Search result: Catalogue data in Spring Semester 2021

Computational Biology and Bioinformatics Master Information
More informations at: Link
Core Courses
Please note that the list of core courses is a closed list. Other courses cannot be added to the core course category in the study plan. Also the assignments of courses to core subcategories cannot be changed.
Students need to pass at least one course in each core subcategory.
A total of 40 ECTS needs to be acquired in the core course category.
Biophysics
NumberTitleTypeECTSHoursLecturers
262-5100-00LProtein Biophysics (University of Zurich)
No enrollment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BCH304

Mind the enrolment deadlines at UZH:
Link
W6 credits3V + 1UUniversity lecturers
AbstractThe course includes a general introduction into protein structure and biophysics as well as into the usage of molecular dynamics simulations and other computational methods, protein structure and X-ray techniques, protein NMR for determining protein structure and dynamics as well as for folding studies and protein thermodynamics.
ObjectiveA 4 hour/week course on all aspects of protein biophysics. The course includes a general introduction into protein structure and biophysics as well as into the usage of molecular dynamics simulations and other computational methods, protein structure and X-ray techniques, protein NMR for determining protein structure and dynamics as well as for folding studies and protein thermodynamics.
ContentThe lecture course consists of four parts:
1) non-covalent interactions, properties of water and hydrophobic
effect, protein folding and misfolding, molecular dynamics simulations;
2) atomistic simulations of proteins
3) thermodynamics and kinetics of protein folding;
4) single molecule biophysics: single molecule fluorescence
spectroscopy, fluorescence correlation spectroscopy, and applications to
stochastic processes in biology.
151-0980-00LBiofluiddynamicsW4 credits2V + 1UD. Obrist, P. Jenny
AbstractIntroduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics).
ObjectiveA basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately.
ContentThis lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear.
Lecture notesLecture notes are provided electronically.
LiteratureA list of books on selected topics of biofluiddynamics can be found on the course web page.
  •  Page  1  of  1