Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Mathematik Bachelor Information
Kernfächer
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3532-08LDifferential Geometry IIW10 KP4V + 1UW. Merry
KurzbeschreibungThis is a continuation course of Differential Geometry I.

Topics covered include:

- Connections and curvature,
- Riemannian geometry,
- Gauge theory and Chern-Weil theory.
Lernziel
SkriptI will produce full lecture notes, available on my website:

Link
LiteraturThere are many excellent textbooks on differential geometry.

A friendly and readable book that contains everything covered in Differential Geometry I is:

John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag.

For Differential Geometry II, the textbooks:

- S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volume I (1963) Wiley,
- I. Chavel, "Riemannian Geometry: A Modern Introduction" 2nd ed. (2006), CUP,

are both excellent. The monograph

- A. L. Besse "Einstein Manifolds", (1987), Springer,

gives a comprehensive overview of the entire field, although it is extremely advanced. (By the end of the course you should be able to read this book.)
Voraussetzungen / BesonderesFamiliarity with all the material from Differential Geometry I will be assumed (smooth manifolds, Lie groups, vector bundles, differential forms, integration on manifolds, principal bundles and so on). Lecture notes for Differential Geometry I can be found on my website.
401-3462-00LFunctional Analysis II Information W10 KP4V + 1UA. Carlotto
KurzbeschreibungSobolev spaces, weak solutions of elliptic boundary value problems, basic results in elliptic regularity theory (including Schauder estimates), maximum principles.
LernzielAcquire fluency with Sobolev spaces and weak derivatives on the one hand, and basic elliptic regularity on the other. Apply these methods for studying elliptic boundary value problems.
LiteraturMichael Struwe. Funktionalanalysis I und II. Lecture notes, ETH Zürich, 2013/14.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Luigi Ambrosio, Alessandro Carlotto, Annalisa Massaccesi. Lectures on elliptic partial differential equations. Springer - Edizioni della Normale, Pisa, 2018.

David Gilbarg, Neil Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001.

Qing Han, Fanghua Lin. Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.

Michael Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011.

Lars Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer, Berlin, 2003.
Voraussetzungen / BesonderesFunctional Analysis I plus a solid background in measure theory, Lebesgue integration and L^p spaces.
401-3002-12LAlgebraic Topology II Information W8 KP4GP. Biran
KurzbeschreibungThis is a continuation course to Algebraic Topology I. The course will cover more advanced topics in algebraic topology including:
cohomology of spaces, operations in homology and cohomology, duality.
Lernziel
Literatur1) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.

2) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

The book can be downloaded for free at:
Link


3) E. Spanier, "Algebraic topology", Springer-Verlag
Voraussetzungen / BesonderesGeneral topology, linear algebra, singular homology of topological spaces (e.g. as taught in "Algebraic topology I").

Some knowledge of differential geometry and differential topology
is useful but not absolutely necessary.
401-8142-21LAlgebraic Geometry II (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: MAT517

Beachten Sie die Einschreibungstermine an der UZH: Link
W9 KP4V + 1UUni-Dozierende
KurzbeschreibungWe continue the development of scheme theory. Among the topics that will be discussed are: properties of schemes and their morphisms (flatness, smoothness), coherent modules, cohomology, etc.
Lernziel
» Kernfächer aus Bereichen der reinen Mathematik (Mathematik Master)
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3052-10LGraph Theory Information W10 KP4V + 1UB. Sudakov
KurzbeschreibungBasics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem
LernzielThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
SkriptLecture will be only at the blackboard.
LiteraturWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Voraussetzungen / BesonderesStudents are expected to have a mathematical background and should be able to write rigorous proofs.
401-3642-00LBrownian Motion and Stochastic Calculus Information W10 KP4V + 1UW. Werner
KurzbeschreibungThis course covers some basic objects of stochastic analysis. In particular, the following topics are discussed: construction and properties of Brownian motion, stochastic integration, Ito's formula and applications, stochastic differential equations and connection with partial differential equations.
LernzielThis course covers some basic objects of stochastic analysis. In particular, the following topics are discussed: construction and properties of Brownian motion, stochastic integration, Ito's formula and applications, stochastic differential equations and connection with partial differential equations.
SkriptLecture notes will be distributed in class.
Literatur- J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus, Springer (2016).
- I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer (1991).
- D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer (2005).
- L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, vol. 1 and 2, Cambridge University Press (2000).
- D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer (2006).
Voraussetzungen / BesonderesFamiliarity with measure-theoretic probability as in the standard D-MATH course "Probability Theory" will be assumed. Textbook accounts can be found for example in
- J. Jacod, P. Protter, Probability Essentials, Springer (2004).
- R. Durrett, Probability: Theory and Examples, Cambridge University Press (2010).
401-3632-00LComputational StatisticsW8 KP3V + 1UM. Mächler
KurzbeschreibungWe discuss modern statistical methods for data analysis, including methods for data exploration, prediction and inference. We pay attention to algorithmic aspects, theoretical properties and practical considerations. The class is hands-on and methods are applied using the statistical programming language R.
LernzielThe student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R.
InhaltSee the class website
Voraussetzungen / BesonderesAt least one semester of (basic) probability and statistics.

Programming experience is helpful but not required.
401-3602-00LApplied Stochastic Processes Information W8 KP3V + 1UV. Tassion
KurzbeschreibungPoisson-Prozesse; Erneuerungsprozesse; Markovketten in diskreter und in stetiger Zeit; einige Beispiele und Anwendungen.
LernzielStochastische Prozesse dienen zur Beschreibung der Entwicklung von Systemen, die sich in einer zufälligen Weise entwickeln. In dieser Vorlesung bezieht sich die Entwicklung auf einen skalaren Parameter, der als Zeit interpretiert wird, so dass wir die zeitliche Entwicklung des Systems studieren. Die Vorlesung präsentiert mehrere Klassen von stochastischen Prozessen, untersucht ihre Eigenschaften und ihr Verhalten und zeigt anhand von einigen Beispielen, wie diese Prozesse eingesetzt werden können. Die Hauptbetonung liegt auf der Theorie; "applied" ist also im Sinne von "applicable" zu verstehen.
LiteraturR. N. Bhattacharya and E. C. Waymire, "Stochastic Processes with Applications", SIAM (2009), available online: Link
R. Durrett, "Essentials of Stochastic Processes", Springer (2012), available online: Link
M. Lefebvre, "Applied Stochastic Processes", Springer (2007), available online: Link
S. I. Resnick, "Adventures in Stochastic Processes", Birkhäuser (2005)
Voraussetzungen / BesonderesPrerequisites are familiarity with (measure-theoretic) probability theory as it is treated in the course "Probability Theory" (401-3601-00L).
401-3652-00LNumerical Methods for Hyperbolic Partial Differential Equations Information W10 KP4V + 1UA. Ruf
KurzbeschreibungThis course treats numerical methods for hyperbolic initial-boundary value problems, ranging from wave equations to the equations of gas dynamics. The principal methods discussed in the course are finite volume methods, including TVD, ENO and WENO schemes. Exercises involve implementation of numerical methods in MATLAB.
LernzielThe goal of this course is familiarity with the fundamental ideas and mathematical
consideration underlying modern numerical methods for conservation laws and wave equations.
Inhalt* Introduction to hyperbolic problems: Conservation, flux modeling, examples and significance in physics and engineering.

* Linear Advection equations in one dimension: Characteristics, energy estimates, upwind schemes.

* Scalar conservation laws: shocks, rarefactions, solutions of the Riemann problem, weak and entropy solutions, some existence and uniqueness results, finite volume schemes of the Godunov, Engquist-Osher and Lax-Friedrichs type. Convergence for monotone methods and E-schemes.

* Second-order schemes: Lax-Wendroff, TVD schemes, limiters, strong stability preserving Runge-Kutta methods.

* Linear systems: explicit solutions, energy estimates, first- and high-order finite volume schemes.

* Non-linear Systems: Hugoniot Locus and integral curves, explicit Riemann solutions of shallow-water and Euler equations. Review of available theory.
SkriptLecture slides will be made available to participants. However, additional material might be covered in the course.
LiteraturH. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer 2011. Available online.

R. J. LeVeque, Finite Volume methods for hyperbolic problems, Cambridge university Press, 2002. Available online.

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Ellipses, Paris, 1991.
Voraussetzungen / BesonderesHaving attended the course on the numerical treatment of elliptic and parabolic problems is no prerequisite.

Programming exercises in MATLAB

Former course title: "Numerical Solution of Hyperbolic Partial Differential Equations"
» Kernfächer aus Bereichen der angewandten Mathematik ... (Mathematik Master)
Kernfächer aus weiteren anwendungsorientierten Gebieten
402-0204-00L Elektrodynamik ist als angewandtes Kernfach im Bachelor-Studiengang Mathematik anrechenbar, aber nur unter der Bedingung, dass 402-0224-00L Theoretische Physik (letztmals im FS 2016 angeboten) nicht angerechnet wird (weder im Bachelor- noch im Master-Studiengang).

Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
402-0204-00LElektrodynamikW7 KP4V + 2UC. Anastasiou
KurzbeschreibungHerleitung und Diskussion der Maxwellgleichungen, vom statischen Fall zur Elektrodynamik. Wellengleichung, Wellenleiter, Kavitäten. Erzeugung elektromagnetischer Strahlung, Streuung und Beugung von Licht. Struktur der Maxwellgleichungen, Lorentz-Invarianz, Relativitätstheorie und Kovarianz, Lagrange Formulierung. Dynamik relativistischer Teilchen im Feld und deren Strahlung.
LernzielPhysikalisches Verständnis statischer und dynamischer Phänomene (bewegter) geladener Objekte, und der Struktur der klassischen Feldtheorie der Elektrodynamik (transversale versus longitudinale Physik, Invarianzen (Lorentz-, Eich-)). Erkennen des Zusammenhangs von elektrischen, magnetischen und optischen Phänomenen und Einfluss von Medien. Verständnis klassischer Phänomene der Elektrodynamik und Fähigkeit zur selbständigen Lösung einfacher Probleme. Anwendung mathematischer Fertigkeiten (Vektoranalysis, vollständige Funktionensysteme, Green'sche Funktionen, ko- und kontravariante Koordinaten, etc.). Vorbereitung auf die Quantenmechanik (Eigenwertprobleme, Lichtleiter und Kavitäten).
InhaltKlassische Feldtheorie der Elektrodynamik: Herleitung und Diskussion der Maxwellgleichungen, ausgehend vom statischen Fall (Elektrostatik, Magnetostatik, Randwertprobleme) im Vakuum und in Medien und Verallgemeinerung zur Elektrodynamik (Faraday Gesetz, Ampere/Maxwell; Potentiale, Eichinvarianz). Wellengleichung und Lösungen im vollen Raum, Halbraum (Snellius Gesetz), Wellenleiter, Kavitäten. Erzeugung elektromagnetischer Strahlung, Streuung und Beugung von Licht (Optik). Erarbeitung von Beispielen. Diskussion zur Struktur der Maxwellgleichungen, Lorentz-Invarianz, Relativitätstheorie und Kovarianz, Lagrange Formulierung. Dynamik relativistischer Teilchen im Feld und deren Strahlung (Synchrotron).
LiteraturJ.D. Jackson, Classical Electrodynamics
W.K.H Panovsky and M. Phillis, Classical electricity and magnetism
L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus media
A. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik)
M. Born and E. Wolf, Principles of optics
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II
W. Nolting, Elektrodynamik (Grundkurs Theoretische Physik 3)
  •  Seite  1  von  1