Search result: Catalogue data in Spring Semester 2019

Health Sciences and Technology Master Information
Major in Molecular Health Sciences
Electives
Electives Courses I
NumberTitleTypeECTSHoursLecturers
551-0326-00LCell Biology Information W6 credits4VS. Werner, M. Bordoli, R. Henneberger, W. Kovacs, M. Schäfer, U. Suter, A. Wutz
AbstractThis Course introduces principle concepts, techniques, and experimental strategies used in modern Cell Biology. Major topics include: neuron-glia interactions in health and disease; mitochondrial dynamics; stem cell biology; growth factor action in development, tissue repair and disease; cell metabolism, in particular sensing and signaling mechanisms, cell organelles, and lipid metabolism.
Objective-To prepare the students for successful and efficient lab work by learning how to ask the right questions and to use the appropriate techniques in a research project.
-To convey knowledge about neuron-glia interactions in health and disease.
- To provide information on different types of stem cells and their function in health and disease
-To provide information on growth factor signaling in development, repair and disease and on the use of growth factors or their receptors as drug targets for major human diseases
-To convey knowledge on the mechanisms underlying repair of injured tissues
-To provide the students with an overview of mitochondrial dynamics.
-Providing an understanding of RNA processing reactions and their regulations.
-To provide a comprehensive understanding of metabolic sensing mechanisms occurring in different cell types and organelles in response to glucose, hormones, oxygen, nutrients as well as lipids, and to discuss downstream signaling pathways and cellular responses.
-To provide models explaining how disturbances in complex metabolic control networks and bioenergetics can lead to disease and to highlight latest experimental approaches to uncover the intricacies of metabolic control at the cellular and organismal level.
-Providing the background and context that foster cross-disciplinary scientific thinking.
376-0209-00LMolecular Disease MechanismsW6 credits4VC. Wolfrum, H. Gahlon, M. Kopf
AbstractIn this course the mechanisms of disease development will be studied. Main topics will be:

1. Influence of environmental factors with an emphasis on inflammation and the immune response.
2. Mechanisms underlying disease progression in metabolic disorders, integrating genetic and environmental factors.
3. Mechanisms underlying disease progression in cancer, integrating genetic and environment
ObjectiveTo understand the mechanisms governing disease development with a special emphasis on genetic and environmental associated components
Lecture notesAll information can be found at:

Link

The enrollment key will be provided by email
551-0318-00LImmunology IIW3 credits2VA. Oxenius, M. Kopf, S. R. Leibundgut, E. Slack, further lecturers
AbstractIntroduction into the cellular and molecular basis of the immune system and immune responses against diverse pathogens, tumors, transplants, and self (autoimmunity)
ObjectiveThe lectures will provide a detailed understanding:
- how innate and adaptive immune responses interact at the cellular and molecular level.
- how the immune system recognizes and fights against pathogenic microorganisms including viruses, bacteria, and parasites.
- why lymphocytes tolerate self molecules.
- about function and dysfunction the intestinal immune system.
- immunopathology and inflammatory diseases.
ContentThe aim of lecture is to understand:
> How pathogens are recognized by the innate immune system
> Immune defense against various pathogens
> Immunology of the skin, lung and intestines
> Tumor immunology
> Migration and homing of immune cells
> tolerance and autoimmunity
> T cell memory
Lecture notesPresentations of the lecturers are available at the Moodle link
LiteratureRecommended: Kuby Immunology (Freeman)
Elective Courses II
NumberTitleTypeECTSHoursLecturers
227-0396-00LEXCITE Interdisciplinary Summer School on Bio-Medical Imaging Information Restricted registration - show details
The school admits 60 MSc or PhD students with backgrounds in biology, chemistry, mathematics, physics, computer science or engineering based on a selection process.

Students have to apply for acceptance by April 22, 2019. To apply a curriculum vitae and an application letter need to be submitted. The notification of acceptance will be given by May 24, 2019. Further information can be found at: Link.
W4 credits6GS. Kozerke, G. Csúcs, J. Klohs-Füchtemeier, S. F. Noerrelykke, M. P. Wolf
AbstractTwo-week summer school organized by EXCITE (Center for EXperimental & Clinical Imaging TEchnologies Zurich) on biological and medical imaging. The course covers X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy, electron microscopy, image processing and analysis.
ObjectiveStudents understand basic concepts and implementations of biological and medical imaging. Based on relative advantages and limitations of each method they can identify preferred procedures and applications. Common foundations and conceptual differences of the methods can be explained.
ContentTwo-week summer school on biological and medical imaging. The course covers concepts and implementations of X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy and electron microscopy. Multi-modal and multi-scale imaging and supporting technologies such as image analysis and modeling are discussed. Dedicated modules for physical and life scientists taking into account the various backgrounds are offered.
Lecture notesHand-outs, Web links
Prerequisites / NoticeThe school admits 60 MSc or PhD students with backgrounds in biology, chemistry, mathematics, physics, computer science or engineering based on a selection process. To apply a curriculum vitae, a statement of purpose and applicants references need to be submitted. Further information can be found at: Link
227-0946-00LMolecular Imaging - Basic Principles and Biomedical ApplicationsW2 credits2VM. Rudin
AbstractConcept: What is molecular imaging.
Discussion/comparison of the various imaging modalities used in molecular imaging.
Design of target specific probes: specificity, delivery, amplification strategies.
Biomedical Applications.
ObjectiveMolecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research.
ContentConcept: What is molecular imaging.
Discussion/comparison of the various imaging modalities used in molecular imaging.
Design of target specific probes: specificity, delivery, amplification strategies.
Biomedical Applications.
327-2125-00LMicroscopy Training SEM I - Introduction to SEM Restricted registration - show details
Limited number of participants.

Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (Link).
W2 credits3PK. Kunze, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler
AbstractThe introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists.
Objective- Set-up, align and operate a SEM successfully and safely.
- Accomplish imaging tasks successfully and optimize microscope performances.
- Master the operation of a low-vacuum and field-emission SEM and EDX instrument.
- Perform sample preparation with corresponding techniques and equipment for imaging and analysis
- Acquire techniques in obtaining secondary electron and backscatter electron micrographs
- Perform EDX qualitative and semi-quantitative analysis
ContentDuring the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.
This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized.

- Discussion of students' sample/interest
- Introduction and discussion on Electron Microscopy and instrumentation
- Lectures on electron sources, electron lenses and probe formation
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM
- Brief description and demonstration of the SEM microscope
- Practice on beam/specimen interaction, image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping
- Practice on real-world samples and report results
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2126-00LMicroscopy Training TEM I - Introduction to TEM Restricted registration - show details
Number of participants limited to 6. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (Link).

TEM 1 registration form: Link
W2 credits3PM. Willinger, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm
AbstractThe introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions.
Objective- Overview of TEM theory, instrumentation, operation and applications.
- Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully.
- Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras.
- To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns.
- Overview of techniques for specimen preparation.
ContentUsing two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods.

- Introduction and discussion on Electron Microscopy and instrumentation.
- Lectures on electron sources, electron lenses and probe formation.
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM.
- Brief description and demonstration of the TEM microscope.
- Practice on beam/specimen interaction, image formation, Image contrast (and image processing).
- Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM).
- Student participation on sample preparation techniques.
- Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities.
- TEM alignment, calibration, correction to improve image contrast and quality.
- Electron diffraction.
- Practice on real-world samples and report results.
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
376-1306-00LClinical Neuroscience Information W3 credits3GG. Schratt, University lecturers
AbstractThe lecture series "Clinical Neuroscience" presents a comprehensive, condensed overview of the most important neurological diseases, their clinical presentation, diagnosis, therapy options and possible causes. Patient demonstrations (Übungen) follow every lecture that is dedicated to a particular disease.
ObjectiveBy the end of this module students should be able to:
- demonstrate their understanding and deep knowledge concerning the main neurological diseases
- identify and explain the different clinical presentation of these diseases, the methodology of diagnosis and the current therapies available
- summarize and critically review scientific literature efficiently and effectively
376-1392-00LMechanobiology: Implications for Development, Regeneration and Tissue EngineeringW3 credits2GA. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong
AbstractThis course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs.
ObjectiveThis course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena.
ContentTypically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance.

The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering.
Lecture notesn/a
LiteratureTopical Scientific Manuscripts
376-1624-00LPractical Methods in Biofabrication Restricted registration - show details
Number of participants limited to 12.
W5 credits4PM. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak
AbstractBiofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft.
ObjectiveThe objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project.
Prerequisites / NoticeNot recommended if passed 376-1622-00 Practical Methods in Tissue Engineering
376-1660-00LScientific Writing, Reporting and Communication Restricted registration - show details
Number of participants limited to 30.

Only for Health Sciences and Technology MSc
W3 credits2VW. R. Taylor
AbstractThis course aims to teach many of the unwritten rules on how to communicate effectively, from writing reports or manuscripts (or indeed their Master thesis!) through to improving skills in oral presentations, and presenting themselves at interview.
ObjectiveThis course will teach students to communicate effectively in official environments, including:
- writing manuscripts, theses, CVs, reports etc
- presenting posters
- oral presentations
- critical reviews of literature
376-1724-00LAppropriate Health System Design Information Restricted registration - show details
Number of participants limited to 42.
W3 credits2VW. Karlen
AbstractThis course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied.
ObjectiveThe main goals are to
> Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied
and
> Design health systems from a user's perspective for a specific context

At the end of the course, students can
> name, understand and describe the 4 main principles that define appropriate technology
> apply these principles to critically analyze and assess health systems and technology
> project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities
> modify specifications of existing systems to improve appropriateness
> discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications
> communicate effectively the results of his/her system analysis and implementation strategies to non-specialists
ContentThe course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts:
The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations.
The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo.
LiteratureWHO, "Medical Devices: Managing the Mismatch", 2010.
Link

PATH, "The IC2030 report. Reimagining Global Health," 2015. Link

R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013.
Prerequisites / NoticeTarget Group:
Students of higher semesters and doctoral students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
376-1986-00LBayesian Data Analysis on Models of Behavior
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: DOEC0829

Mind the enrolment deadlines at UZH:
Link
W3 credits2SR. Polania, University lecturers
AbstractMaking sense of the data acquired via experiments is fundamental in many fields of sciences. This course is designed for students/researchers who want to gain practical experience with data analysis based on Bayesian inference. Coursework involves practical demonstrations and discussion of solutions for data analysis problems. No advanced knowledge of statistics and probability is required.
ObjectiveThe overall goal of this course it that the students are able to develop both analytic and problem-solving skills that will serve to draw reasonable inferences from observations. The first objective is to make the participants familiar with the conceptual framework of Bayesian data analysis. The second goal is to introduce the ideas of modern Bayesian data analysis, including techniques such as Markov chain Monte Carlo (MCMC) techniques, alongside the introduction of programming tools that facilitate the creation of any Bayesian inference model. Throughout the course, this will involve practical demonstrations with example datasets, homework, and discussions that should convince the participants of this course that it is possible to make inference and understand the data acquired from the experiments that they usually obtain in their own research (starting from simple linear regressions all the way up to more complex models with hierarchical structures and dependencies). After working through this course, the participants should be able to build their own inference models in order to interpret meaningfully their own data.
Prerequisites / NoticeThe very basics (or at least intuition) of programming in either Matlab or R
551-0140-00LEpigeneticsW4 credits2VA. Wutz, U. Grossniklaus, R. Paro, R. Santoro
AbstractEpigenetics studies the inheritance of traits that cannot be attributed to changes in the DNA sequence. The lecture will present an overview of different epigenetic phenomena and provide detailed insight into the underlying molecular mechanisms. The role of epigenetic processes in the development of cancer and other disorders will be discussed.
ObjectiveThe aim of the course is to gain an understanding of epigenetic mechanisms and their impact on the development of organisms, regenerative processes or manifestation of disease.
ContentTopics
- historical overview, concepts and comparison Genetics vs. Epigenetics
- Biology of chromatin: structure and function, organization in the nucleus and the role of histone modifications in processes like transcription and replication
- DNA methylation as an epigenetic modification
- Inheritance of epigenetic modifications during cell division: cellular memory
- Stability and reversibility of epigenetic modifications: cellular plasticity and stem cells
- Genomic imprinting in plants and mammals
- X chromosome inactivation and dosis compensation
- position effects, paramutations and transvection
- RNA-induced gene silencing
- The role of epigenetic processes in cancer development or cell aging
551-0364-00LFunctional Genomics
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO 254 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
W3 credits2VC. von Mering, C. Beyer, B. Bodenmiller, M. Gstaiger, H. Rehrauer, R. Schlapbach, K. Shimizu, N. Zamboni, further lecturers
AbstractFunctional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data.
ObjectiveFunctional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data. Such data provide the basis for systems biology efforts to elucidate the structure, dynamics and regulation of cellular networks.
ContentThe curriculum of the Functional Genomics course emphasizes an in depth understanding of new technology platforms for modern genomics and advanced genetics, including the application of functional genomics approaches such as advanced microarrays, proteomics, metabolomics, clustering and classification. Students will learn quality controls and standards (benchmarking) that apply to the generation of quantitative data and will be able to analyze and interpret these data. The training obtained in the Functional Genomics course will be immediately applicable to experimental research and design of systems biology projects.
Prerequisites / NoticeThe Functional Genomics course will be taught in English.
551-0512-00LCurrent Topics in Molecular and Cellular Neurobiology Restricted registration - show details
Does not take place this semester.
Number of participants limited to 8
W2 credits1SU. Suter
AbstractThe course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.
ObjectiveThe course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn e.g. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.
ContentYou will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance.
You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).
Lecture notesPresentations will be made available after the seminars.
LiteratureWe cover a range of themes related to development and neurobiology. Before starting your preparations, you are required to check with Laura Montani (Link), who helps you with finding an appropriate paper.
Prerequisites / NoticeYou must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).
551-1100-00LInfectious Agents: From Molecular Biology to Disease
Number of participants limited to 22.
Requires application until 2 weeks before the start of the semester; selected applicants will be notified one week before the first week of lectures.
(if you missed the deadline, please come to the first date to see, if there are any slots left)
W4 credits2SW.‑D. Hardt, L. Eberl, U. F. Greber, A. B. Hehl, M. Kopf, S. R. Leibundgut, C. Münz, A. Oxenius, P. Sander
AbstractLiterature seminar for students at the masters level and PhD students. Introduction to the current research topics in infectious diseases; Introduction to key pathogens which are studied as model organisms in this field; Overview over key research groups in the field of infectious diseases in Zürich.
ObjectiveWorking with the current research literature. Getting to know the key pathogens serving as model organisms and the research technologies currently used in infection biology.
Contentfor each model pathogen (or key technology):
1. introduction to the pathogen
2. Discussion of one current research paper.
The paper will be provided by the respective supervisor. He/she will give advice (if required) and guide the respective literature discussion.
Lecture notesTeachers will provide the research papers to be discussed.
Students will prepare handouts for the rest of the group for their assigned seminar.
LiteratureTeachers will provide the research papers to be discussed.
Prerequisites / NoticeRestricted to max 22 students. Please sign up until two weeks before the beginning of the semester via e-mail to Link and include the following information: 551-1100-00L; your name, your e-mail address, university/eth, students (specialization, semester), PhD students (research group, member of a PhD program? which program?). The 22 students admitted to this seminar will be selected and informed by e-mail in the week befor the beginning of the semester by W.-D. Hardt.
The first seminar date will serve to form groups of students and assign a paper to each group.
551-1132-00LBasic Virology Information
Does not take place this semester.
W2 credits1V
AbstractIntroduction into the basics of virology, including characterization of viruses, virus-cell interactions, virus-host interactions, virus-host population interactions, basics of prevention and prophylaxis as well as diagnostics.
ObjectiveIntroduction into the basics of virology.
ContentBasics in virology. Characterization of viruses, virus-cell interactions, virus-host interactions, virus-host population interactions, basics of prevention and prophylaxis as well as diagnostics.
Lecture notesThe lecture uses the lecturer's 'Allgemeine Virologie' as a basis.
The lecturer's slides as well as selected primary literature will be provided 24-48 hrs prior to the lecture in pdf format.
LiteratureFlint et al., 2009. Principles of Virology, 3rd Edition.
ASM Press, Washington, DC, USA.
Vol I. ISBN 978-1-55581-479-3
Vol II. ISBN 978-1-55581-480-9
Prerequisites / NoticeBasic knowledge in molecular biology, cell biology, immunology.
551-1310-00LA Problem-Based Approach to Cellular Biochemistry Restricted registration - show details
Number of participants limited to 15.
W6 credits2GM. Peter, E. Dultz, M. Gstaiger, V. Korkhov, V. Panse, A. E. Smith
AbstractIndependent, guided acquisition of an overview over a defined area of research, identification of important open questions, development of an experimental strategy to address a defined question, and formulation of this strategy within the framework of a research grant.
ObjectiveThe students will learn to acquire independently an overview over a defined area of research, and to identify important open questions. In addition, they will learn to develop an experimental strategy to address a defined question, and to formulate this strategy within the framework of a research grant.
ContentThe students will work in groups of two to three, in close contact with a tutor (ETH Prof or senior scientist). A research overview with open questions and a research grant will be developed independently by the students, with guidance from the tutor through regular mandatory meetings. The students will write both the research overview with open questions and the grant in short reports, and present them to their colleagues.
LiteratureThe identification of appropriate literature is a component of the course.
Prerequisites / NoticeThis course will be taught in english, and requires extensive independent work.
636-0111-00LSynthetic Biology I
Attention: This course was offered in previous semesters with the number: 636-0002-00L "Synthetic Biology I". Students that already passed course 636-0002-00L cannot receive credits for course 636-0111-00L.
W4 credits3GS. Panke, J. Stelling
AbstractTheoretical & practical introduction into the design of dynamic biological systems at different levels of abstraction, ranging from biological fundamentals of systems design (introduction to bacterial gene regulation, elements of transcriptional & translational control, advanced genetic engineering) to engineering design principles (standards, abstractions) mathematical modelling & systems desig
ObjectiveAfter the course, students will be able to theoretically master the biological and engineering fundamentals required for biological design to be able to participate in the international iGEM competition (see Link).
ContentThe overall goal of the course is to familiarize the students with the potential, the requirements and the problems of designing dynamic biological elements that are of central importance for manipulating biological systems, primarily (but not exclusively) prokaryotic systems. Next, the students will be taken through a number of successful examples of biological design, such as toggle switches, pulse generators, and oscillating systems, and apply the biological and engineering fundamentals to these examples, so that they get hands-on experience on how to integrate the various disciplines on their way to designing biological systems.
Lecture notesHandouts during classes.
LiteratureMark Ptashne, A Genetic Switch (3rd ed), Cold Spring Haror Laboratory Press
Uri Alon, An Introduction to Systems Biology, Chapman & Hall
Prerequisites / Notice1) Though we do not place a formal requirement for previous participation in particular courses, we expect all participants to be familiar with a certain level of biology and of mathematics. Specifically, there will be material for self study available on Link as of mid January, and everybody is expected to be fully familiar with this material BEFORE THE CLASS BEGINS to be able to follow the different lectures. Please contact Link for access to material
2) The course is also thought as a preparation for the participation in the international iGEM synthetic biology summer competition (Link, Link). This competition is also the contents of the course Synthetic Biology II. Link
  •  Page  1  of  2 Next page Last page     All