Search result: Catalogue data in Spring Semester 2019

Biology Bachelor Information
2. Year, 4. Semester
Core Courses
NumberTitleTypeECTSHoursLecturers
529-1024-00LPhysical Chemistry II (for Biology and Pharmacy) Information O4 credits2V + 1UR. Riek
AbstractKinetics of chemical and biochemical reactions, in particular catalyzed reactions. Surface- and transport-phenomena, characterization of open systems.
ObjectiveKnowledge on the basics of time dependent process in chemical and biological systems.
ContentGrundbegriffe: Stofftransport, Transport in kontinuierlichen Systemen, Wärmeleitung, Viskosität von Gasen, Laminare Strömung durch Rohre, Ionenleitfähigkeit, Elektrisch geladene Grenzflächen, Elektrophorese, Sedimentation im Zentrifugalfeld, Eigenschaften der Plasmamembran, Transport durch Membranen, Membranpotentiale Reaktionsgeschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung, Experimentelle Methoden der Reaktionskinetik. Einfache Theorie chemischer Reaktionen: Temperaturabhängigkeit der Gleichgewichtskonstante und Arrheniusgleichung, Stosstheorie, Reaktionsquerschnitte, Theorie des Übergangszustandes. Zusammengesetzte Reaktionen: Reaktionsmechanismen und komplexe kinetische Systeme, Näherungsverfahren. Enzymkinetik. Kinetik geladener Teilchen. Diffusion und diffusionskontrollierte Reaktionen.
Lecture notesHandouts werden in der Vorlesung verteilt
LiteratureAdam, G., Läuger, P., Stark, G., 2003: Physikalische Chemie und Biophysik, 4. Aufl., Springer Verlag, Berlin.
Prerequisites / NoticeVoraussetzungen: Physikalische Chemie I
551-0104-00LFundamentals of Biology II Information Restricted registration - show details
Registrations via myStudies until 30.1.2019 at the latest. Subsequent registrations will not be considered.
O8 credits8PM. Gstaiger, E. Dultz, C. H. Giese, W. Kovacs, D. Santelia, H. Stocker, U. Suter, S. Werner
AbstractThis introductory Laboratory course introduces the student to the entire range of classical and modern molecular biosciences. In the second year (Praktikum GL Bio II) the students will perform three praktikum days in:
- Molecular Biology
- Plant Physiology
- Genetics and
- Cell Biology II.

(total of 12 experiments)

Each experiment takes one full day.
ObjectiveIntroduction to theoretical and experimental biology
Moodle www-link for general Praktikum-information and course material: Moodle

The general Praktikum information (Assignment list, Instructions and Schedule & Performance Sheet) will also be sent to the students directly (E-mail).
ContentThe class is divided into four blocks: Cell Biology II, Genetics, Molecular Biology and Plant Physiology. One block lasts three weeks.

CELL BIOLOGY II:
- Cells: Cell types & staining methods, cell fusion & cell motility,
- Tissue and development: histology of mice embryos & embryogenesis
- Repair mechanisms: DNA repair & wound healing,

GENETICS:
- Yeast genetics
- Drosophila genetics
- Human genetics

MOLECULAR BIOLOGY
- Molecular biology & protein crystallization
- Enzyme kinetics
- Redox potential & stability of a protein

PLANT PHYSIOLOGY:
- Plants and light
- Phytohormones and other growth factors
- Molecular biology of systemic gene silencing
- Literature and presentations

The students will also prepare short presentations (approx. 10 min) of the various topics within this course.
Lecture notesLaboratory manuals

CELL BIOLOGY II
- The protocols can be downloaded from: Moodle

MOLECULAR BIOLOGY:
- The protocols can be found from: Moodle

PLANT PHYSIOLOGY
- The protocols can be found from: Moodle

GENETICS
- The protocols can be found from: Moodle
Prerequisites / NoticeTHE PRAKTIKUM RULES:

Your attendance is obligatory and you have to attend all 12 Praktikum days. Absences are only acceptable if you are able to provide a Doctor’s certificate. The original Dr's certificate has to be given to Dr. M. Gstaiger (HPM F43) within five days of the absence of the Praktikum day.

If there will be any exceptional or important situations then you should directly contact the Director of Studies of D-Biol, who will decide if you are allowed to miss a Praktikum day or not.

HIGHLY IMPORTANT!!

1. Due to the increased number of students, the official Praktikum registration has to be done, using myStudies, preferably at the end of HS18 but not later than Wednesday January 30, 2019.

2. Later registration is NOT possible and can NOT be accepted!

3. The course registration for FS19 is usually possible at the end of HS18 and you will obtain an E-mail from the Rectorate when the course registration using myStudies is possible.

Students can register for a practice group via myStudies. As soon as the course unit is registered in myStudies, a text box appears indicating that a group can be selected. Accordingly, students can select a group in the next step. If more than 180 students register, the surplus students will be placed on a waiting list and then allocated by the course responsible.


The Praktikum GL BioII FS19 will take place during the following days and therefore, you have to make sure already now that you do not have any other activities & commitments during these days:

PRAKTIKUM DAYS DURING FS19 (Fridays):

22.2 / 1.3 / 8.3 / 15.3 / 22.3 / 29.3 / 5.4 / 12.4 / 3.5 / 10.5 / 17.5 / 24.5

No Praktikum during the Easter break: 19.4.-26.4. 2019
551-1298-00LGenetics, Genomics, Bioinformatics Information O4 credits2V + 2UE. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
AbstractThe course provides the basis of modern genetics, genomics and bioinformatics. A special focus is placed on the use of these tools for the understanding of biological processes in bacteria, model organisms and humans. The unit uses the principle of blended learning consisting of self-study modules in Moodle, tasks and input lectures by experts from the department.
ObjectiveAt the end of this course you know the most important genetic tools in different organisms. You can use the essential methods in bioinformatics by using online tools. You know the advantages and disadvantages of various model organisms to understand biological processes. You know the various mutagenesis methods and other tools to disrupt gene function and can discuss their merits and drawbacks. You are aware of the difficulties in choosing a phenotype for selection in a mutagenesis experiment. Finally, you can describe how you would study a specific biological process by choosing a model organism and the appropriate genetic or genomic tools.
ContentThe appearance and function of an organism (phenotype) is determined by the interplay between its genome (genotype) and the environment: Genotype + environment = phenotype. Understanding these interactions to the point where we can ultimately predict the phenotype from knowledge of the genotype and environmental factors is one oft the great challenges of biology.

In the course Bio IA you learnt about the composition and function of the genome and how it is inherited. The goal of this course is that you learn how genetic, genomic and bioinformatics methods are used to understand biological processes (the connection between genotype and phenotype).

In the first two weeks you will renew and deepen your knowledge of the basic principles of genetics and genomics in interactive learning modules on the Moodle platform. This is followed by an introduction of the basic tools of bioinformatics. You learn to search for specific genome sequences, to align them and to construct pedigrees of related genes.

After you have mastered the basic principles you will learn how to study biological processes either by inactivating specific genes or by randomly mutagenizing the entire genome. You will be introduced to different model organisms (bacteria, yeast, Drosophila, mouse) and humans.

Conventional genetic methods rely on the alteration of the function of single genes and on the observation of the effect on the organism (phenotype). Based on the observed phenotype one deduces the normal function of the gene. This is a strong simplification since, even if environmental factors are controlled, phenotypes are very rarely controlled by a single gene. It is therefore important to understand the influence of the entire genome in conjunction with environmental factors on a given phenotype (e.g. a human disease). Modern methods in genomics now permit first approaches in this direction. Therefore, the focus of the second part of the unit is on genome-wide association studies. You learn, how the influence of the entire genome on a specific phenotype is detected and what challenges are involved in the analysis and the interpretation of the results. We will examine these methods in model organisms and humans. You will also learn how the genome of cancer cells changes under the constant selection for these cells to survive and how this genome analysis provides new insights into diagnosis and therapy.

This course is based on active learning. Each week consists of a learning unit with clearly defined learning goals. In the first two hours you will learn the basics from texts, videos and questionnaires on the Moodle platform. In the third lecture an expert on the topic of the week (e.g. genetic screens in yeast) from the department will give an input lecture that builds on the basic knowledge that you acquired. In the fourth lecture you will discuss the tests and topics of the week with the expert. During the semester you will have access to assistants and lecturers via the Moodle online forum.

At the beginning of the learning unit you will take a short multiple-choice test on the content of the course. This formative assessment does not count for your final grade but gives you and us a way to determine where you stand also in relation to your fellow students. A similar formative assessment test will be given at the end of the semester. In this way, we can determine the learning gain during the course and obtain a quantitative feedback on the course. The exam is based on the learning goals of the individual chapters and the questions in the formative assessments.
Lecture notesThe learning material and slides of the input lectures are available on Moodle. There you will also find further information (articles, links, videos).
LiteratureAll texts and references will be available on Moodle. To follow the most recent developments in this rapidly evolving field follow the following experts on Twitter:
@dgmacarthur
@EricTopol
und/oder @ehafen
Prerequisites / NoticeThe course builds on the course Bio IA, in particular on that course's content regarding genetics and genomics. The course is based on self-learning units on Moodle, input lectures by experts from D-BIOL and exercises.
551-0108-00LFundamentals of Biology II: Plant BiologyO2 credits2VO. Voinnet, W. Gruissem, S. C. Zeeman
AbstractWater balance, assimilation, transport in plants; developmental biology, stress physiology.
ObjectiveWater balance, assimilation, transport in plants; developmental biology, stress physiology.
Lecture notesPlant Biology: Handouts of the powerpoint presentation will be distributed. It can also be viewed in a password-protected web link.
LiteratureSmith, A.M., et al.: Plant Biology, Garland Science, New York, Oxford, 2010
551-0110-00LFundamentals of Biology II: MicrobiologyO2 credits2VJ. Vorholt-Zambelli, W.‑D. Hardt, J. Piel
AbstractBacterial cell biology, molecular genetics, gene regulation, growth physiology, metabolism (Bacteria and Archaea), natural products, microbial interactions
ObjectiveBasic principles of cell structure, growth physiology, energy metabolism, gene expression and regulation. Biodiversity of Bacteria and Archaea. Phylogeny and evolution.
ContentBacterial cell biology, molecular genetics, gene regulation, growth physiology, metabolism (Bacteria and Archaea), natural products, microbial interactions
LiteratureBrock, Biology of Microorganisms (Madigan, M.T. and Martinko, J.M., eds.), 14th ed., Pearson Prentice Hall, 2015
  •  Page  1  of  1