Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2018

Informatik Master Information
Vertiefungsfächer
Vertiefung General Studies
Kernfächer der Vertiefung General Studies
NummerTitelTypECTSUmfangDozierende
252-0237-00LConcepts of Object-Oriented Programming Information W6 KP3V + 2UP. Müller
KurzbeschreibungCourse that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection
LernzielAfter this course, students will:
Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
Be able to learn new languages more rapidly.
Be aware of many subtle problems of object-oriented programming and know how to avoid them.
InhaltThe main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
The key problems of single and multiple inheritance and how different languages address them
Generic type systems, in particular, Java generics, C# generics, and C++ templates
The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
How to maintain the consistency of data structures
LiteraturWill be announced in the lecture.
Voraussetzungen / BesonderesPrerequisites:
Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience
252-0417-00LRandomized Algorithms and Probabilistic MethodsW8 KP3V + 2U + 2AA. Steger
KurzbeschreibungLas Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
LernzielAfter this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
InhaltRandomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.
SkriptYes.
Literatur- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995)
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005)
252-0463-00LSecurity Engineering Information W5 KP2V + 2UD. Basin
KurzbeschreibungSubject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems
LernzielSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
InhaltSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
- Introduction of Infsec group and speakers
- Security meets SW engineering: an introduction
- The activities of SW engineering, and where security fits in
- Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
- overview: functional and non-functional requirements
- use cases, misuse cases, sequence diagrams
- safety and security
- FMEA, FTA, attack trees
3. Modeling in the design activities
- structure, behavior, and data flow
- class diagrams, statecharts
4. Model-driven security for access control (design)
- SecureUML as a language for access control
- Combining Design Modeling Languages with SecureUML
- Semantics, i.e., what does it all mean,
- Generation
- Examples and experience
5. Model-driven security (Part II)
- Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
- Buffer overflows
- Input checking
- Injection attacks
8. Testing
- overview
- model-based testing
- testing security properties
9. Risk analysis and management 1 (project management)
- "risk": assets, threats, vulnerabilities, risk
- risk assessment: quantitative and qualitative
- safeguards
- generic risk analysis procedure
- The OCTAVE approach
10. Risk analysis: IT baseline protection
- Overview
- Example
11. Evaluation criteria
- CMMI
- systems security engineering CMM
- common criteria
12. Guest lecture
- TBA
Literatur- Ross Anderson: Security Engineering, Wiley, 2001.
- Matt Bishop: Computer Security, Pearson Education, 2003.
- Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001.
- John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002.
- Further relevant books and journal/conference articles will be announced in the lecture.
Voraussetzungen / BesonderesPrerequisite: Class on Information Security
252-0535-00LAdvanced Machine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
252-1414-00LSystem Security Information W5 KP2V + 2US. Capkun, A. Perrig
KurzbeschreibungThe first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
LernzielIn this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.
InhaltThe first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.
263-2800-00LDesign of Parallel and High-Performance Computing Information W7 KP3V + 2U + 1AT. Hoefler, M. Püschel
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
263-4640-00LNetwork Security Information W6 KP2V + 1U + 2AA. Perrig, S. Frei
KurzbeschreibungSome of today's most damaging attacks on computer systems involve
exploitation of network infrastructure, either as the target of attack
or as a vehicle to attack end systems. This course provides an
in-depth study of network attack techniques and methods to defend
against them.
Lernziel- Students are familiar with fundamental network security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools).
- Students have an in-depth understanding of a range of important security technologies.
- Students learn how formal analysis techniques can help in the design of secure networked systems.
InhaltThe course will cover topics spanning five broad themes: (1) network
defense mechanisms such as secure routing protocols, TLS, anonymous
communication systems, network intrusion detection systems, and
public-key infrastructures; (2) network attacks such as denial of
service (DoS) and distributed denial-of-service (DDoS) attacks; (3)
analysis and inference topics such as network forensics and attack
economics; (4) formal analysis techniques for verifying the security
properties of network architectures; and (5) new technologies related
to next-generation networks.
Voraussetzungen / BesonderesThis lecture is intended for students with an interest in securing
Internet communication services and network devices. Students are
assumed to have knowledge in networking as taught in a Communication
Networks lecture. The course will involve a course project and some
smaller programming projects as part of the homework. Students are
expected to have basic knowledge in network programming in a
programming language such as C/C++, Go, or Python.
263-5902-00LComputer Vision Information W6 KP3V + 1U + 1AM. Pollefeys, V. Ferrari, L. Van Gool
KurzbeschreibungThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
LernzielThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
InhaltCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Voraussetzungen / BesonderesIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
636-0007-00LComputational Systems Biology Information W6 KP3V + 2UJ. Stelling
KurzbeschreibungStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
LernzielThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
InhaltBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Skripthttp://www.csb.ethz.ch/education/lectures.html
LiteraturU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010.

B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013
263-3800-00LAdvanced Operating Systems Information
Findet dieses Semester nicht statt.
Takes place next spring semester (SS19)!
W6 KP2V + 2U + 1AT. Roscoe
KurzbeschreibungThis course is intended to give students a thorough understanding of design and implementation issues for modern operating systems, with a particular emphasis on the challenges of modern hardware features. We will cover key design issues in implementing an operating system, such as memory management, scheduling, protection, inter-process communication, device drivers, and file systems.
LernzielThe goals of the course are, firstly, to give students:

1. A broader perspective on OS design than that provided by knowledge of Unix or Windows, building on the material in a standard undergraduate operating systems class

2. Practical experience in dealing directly with the concurrency, resource management, and abstraction problems confronting OS designers and implementers

3. A glimpse into future directions for the evolution of OS and computer hardware design
InhaltThe course is based on practical implementation work, in C and assembly language, and requires solid knowledge of both. The work is mostly carried out in teams of 3-4, using real hardware, and is a mixture of team milestones and individual projects which fit together into a complete system at the end. Emphasis is also placed on a final report which details the complete finished artifact, evaluates its performance, and discusses the choices the team made while building it.
Voraussetzungen / BesonderesThe course is based around a milestone-oriented project, where students work in small groups to implement major components of a microkernel-based operating system. The final assessment will be a combination grades awarded for milestones during the course of the project, a final written report on the work, and a set of test cases run on the final code.
263-3010-00LBig Data Information Belegung eingeschränkt - Details anzeigen W8 KP3V + 2U + 2AG. Fourny
KurzbeschreibungThe key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
LernzielThis combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
InhaltThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores

- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)

- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)

- data shapes and models (tables, trees, graphs, cubes)

- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)

- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)

- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)

- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)

- resource management (YARN)

- what a data center is made of and why it matters (racks, nodes, ...)

- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)

- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)

- applications.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturPapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Voraussetzungen / BesonderesThis course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

Another version of this course will be offered in Spring for students of other departments. However, if you would like to already start learning about databases now, a course worth taking as a preparation/good prequel to the Spring edition of Big Data is the "Information Systems for Engineers" course, offered this Fall for other departments as well, and introducing relational databases and SQL.
  •  Seite  1  von  1