi-discrete methods
5. Time-integration methods: LMS and RK methods, consistency, accuracy, stability, convergence
6. Analysis of fully discrete equations: Consistency, accuracy, stability, convergence of fully discrete methods
7. Solution of one-dimensional advection equation: Motivation for and consequences of upwinding, Godunov's theorem, TVD methods, DRP methods
8. Solution of two-dimensional advection equation: Dimension-by-dimension methods, dimensional splitting, multidimensional methods
9. Solution of one- and two-dimensional diffusion equations: Implicit methods, ADI methods
10. Solution of one-dimensional advection-diffusion equation: Numerical vs physical viscosity, boundary layers, non-uniform grids
11. Solution of incompressible Navier-Stokes equations: Incompressibility constraint and consequences, fractional-step and pressure-correction methods
12. Solution of incompressible Navier-Stokes equations on unstructured grids
SkriptThe course is based mostly on notes developed by the instructor.
LiteraturLiterature: There is no required textbook. Suggested references are:
1. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Prentice Hall, 2007
2. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed., Taylor & Francis, 2011
Voraussetzungen / BesonderesPrior knowledge of fluid dynamics, applied mathematics, basic numerical methods, and programming in Fortran and/or C++ (knowledge of MATLAB is *not* sufficient).
151-0105-00LQuantitative Flow VisualizationW4 KP2V + 1UT. Rösgen
KurzbeschreibungThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
LernzielIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
InhaltFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
SkriptHandouts will be made available.
Voraussetzungen / BesonderesPrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
401-5950-00LSeminar in Fluid Dynamics for CSE Belegung eingeschränkt - Details anzeigen W4 KP2SP. Jenny, T. Rösgen
KurzbeschreibungEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
LernzielEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Voraussetzungen / BesonderesContact Prof. P. Jenny or Prof. T. Rösgen before the beginning of the semester
Systems and Control
NummerTitelTypECTSUmfangDozierende
227-0103-00LRegelsysteme Information W6 KP2V + 2UF. Dörfler
KurzbeschreibungStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
LernzielStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
InhaltProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteraturK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Voraussetzungen / BesonderesPrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0225-00LLinear System TheoryW6 KP5GM. Kamgarpour
KurzbeschreibungThe class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.
LernzielStudents should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.
Inhalt- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.
SkriptAvailable on the course Moodle platform.
Voraussetzungen / BesonderesSufficient mathematical maturity with special focus on logic, linear algebra, analysis.
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle