Suchergebnis: Katalogdaten im Herbstsemester 2016

Rechnergestützte Wissenschaften Master Information
Kernfächer
Von den im HS und FS angebotenen Kernfächern müssen mindestens zwei Lerneinheiten erfolgreich abgeschlossen werden.
NummerTitelTypECTSUmfangDozierende
252-0543-01LComputer Graphics Information W6 KP3V + 2UM. Gross, J. Novak
KurzbeschreibungThis course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes.
LernzielAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
InhaltThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering.
Skriptno
Voraussetzungen / BesonderesPrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
Vertiefungsgebiete
Astrophysik
NummerTitelTypECTSUmfangDozierende
401-7851-00LTheoretical Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST512

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W10 KP4V + 2UR. Teyssier
KurzbeschreibungRadiative processes in the interstellar medium; stellar structure and evolution; supernovae; white dwarfs; neutron stars; black holes; planet formation
Lernziel
Literatur(1) "Formation of stars" (S. Stahler and F. Palla - Wiley editions, this is the book on which about half of the classes will be based and photocopies will be organized during first lecture)
(2) "Radiative processes in astrophysics" (R. Ribycki and A. Lightman)
(3) "The Physics of Stars" (A.C. Philllips)
(4) "Black Holes, White Dwarfs and Neutron Stars: The physics of compact objects" (S. Shapiro and S.A. Teukolski).
Additionally PowerPoint slides will be prepared by the lecturer on these and extra topics (e.g. planet formation).
Voraussetzungen / BesonderesPrerequisites: Elementary atomic physics, thermodynamics, mechanics, fluid dynamics.
Introduction to astrophysics (preferred but not obligatory).
401-7855-00LComputational Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST245

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W6 KP2VL. M. Mayer
KurzbeschreibungAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
LernzielAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
Inhalt1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics
LiteraturGalactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)
Voraussetzungen / BesonderesSome knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial
Atmosphärenphysik
NummerTitelTypECTSUmfangDozierende
701-0023-00LAtmosphäre Information W3 KP2VH. Wernli, E. M. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
651-4053-05LBoundary Layer MeteorologyW4 KP3GM. Rotach, P. Calanca
KurzbeschreibungThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
LernzielOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Inhalt- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Skriptavailable (i.e. in English)
Literatur- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Voraussetzungen / BesonderesUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 KP2V + 1UH. Wernli, S. Pfahl
KurzbeschreibungDynamische Synoptische Meteorologie
LernzielVerständnis für dynamische Prozesse in der Atmosphäre sowie deren
mathematisch-physikalische Formulierung.
InhaltDie Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird.
SkriptDynamics of large-scale atmospheric flow
Literatur- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, Umwelt Fluiddynamik
401-5930-00LSeminar in Physics of the Atmosphere for CSEW4 KP2SH. Joos, C. Schär
KurzbeschreibungDie Studierenden dieses Kurses erhalten eine Einführung in Präsentationstechniken (Vortrag und Posterpräsentation) und trainieren das Erlernte, indem sie einen Kurzvortrag über eine klassiche oder aktuelle wissenschaftliche Publikation machen.
Lernziel
Chemie
NummerTitelTypECTSUmfangDozierende
529-0004-00LComputer Simulation in Chemistry, Biology and Physics Belegung eingeschränkt - Details anzeigen W7 KP4GP. H. Hünenberger
KurzbeschreibungMolecular models, Force fields, Boundary conditions, Electrostatic interactions, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.

For more information: www.csms.ethz.ch/education/CSCBP
LernzielIntroduction to computer simulation of (bio)molecular systems, development of skills to carry out and interpret computer simulations of biomolecular systems.
InhaltMolecular models, Force fields, Spatial boundary conditions, Calculation of Coulomb forces, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
SkriptAvailable (copies of powerpoint slides distributed before each lecture)
LiteraturSee: www.csms.ethz.ch/education/CSCBP
Voraussetzungen / BesonderesSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam.

For more information about the lecture: www.csms.ethz.ch/education/CSCBP
529-0003-00LAdvanced Quantum ChemistryW7 KP3GM. Reiher, S. Knecht
KurzbeschreibungAdvanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.
Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
LernzielThe aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.
Inhalt1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation
SkriptA set of detailed lecture notes will be provided, which will cover the whole course.
Literatur1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
[english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661
http://onlinelibrary.wiley.com/doi/10.1002/qua.24309/abstract
5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750
http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp01883j
6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583
http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2010.6125
7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512
http://pra.aps.org/abstract/PRA/v83/i5/e052512

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson
C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000
D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994
E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990
Voraussetzungen / BesonderesStrongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
401-5940-00LSeminar in Chemistry for CSEW4 KP2SP. H. Hünenberger, M. Reiher
KurzbeschreibungThe student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form.

For more information: www.csms.ethz.ch/education/RW
Lernziel
Fluiddynamik
Eine der beiden Lerneinheiten
151-0103-00L Fluiddynamik II
151-0109-00L Turbulent Flows
ist obligatorisch. Studierenden, welche deutschsprachigen Lehrveranstaltungen folgen können, wird 151-0103-00L Fluiddynamik II empfohlen.
NummerTitelTypECTSUmfangDozierende
151-0103-00LFluiddynamik IIO3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0182-00LFundamentals of CFD MethodsW+4 KP3GA. Haselbacher
KurzbeschreibungThis course is focused on providing students with the knowledge and understanding required to develop simple computational fluid dynamics (CFD) codes to solve the incompressible Navier-Stokes equations and to critically assess the results produced by CFD codes. As part of the course, students will write their own codes and verify and validate them systematically.
Lernziel1. Students know and understand basic numerical methods used in CFD in terms of accuracy and stability.
2. Students have a basic understanding of a typical simple CFD code.
3. Students understand how to assess the numerical and physical accuracy of CFD results.
Inhalt1. Governing and model equations. Brief review of equations and properties
2. Overview of basic concepts: Overview of discretization process and its consequences
3. Overview of numerical methods: Finite-difference and finite-volume methods
4. Analysis of spatially discrete equations: Consistency, accuracy, stability, convergence of semi-discrete methods
5. Time-integration methods: LMS and RK methods, consistency, accuracy, stability, convergence
6. Analysis of fully discrete equations: Consistency, accuracy, stability, convergence of fully discrete methods
7. Solution of one-dimensional advection equation: Motivation for and consequences of upwinding, Godunov's theorem, TVD methods, DRP methods
8. Solution of two-dimensional advection equation: Dimension-by-dimension methods, dimensional splitting, multidimensional methods
9. Solution of one- and two-dimensional diffusion equations: Implicit methods, ADI methods
10. Solution of one-dimensional advection-diffusion equation: Numerical vs physical viscosity, boundary layers, non-uniform grids
11. Solution of incompressible Navier-Stokes equations: Incompressibility constraint and consequences, fractional-step and pressure-correction methods
12. Solution of incompressible Navier-Stokes equations on unstructured grids
SkriptThe course is based mostly on notes developed by the instructor.
LiteraturLiterature: There is no required textbook. Suggested references are:
1. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Prentice Hall, 2007
2. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed., Taylor & Francis, 2011
Voraussetzungen / BesonderesPrior knowledge of fluid dynamics, applied mathematics, basic numerical methods, and programming in Fortran and/or C++ (knowledge of MATLAB is *not* sufficient).
151-0105-00LQuantitative Flow VisualizationW4 KP2V + 1UT. Rösgen
KurzbeschreibungThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
LernzielIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
InhaltFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
Skriptavailable
Voraussetzungen / BesonderesPrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
401-5950-00LSeminar in Fluid Dynamics for CSE Belegung eingeschränkt - Details anzeigen W4 KP2SP. Jenny, T. Rösgen
KurzbeschreibungEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
LernzielEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Voraussetzungen / BesonderesContact Prof. P. Jenny or Prof. T. Rösgen before the beginning of the semester
Systems and Control
NummerTitelTypECTSUmfangDozierende
227-0103-00LRegelsysteme Information W6 KP2V + 2UF. Dörfler
KurzbeschreibungStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
LernzielStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
InhaltProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteraturK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Voraussetzungen / BesonderesPrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0045-00LSignal- und Systemtheorie IW4 KP2V + 2UH. Bölcskei
KurzbeschreibungSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
LernzielEinführung in die mathematische Signaltheorie und Systemtheorie.
InhaltSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
SkriptVorlesungsskriptum, Übungsskriptum mit Lösungen.
227-0225-00LLinear System TheoryW6 KP5GM. Kamgarpour
KurzbeschreibungThe class is intended to provide a comprehensive overview of the theory of linear dynamical systems, their use in control, filtering, and estimation and their applications to areas ranging from avionics to systems biology.
LernzielBy the end of the class students should be comfortable with the fundamental results in linear system theory and the mathematical tools used to derive them.
Inhalt- Rings, fields and linear spaces, normed linear spaces and inner product spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete time, time varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, canonical forms, Kalman decomposition. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.
- Realization theory.
SkriptF.M. Callier and C.A. Desoer, "Linear System Theory", Springer-Verlag, 1991.
Voraussetzungen / BesonderesPrerequisites: Control Systems I (227-0103-00) or equivalent and sufficient mathematical maturity.
252-0535-00LMachine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
151-0575-01LSignals and Systems Information W4 KP2V + 2UR. D'Andrea
KurzbeschreibungSignals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.
LernzielMaster the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.
InhaltDiscrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design.
SkriptLecture notes available on course website.
151-0563-01LDynamic Programming and Optimal Control Information W4 KP2V + 1UR. D'Andrea
KurzbeschreibungIntroduction to Dynamic Programming and Optimal Control.
LernzielCovers the fundamental concepts of Dynamic Programming & Optimal Control.
InhaltDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteraturDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Voraussetzungen / BesonderesRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
401-5850-00LSeminar in Systems and Control for CSEW4 KP2SJ. Lygeros
Kurzbeschreibung
Lernziel
Robotik
NummerTitelTypECTSUmfangDozierende
151-0601-00LTheory of Robotics and Mechatronics Information W4 KP3GP. Korba, S. Stoeter, B. Nelson
KurzbeschreibungThis course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. It’s a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
LernzielRobotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. This course is a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
InhaltAn introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Skriptavailable.
Voraussetzungen / BesonderesThe course will be taught in English.
252-0535-00LMachine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
263-5902-00LComputer Vision Information W6 KP3V + 1U + 1AL. Van Gool, V. Ferrari, A. Geiger
KurzbeschreibungThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
LernzielThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
InhaltCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Voraussetzungen / BesonderesIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
151-0563-01LDynamic Programming and Optimal Control Information W4 KP2V + 1UR. D'Andrea
KurzbeschreibungIntroduction to Dynamic Programming and Optimal Control.
LernzielCovers the fundamental concepts of Dynamic Programming & Optimal Control.
InhaltDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteraturDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Voraussetzungen / BesonderesRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
151-0851-00LRobot Dynamics Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 1UM. Hutter, R. Siegwart, T. Stastny
KurzbeschreibungWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
LernzielThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
InhaltThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Voraussetzungen / BesonderesThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
401-5860-00LSeminar in Robotics for CSE Information W4 KP2SR. Siegwart
KurzbeschreibungThis course provides an opportunity to familiarize yourself with the advanced topics of robotics and mechatronics research. The study plan has to be discussed with the lecturer based on your specific interests and/or the relevant seminar series such as the IRIS's Robotics Seminars and BiRONZ lectures, for example.
LernzielThe students are familiar with the challenges of the fascinating and interdisciplinary field of Robotics and Mechatronics. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.
InhaltThis 4 ECTS course requires each student to discuss a study plan with the lecturer and select minimum 10 relevant scientific publications to read through, or attend 5-10 lectures of the public robotics oriented seminars (e.g. Public robotics seminars such as the IRIS's Robotics Seminars http://www.iris.ethz.ch/iris/series/, and BiRONZ lectures http://www.birl.ethz.ch/bironz/index are good examples). At the end of semester, the results should be presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.
Physik
Für das Vertiefungsgebiet "Physik" sind Grundkenntnisse in Quantenmechnik erforderlich.
NummerTitelTypECTSUmfangDozierende
402-0809-00LIntroduction to Computational PhysicsW8 KP2V + 2UH. J. Herrmann
KurzbeschreibungDiese Vorlesung bietet eine Einführung in Computersimulationsmethoden für physikalische Probleme und deren Implementierung auf PCs und Supercomputern: klassische Bewegungsgleichungen, partielle Differentialgleichungen (Wellengleichung, Diffussionsgleichung, Maxwell-Gleichungen), Monte Carlo Simulation, Perkolation, Phasenübergänge
Lernziel
InhaltEinführung in die rechnergestützte Simulation physikalischer Probleme. Anhand einfacher Modelle aus der klassischen Mechanik, Elektrodynamik und statistischen Mechanik sowie interdisziplinären Anwendungen werden die wichtigsten objektorientierten Programmiermethoden für numerische Simulationen (überwiegend in C++) erläutert. Daneben wird eine Einführung in die Programmierung von Vektorsupercomputern und parallelen Rechnern, sowie ein Überblick über vorhandene Softwarebibliotheken für numerische Simulationen geboten.
Voraussetzungen / BesonderesVorlesung und Uebung in Englisch, Pruefung wahlweise auf Deutsch oder Englisch
402-0205-00LQuantenmechanik I Information W10 KP3V + 2UT. K. Gehrmann
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturF. Schwabl: Quantenmechanik
J.J. Sakurai: Modern Quantum Mechanics
W. Nolting: Quantenmechanik (Theoretische Physik 5.1, 5.2)
C. Cohen-Tannoudji: Quantenmechanik I
401-5810-00LSeminar in Physics for CSEW4 KP2SA. Soluyanov, M. Troyer
KurzbeschreibungIn this seminar the students present a talk on an advanced topic in modern theoretical or computational physics.
Lernziel
Computational Finance
NummerTitelTypECTSUmfangDozierende
401-3913-01LMathematical Foundations for FinanceW4 KP3V + 2UE. W. Farkas, M. Schweizer
KurzbeschreibungFirst introduction to main modelling ideas and mathematical tools from mathematical finance
LernzielThis course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It aims at a double audience: mathematicians who want to learn the modelling ideas and concepts for finance, and non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.
InhaltTopics to be covered include

- financial market models in finite discrete time
- absence of arbitrage and martingale measures
- valuation and hedging in complete markets
- basics about Brownian motion
- stochastic integration
- stochastic calculus: Itô's formula, Girsanov transformation, Itô's representation theorem
- Black-Scholes formula
SkriptLecture notes will be sold at the beginning of the course.
LiteraturLecture notes will be sold at the beginning of the course. Additional (background) references are given there.
Voraussetzungen / BesonderesPrerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie".)

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.
401-4657-00LNumerical Analysis of Stochastic Ordinary Differential Equations Information
Alternative course title: "Computational Methods for Quantitative Finance: Monte Carlo and Sampling Methods"
W6 KP3V + 1UA. Jentzen
KurzbeschreibungCourse on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.
LernzielThe aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this the course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.
InhaltGeneration of random numbers
Monte Carlo methods for the numerical integration of random variables
Stochastic processes and Brownian motion
Stochastic ordinary differential equations (SODEs)
Numerical approximations of SODEs
Multilevel Monte Carlo methods for SODEs
Applications to computational finance: Option valuation
SkriptLecture Notes are available in the lecture homepage (please follow the link in the Learning materials section).
LiteraturP. Glassermann:
Monte Carlo Methods in Financial Engineering.
Springer-Verlag, New York, 2004.

P. E. Kloeden and E. Platen:
Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Berlin, 1992.
Voraussetzungen / BesonderesPrerequisites:

Mandatory: Probability and measure theory,
basic numerical analysis and
basics of MATLAB programming.

a) mandatory courses:
Elementary Probability,
Probability Theory I.

b) recommended courses:
Stochastic Processes.

Start of lectures: Wednesday, September 21, 2016
For more details, please follow the link in the Learning materials section.
401-8905-00LFinancial Engineering (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: MFOEC103

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W4.5 KP3GUni-Dozierende
KurzbeschreibungThis lecture is intended for students who would like to learn more on equity derivatives modelling and pricing.
LernzielQuantitative models for European option pricing (including stochastic
volatility and jump models), volatility and variance derivatives,
American and exotic options.
InhaltAfter introducing fundamental
concepts of mathematical finance including no-arbitrage, portfolio
replication and risk-neutral measure, we will present the main models
that can be used for pricing and hedging European options e.g. Black-
Scholes model, stochastic and jump-diffusion models, and highlight their
assumptions and limitations. We will cover several types of derivatives
such as European and American options, Barrier options and Variance-
Swaps. Basic knowledge in probability theory and stochastic calculus is
required. Besides attending class, we strongly encourage students to
stay informed on financial matters, especially by reading daily
financial newspapers such as the Financial Times or the Wall Street
Journal.
SkriptScript.
Voraussetzungen / BesonderesBasic knowledge of probability theory and stochastic calculus.
Asset Pricing.
401-5820-00LSeminar in Computational Finance for CSEW4 KP2SJ. Teichmann
Kurzbeschreibung
Lernziel
InhaltWe aim to comprehend recent and exciting research on the nature of
stochastic volatility: an extensive econometric research [4] lead to new in-
sights on stochastic volatility, in particular that very rough fractional pro-
cesses of Hurst index about 0.1 actually provide very attractive models. Also
from the point of view of pricing [1] and microfoundations [2] these models
are very convincing.
More precisely each student is expected to work on one specified task
consisting of a theoretical part and an implementation with financial data,
whose results should be presented in a 45 minutes presentation.
Literatur[1] C. Bayer, P. Friz, and J. Gatheral. Pricing under rough volatility.
Quantitative Finance , 16(6):887-904, 2016.

[2] F. M. Euch, Omar El and M. Rosenbaum. The microstructural founda-
tions of leverage effect and rough volatility. arXiv:1609.05177 , 2016.

[3] O. E. Euch and M. Rosenbaum. The characteristic function of rough
Heston models. arXiv:1609.02108 , 2016.

[4] J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough.
arXiv:1410.3394 , 2014.
Voraussetzungen / BesonderesRequirements: sound understanding of stochastic concepts and of con-
cepts of mathematical Finance, ability to implement econometric or simula-
tion routines in MATLAB.
Electromagnetics
NummerTitelTypECTSUmfangDozierende
227-0110-00LElektromagnetische Wellen für Fortgeschrittene
Die Vorlesung wird per Studienjahr 2016/17 auf das Herbstsemester verschoben. Im FS 2017 findet sie also nicht mehr statt.
W6 KP2V + 2UP. Leuchtmann
KurzbeschreibungDie Vorlesung gibt einen vertieften Einblick in das Verhalten elektromagnetischer Wellen in linearen Materialien, inklusive negativem Brechungsindex oder Metamaterialien.
LernzielSie verstehen das Verhalten elektromagnetischer Wellen sowohl im homogenen Raum als auch in ausgewählten Strukturen (Oberflächen, geschichtete Medien, zylindrische Strukturen, Wellenleiter) und wissen auch über zeitharmonische Materialmodelle in Plasmonik Bescheid.
InhaltBeschreibung von zeitharmonischen Feldern; die Rolle des Materials in den Maxwell'schen Gleichungen; Energietransport- und -absorbierungsmechanismen; Elektromagnetische Wellen im homogenen Raum: gewöhnliche und evaneszente Ebene Wellen, Zylinderwellen, Kugelwellen, "Complex origin"-Wellen und -Strahlen; Oberflächen-Wellen; Wellen in geschichteten Strukturen; Mechanismus der Führung elektromagnetischer Wellen; TEM-Wellen; Hohlleiter und dielektrische Wellenleiter.
SkriptEin englischsprachiges Skript mit animierten Darstellungen kann heruntergeladen werden, ebenso die in der Vorlesung gezeigten Folien.
LiteraturDas Skript enthält eine Literaturliste.
Voraussetzungen / BesonderesDie Vorlesung wird auf Deutsch gehalten, das Skript und die Präsentationen sind auf Englisch.
227-2037-00LPhysical Modelling and Simulation Information W5 KP4GC. Hafner, J. Leuthold, J. Smajic
KurzbeschreibungThis module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.
LernzielBasic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.
InhaltThe module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.
In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.
227-0301-00LOptical Communication FundamentalsW6 KP2V + 1U + 1PJ. Leuthold
KurzbeschreibungThe path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.
LernzielAn in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.
Inhalt* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.

* Chapter 2: The Transmitter: Components of a transmitter, Lasers, The spectrum of a signal, Optical modulators, Modulation formats.

* Chapter 3: The Optical Fiber Channel: Geometrical optics, The wave equations in a fiber, Fiber modes, Fiber propagation, Fiber losses, Nonlinear effects in a fiber.

* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.

* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection teqchniques, Error correction coding.

* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.

* Chapter 7: Optical Amplifiers : Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.
SkriptLecture notes are handed out.
LiteraturGovind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010
Voraussetzungen / BesonderesFundamentals of Electromagnetic Fields & Bachelor Lectures on Physics.
401-5870-00LSeminar in Electromagnetics for CSE Information W4 KP2SC. Hafner, J. Leuthold
KurzbeschreibungVarious topics of electromagnetics, including electromagnetic theory, computational electromagnetics, electromagnetic wave propagation, applications from statics to optics. Traditional problems such as antennas, electromagnetic scattering, waveguides, resonators, etc. as well as modern topics such as photonic crystals, metamaterials, plasmonics, etc. are considered.
LernzielKnowledge of the fundamentals of electromagnetic theory, development and application of numerical methods for solving Maxwell equations, analysis and optimal design of electromagnetic structures
Geophysik
Empfohlene Kombinationen:
Fach 1 + Fach 2
Fach 1 + Fach 3
Fach 2 + Fach 3
Fach 3 + Fach 4
Fach 5 + Fach 6
Fach 5 + Fach 4
Geophysik: Fach 1
NummerTitelTypECTSUmfangDozierende
651-4007-00LContinuum MechanicsW3 KP2VT. Gerya
KurzbeschreibungIn this course, students learn crucial partial differential equations (conservation laws) that are applicable to any continuum including the Earth's mantle, core, atmosphere and ocean. The course will provide step-by-step introduction into the mathematical structure, physical meaning and analytical solutions of the equations. The course has a particular focus on solid Earth applications.
LernzielThe goal of this course is to learn and understand few principal partial differential equations (conservation laws) that are applicable for analysing and modelling of any continuum including the Earth's mantle, core, atmosphere and ocean. By the end of the course, students should be able to write, explain and analyse the equations and apply them for simple analytical cases. Numerical solving of these equations will be discussed in the Numerical Modelling I and II course running in parallel.
InhaltA provisional week-by-week schedule (subject to change) is as follows:


Week 1: The continuity equation
Theory: Definition of a geological media as a continuum. Field variables used for the representation of a continuum.Methods for definition of the field variables. Eulerian and Lagrangian points of view. Continuity equation in Eulerian and Lagrangian forms and their derivation. Advective transport term. Continuity equation for an incompressible fluid.
Exercise: Computing the divergence of velocity field.

Week 2: Density and gravity
Theory: Density of rocks and minerals. Thermal expansion and compressibility. Dependence of density on pressure and temperature. Equations of state. Poisson equation for gravitational potential and its derivation.
Exercise: Computing density, thermal expansion and compressibility from an equation of state.

Week 3: Stress and strain
Theory: Deformation and stresses. Definition of stress, strain and strain-rate tensors. Deviatoric stresses. Mean stress as a dynamic (nonlithostatic) pressure. Stress and strain rate invariants.
Exercise: Analysing strain rate tensor for solid body rotation.

Week 4: The momentum equation
Theory: Momentum equation. Viscosity and Newtonian law of viscous friction. Navier-–Stokes equation for the motion of a viscous fluid. Stokes equation of slow laminar flow of highly viscous incompressible fluid and its application to geodynamics. Simplification of the Stokes equation in case of constant viscosity and its relation to the Poisson equation. Exercises: Computing velocity for magma flow in a channel.

Week 5: Viscous rheology of rocks
Theory: Solid-state creep of minerals and rocks as themajor mechanism of deformation of the Earth’s interior. Dislocation and diffusion creep mechanisms. Rheological equations for minerals and rocks. Effective viscosity and its dependence on temperature, pressure and strain rate. Formulation of the effective viscosity from empirical flow laws.
Exercise: Deriving viscous rheological equations for computing effective viscosities from empirical flow laws.

Week 6: The heat conservation equation
Theory: Fourier’s law of heat conduction. Heat conservation equation and its derivation. Radioactive, viscous and adiabatic heating and their relative importance. Heat conservation equation for the case of a constant thermal conductivity and its relation to the Poisson equation.
Exercise: steady temperature profile in case of channel flow.

Week 7: Elasticity and plasticity
Theory: Elastic rheology. Maxwell viscoelastic rheology. Plastic rheology. Plastic yielding criterion. Plastic flow potential. Plastic flow rule.



GRADING will be based on honeworks (30%) and oral exams (70%).
Exam questions: http://www.erdw.ethz.ch/people/geophysics/tgerya/EXAM_QUESTIONS
SkriptScript is available by request to taras.gerya@erdw.ethz.ch
Exam questions: http://www.erdw.ethz.ch/people/geophysics/tgerya/EXAM_QUESTIONS
LiteraturTaras Gerya Introduction to Numerical Geodynamic Modelling Cambridge University Press, 2010
Geophysik: Fach 2
NummerTitelTypECTSUmfangDozierende
651-4241-00LNumerical Modelling I and II: Theory and ApplicationsW6 KP4GT. Gerya
KurzbeschreibungIn this 13-week sequence, students learn how to write programs from scratch to solve partial differential equations that are useful for Earth science applications. Programming will be done in MATLAB and will use the finite-difference method and marker-in-cell technique. The course will emphasise a hands-on learning approach rather than extensive theory.
LernzielThe goal of this course is for students to learn how to program numerical applications from scratch. By the end of the course, students should be able to write state-of-the-art MATLAB codes that solve systems of partial-differential equations relevant to Earth and Planetary Science applications using finite-difference method and marker-in-cell technique. Applications include Poisson equation, buoyancy driven variable viscosity flow, heat diffusion and advection, and state-of-the-art thermomechanical code programming. The emphasis will be on commonality, i.e., using a similar approach to solve different applications, and modularity, i.e., re-use of code in different programs. The course will emphasise a hands-on learning approach rather than extensive theory, and will begin with an introduction to programming in MATLAB.
InhaltA provisional week-by-week schedule (subject to change) is as follows:

Week 1: Introduction to the finite difference approximation to differential equations. Introduction to programming in Matlab. Solving of 1D Poisson equation.
Week 2: Direct and iterative methods for obtaining numerical solutions. Solving of 2D Poisson equation with direct method. Solving of 2D Poisson equation with Gauss-Seidel and Jacobi iterative methods.
Week 3: Solving momentum and continuity equations in case of constant viscosity with stream function/vorticity formulation.
Weeks 4: Staggered grid for formulating momentum and continuity equations. Indexing of unknowns. Solving momentum and continuity equations in case of constant viscosity using pressure-velocity formulation with staggered grid.
Weeks 5: Conservative finite differences for the momentum equation. "Free slip" and "no slip" boundary conditions. Solving momentum and continuity equations in case of variable viscosity using pressure-velocity formulation with staggered grid.
Week 6: Advection in 1-D. Eulerian methods. Marker-in-cell method. Comparison of different advection methods and their accuracy.
Week 7: Advection in 2-D with Marker-in-cell method. Combining flow calculation and advection for buoyancy driven flow.
Week 8: "Free surface" boundary condition and "sticky air" approach. Free surface stabilization. Runge-Kutta schemes.
Week 9: Solving 2D heat conservation equation in case of constant thermal conductivity with explicit and implicit approaches.
Week 10: Solving 2D heat conservation equation in case of variable thermal conductivity with implicit approach. Temperature advection with markers. Creating thermomechanical code by combining mechanical solution for 2D buoyancy driven flow with heat diffusion and advection based on marker-in-cell approach.
Week 11: Subgrid diffusion of temperature. Implementing subgrid diffusion to the thermomechanical code.
Week 12: Implementation of radioactive, adiabatic and shear heating to the thermomechanical code.
Week 13: Implementation of temperature-, pressure- and strain rate-dependent viscosity, temperature- and pressure-dependent density and temperature-dependent thermal conductivity to the thermomechanical code. Final project description.


GRADING will be based on weekly programming homeworks (50%) and a term project (50%) to develop an application of their choice to a more advanced level.
LiteraturTaras Gerya, Introduction to Numerical Geodynamic Modelling, Cambridge University Press 2010
Geophysik: Fach 3
Findet im Frühjahrssemester statt
Geophysik: Fach 4
Findet im Frühjahrssemester statt
Geophysik: Fach 5
NummerTitelTypECTSUmfangDozierende
651-4014-00LSeismic TomographyW3 KP2GE. Kissling, T. Diehl
KurzbeschreibungSeismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. The subject of this course is the formal relationship existing between a seismic measurement and the nature of the Earth, or of certain regions of the Earth, and the ways to use it, to gain information about the Earth.
Lernziel
LiteraturAki, K. and P. G. Richards, Quantitative Seismology, second edition, University Science Books, Sausalito, 2002. The most standard textbook in seismology, for grad students and advanced undergraduates.
Dahlen, F. A. and J. Tromp, Theoretical Global Seismology, Princeton University Press, Princeton, 1998. A very good book, suited for advanced graduate students with a strong math background.
Kennett B.L.N., The Seismic Wavefield. Volume I: Introduction and Theoretical Development (2001). Volume II: Interpretation of Seismograms on Regional and Global Scales (2002). Cambridge University Press.
Lay, T. and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 1995. A very basic seismology textbook. Chapters 2 through 4 provide a useful introduction to the contents of this course.
Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, revised edition, Academic Press, San Diego, 1989. A very complete textbook on inverse theory in geophysics.
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cambridge University Press. The art of scientific computing.
Trefethen, L. N. and D. Bau III, Numerical Linear Algebra, Soc. for Ind. and Appl. Math., Philadelphia, 1997. A textbook on the numerical solution of large linear inverse problems, designed for advanced math undergraduates.
Geophysik: Fach 6
Findet im Frühjahrssemester statt
Biologie
NummerTitelTypECTSUmfangDozierende
636-0007-00LComputational Systems Biology Information W6 KP3V + 2UJ. Stelling
KurzbeschreibungStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
LernzielThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
InhaltBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
SkriptLink
LiteraturU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2006.
636-0706-00LSpatio-Temporal Modelling in Biology Information W5 KP3GD. Iber
KurzbeschreibungThis course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. A wide range of mathematical techniques will be presented as part of the course, including concepts from non-linear dynamics (ODE and PDE models), stochastic techniques (SDE, Master equations, Monte Carlo simulations), and thermodynamic descriptions.
LernzielThe aim of the course is to introduce students to state-of-the-art mathematical modelling of spatio-temporal problems in biology. Students will learn how to chose from a wide range of modelling techniques and how to apply these to further our understanding of biological mechanisms. The course aims at equipping students with the tools and concepts to conduct successful research in this area; both classical as well as recent research work will be discussed.
Inhalt1. Introduction to Modelling in Biology
2. Morphogen Gradients
3. Turing Pattern
4. Travelling Waves & Wave Pinning
5. Application Example 1: Dorso-ventral axis formation
6. Chemotaxis, Cell Adhesion & Migration
7. Introduction to Numerical Methods
8. Simulations on Growing Domains
9. Image-Based Modelling
10. Branching Processes
11. Cell-based Simulation Frameworks
12. Application Example 2: Limb Development
13. Summary
SkriptAll lecture material will be made available online
Link
LiteraturMurray, Mathematical Biology, Springer
Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
Keener and Sneyd, Mathematical Physiology, Springer
Fall et al, Computational Cell Biology, Springer
Szallasi et al, System Modeling in Cellular Biology, MIT Press
Wolkenhauer, Systems Biology
Kreyszig, Engineering Mathematics, Wiley
Voraussetzungen / BesonderesThe course builds on introductory courses in Computational Biology. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
151-0113-00LApplied Fluid DynamicsW4 KP2V + 1UJ.‑P. Kunsch
KurzbeschreibungAngewandte Fluiddynamik
Die Methoden der Fluiddynamik spielen eine wichtige Rolle bei der Beschreibung einer Ereigniskette, welche die Freisetzung, Ausbreitung und Verdünnung gefährlicher Fluide in der Umgebung beinhaltet.
Tunnellüftungssysteme und -strategien werden vorgestellt, welche strengen Anforderungen während des Normalbetriebs und während eines Brandes genügen müssen.
LernzielAllgemein anwendbare Methoden der Strömungslehre und der Gasdynamik sollen hier an ausgewählten, aktuellen Fallbeispielen illustriert und geübt werden.
InhaltBei der Auslegung von umweltgerechten Prozess- und Verbrennungsanlagen sowie der Auswahl von sicheren Transport- und Lagerungsvarianten gefährlicher Stoffe wird häufig auf die Methoden der Fluiddynamik zurückgegriffen. Bei Unfällen, aber auch beim Normalbetrieb, können gefährliche Gase und Flüssigkeiten freigesetzt und durch den Wind oder Wasserströmungen weitertransportiert werden. Zu den vielfältigen möglichen Schadenseinwirkungen gehören z.B. Feuer und Explosionen bei zündfähigen Gemischen. Behandelte Themen sind u.a.: Ausströmen von flüssigen und gasförmigen Stoffen aus Behältern und Leitungen, Verdunstung aus Lachen und Verdampfung bei druckgelagerten Gasen, Ausbreitung und Verdünnung von Abgasfahnen im Windfeld, Deflagrations- und Detonationsvorgänge bei zündfähigen Gasen, Feuerbälle bei druckgelagerten Gasen, Schadstoff- und Rauchgasausbreitung in Tunnels (Tunnelbrände usw.).
Skriptnicht verfügbar
Voraussetzungen / BesonderesVoraussetzungen: Fluiddynamik I und II, Thermodynamik I und II
151-0709-00LStochastic Methods for Engineers and Natural ScientistsW4 KP3GD. W. Meyer-Massetti, N. Noiray
KurzbeschreibungThe course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.
LernzielBy the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.
Inhalt- Probability theory, single and multiple random variables, mappings of random variables
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Polynomial chaos and other expansion methods
All topics are illustrated with application examples from engineering.
SkriptDetailed lecture notes will be provided.
LiteraturSome textbooks related to the material covered in the course:
Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010
The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996
Turbulent Flows, S.B. Pope, Cambridge University Press, 2000
Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 KP3GA. Kunz
KurzbeschreibungThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
LernzielVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
InhaltIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
SkriptThe handout is available in German and English.
Voraussetzungen / BesonderesPrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
151-0833-00LPrinciples of Nonlinear Finite-Element-Methods Information W5 KP2V + 2UN. Manopulo, B. Berisha, P. Hora
KurzbeschreibungDie meisten Problemstellungen im Ingenieurwesen sind nichtlinearer Natur. Die Nichtlinearitäten werden hauptsächlich durch nichtlineares Werkstoffverhalten, Kontaktbedingungen und Strukturinstabilitäten hervorgerufen. Im Rahmen dieser Vorlesung werden die theoretischen Grundlagen der nichtlinearen Finite-Element-Methoden zur Lösung von solchen Problemstellungen vermittelt.
LernzielDas Ziel der Vorlesung ist die Vermittlung von Grundkenntnissen der nichtlinearen Finite-Elemente-Methode (FEM). Der Fokus der Vorlesung liegt bei der Vermittlung der theoretischen Grundlagen der nichtlinearen FE-Methoden für implizite und explizite Formulierungen. Typische Anwendungen der nichtlinearen FE-Methode sind Simulationen von:

- Crash
- Kollaps von Strukturen
- Materialien aus der Biomechanik (Softmaterials)
- allgemeinen Umformprozessen

Insbesondere wird die Modellierung des nichtlinearem Werkstoffverhalten, thermomechanischen Vorgängen und Prozessen mit grossen plastischen Deformationen behandelt. Im Rahmen von begleitenden Uebungen wird die Fähigkeit erworben, selber virtuelle Modelle zur Beschreibung von komplexen nichtlinearen Systemen aufzubauen. Wichtige Modelle wie z.B. Stoffgesetze werden in Matlab programmiert.
Inhalt- Kontinuumsmechanische Grundlagen zur Beschreibung grosser plastischer Deformationen
- Elasto-plastische Werkstoffmodelle
- Aufdatiert-Lagrange- (UL), Euler- und Gemischt-Euler-Lagrange (ALE) Betrachtungsweisen
- FEM-Implementation von Stoffgesetzen
- Elementformulierungen
- Implizite und explizite FEM-Methoden
- FEM-Formulierung des gekoppelten thermo-mechanischen Problems
- Modellierung des Werkzeugkontaktes und von Reibungseinflüssen
- Gleichungslöser und Konvergenz
- Modellierung von Rissausbreitungen
- Vorstellung erweiterter FE-Verfahren
Skriptja
LiteraturBathe, K. J., Finite-Elemente-Methoden, Springer-Verlag, 2002
Voraussetzungen / BesonderesBei einer grossen Anzahl von Studenten werden bei Bedarf zwei Übungstermine angeboten.
263-5001-00LIntroduction to Finite Elements and Sparse Linear System Solving Information W4 KP2V + 1UP. Arbenz
KurzbeschreibungThe finite element (FE) method is the method of choice for (approximately) solving partial differential equations on complicated domains. In the first third of the lecture, we give an introduction to the method. The rest of the lecture will be devoted to methods for solving the large sparse linear systems of equation that a typical for the FE method. We will consider direct and iterative methods.
LernzielStudents will know the most important direct and iterative solvers for sparse linear systems. They will be able to determine which solver to choose in particular situations.
InhaltI. THE FINITE ELEMENT METHOD

(1) Introduction, model problems.

(2) 1D problems. Piecewise polynomials in 1D.

(3) 2D problems. Triangulations. Piecewise polynomials in 2D.

(4) Variational formulations. Galerkin finite element method.

(5) Implementation aspects.


II. DIRECT SOLUTION METHODS

(6) LU and Cholesky decomposition.

(7) Sparse matrices.

(8) Fill-reducing orderings.


III. ITERATIVE SOLUTION METHODS

(9) Stationary iterative methods, preconditioning.

(10) Preconditioned conjugate gradient method (PCG).

(11) Incomplete factorization preconditioning.

(12) Multigrid preconditioning.

(13) Nonsymmetric problems (GMRES, BiCGstab).

(14) Indefinite problems (SYMMLQ, MINRES).
Literatur[1] M. G. Larson, F. Bengzon: The Finite Element Method: Theory, Implementation, and Applications. Springer, Heidelberg, 2013.

[2] H. Elman, D. Sylvester, A. Wathen: Finite elements and fast iterative solvers. OUP, Oxford, 2005.

[3] Y. Saad: Iterative methods for sparse linear systems (2nd ed.). SIAM, Philadelphia, 2003.

[4] T. Davis: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[5] H.R. Schwarz: Die Methode der finiten Elemente (3rd ed.). Teubner, Stuttgart, 1991.
Voraussetzungen / BesonderesPrerequisites: Linear Algebra, Analysis, Computational Science.
The exercises are made with Matlab.
263-3010-00LBig Data Information W6 KP2V + 2U + 1AG. Fourny
KurzbeschreibungThe key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
LernzielThis combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
InhaltThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.
- physical storage (HDFS, S3)
- logical storage (key-value stores, document stores, column stores, key-value stores, data warehouses)
- data formats and syntaxes (XML, JSON, CSV, XBRL)
- data shapes and models (tables, trees, graphs, cubes)
- an overview of programming languages with a focus on their type systems (SQL, XQuery, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing (MapReduce) and technologies (Hadoop, Spark)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

We will also host two guest lectures to get insights from the industry: UBS and Google.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturPapers from scientific conferences and journals. References will be given as part of the course material during the semester.
263-5200-00LData Mining: Learning from Large Data Sets Information W4 KP2V + 1UA. Krause
KurzbeschreibungMany scientific and commercial applications require insights from massive, high-dimensional data sets. This courses introduces principled, state-of-the-art techniques from statistics, algorithms and discrete and convex optimization for learning from such large data sets. The course both covers theoretical foundations and practical applications.
LernzielMany scientific and commercial applications require us to obtain insights from massive, high-dimensional data sets. In this graduate-level course, we will study principled, state-of-the-art techniques from statistics, algorithms and discrete and convex optimization for learning from such large data sets. The course will both cover theoretical foundations and practical applications.
InhaltTopics covered:
- Dealing with large data (Data centers; Map-Reduce/Hadoop; Amazon Mechanical Turk)
- Fast nearest neighbor methods (Shingling, locality sensitive hashing)
- Online learning (Online optimization and regret minimization, online convex programming, applications to large-scale Support Vector Machines)
- Multi-armed bandits (exploration-exploitation tradeoffs, applications to online advertising and relevance feedback)
- Active learning (uncertainty sampling, pool-based methods, label complexity)
- Dimension reduction (random projections, nonlinear methods)
- Data streams (Sketches, coresets, applications to online clustering)
- Recommender systems
Voraussetzungen / BesonderesPrerequisites: Solid basic knowledge in statistics, algorithms and programming. Background in machine learning is helpful but not required.
263-2800-00LDesign of Parallel and High-Performance Computing Information W7 KP3V + 2U + 1AT. Hoefler, M. Püschel
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
263-3210-00LDeep Learning Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 120
W4 KP2V + 1UT. Hofmann
KurzbeschreibungDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
LernzielIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the fundamentals of deep learning and provide a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Voraussetzungen / BesonderesThe participation in the course is subject to the following conditions:
1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge.
227-0102-00LDiskrete Ereignissysteme Information W6 KP4GL. Thiele, L. Vanbever, R. Wattenhofer
KurzbeschreibungEinführung in Diskrete Ereignissysteme (DES). Zuerst studieren wir populäre Modelle für DES. Im zweiten Teil analysieren wir DES, aus einer Average-Case und einer Worst-Case Sicht. Stichworte: Automaten und Sprachen, Spezifikationsmodelle, Stochastische DES, Worst-Case Ereignissysteme, Verifikation, Netzwerkalgebra.
LernzielOver the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.
Inhalt1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus
SkriptAvailable
Literatur[bertsekas] Data Networks
Dimitri Bersekas, Robert Gallager
Prentice Hall, 1991, ISBN: 0132009161

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.
Kluwer Academic Publishers, 1999, ISBN 0-7923-8609-4

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger

[hochbaum] Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin)
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.
PWS Publishing Company, 1996, ISBN 053494728X
227-0197-00LWearable Systems IW6 KP4GG. Tröster, U. Blanke
KurzbeschreibungKontexterkennung in mobilen Kommunikationssystemen (Mobiltelephon, Smart Watch, Wearable Computer) wird mit fortgeschrittenen Verfahren aus dem Bereich Sensor Data Fusion, Mustererkennung, Statistik, Data Mining und maschinelles Lernen erarbeitet.
Kontext umfasst das Verhalten von Personen und Gruppen, deren Aktivitäten, sowie das lokale und soziale Umfeld.
LernzielUnser 'Smart Phone' erkennt mit seinen eingebauten Sensoren und mit Daten aus der Umwelt in dem Internet (Crowd Sourcing) unseren Kontext, z.B. wo befinden wir uns, was tun wir, mit wem sind wir zusammen, wie geht es uns, was sind unsere möglichen Bedürfnisse. Basierend auf diesen Informationen kann uns das 'Smart Phone' situationsgerecht als persönlicher Assistent mit passenden Dienstleistungen verwöhnen. Die Kontexterkennung als zentrale Funktion mobiler Systeme bildet den Schwerpunkt dieser Vorlesung. Kontext umfasst das Verhalten von Personen und Gruppen, deren Aktivitäten, sowie das lokale und soziale Umfeld.

Im Datenpfad von den Sensoren über die Segmentierung, Merkmalsextraktion und Clusterbildiung bis zur Klassifikation des Kontextes werden fortgeschrittene Verfahren der Signalverarbeitung, der Mustererkennung, der Statistik und des Maschinellen Lernens exemplarisch eingesetzt. Sensordaten, die über Crowdsourcing-Methoden gewonnen sind, werden in die Analysen eingebunden. Der Validierung mit MATLAB folgen eine Implementierung und Testphase auf einem Smartphone.
InhaltUnser 'Smart Phone' erkennt mit seinen eingebauten Sensoren und mit Daten aus der Umwelt in dem Internet (Crowd Sourcing) unseren Kontext, z.B. wo befinden wir uns, was tun wir, mit wem sind wir zusammen, wie geht es uns, was sind unsere möglichen Bedürfnisse. Basierend auf diesen Informationen kann uns das 'Smart Phone' situationsgerecht als persönlicher Assistent mit passenden Dienstleistungen verwöhnen. Die Kontexterkennung als zentrale Funktion mobiler Systeme bildet den Schwerpunkt dieser Vorlesung. Kontext umfasst das Verhalten von Personen und Gruppen, deren Aktivitäten, sowie das lokale und soziale Umfeld.

In der Vorlesung werden folgende Themen behandelt:
Sensornetze, Sensordatenverarbeitung, Data Fusion, Zeitreihen (Segmentierung, Ähnlichkeitsmasse), überwachtes Lernen (LDA, Bayes Decision Theory, Entscheidungsbäume, Random Forest, kNN-Verfahren, Support Vector Machine, Adaboost, Deep Learning), Clustering (k-means, dbsan, topic models), Recommender Systems, Collaborative Filtering, Crowdsourcing.

Die Übungen orientieren sich an konkreten Problemstellungen wie Gesten- und Bewegungserkennung mit verteilten Sensoren, Detektion von Aktivitätsmuster, Benutzung 'crowd-generierter' Daten sowie Bestimmung des lokalen Umfeldes.

Präsentationen durch Doktorierende und der Besuch am Wearable Computing Lab führen ein in die aktuellen Forschungsthemen und die internationalen Forschungsprojekte.

Sprache: deutsch/englisch (abhängig von den TeilnehmerInnen)
SkriptManuskript zu allen Lektionen, Übungen mit Musterlösungen.
http://www.ife.ee.ethz.ch/education/wearable_systems_1
LiteraturLiteratur wird in den jeweiligen Vorlesungseinheiten benannt
Voraussetzungen / BesonderesKeine speziellen Voraussetzungen erforderlich
227-0447-00LImage Analysis and Computer Vision Information W6 KP3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
KurzbeschreibungLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
LernzielOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
InhaltThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
SkriptCourse material Script, computer demonstrations, exercises and problem solutions
Voraussetzungen / BesonderesPrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0417-00LInformation Theory IW6 KP4GA. Lapidoth
KurzbeschreibungThis course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.
LernzielThe fundamentals of Information Theory including Shannon's source coding and channel coding theorems
InhaltThe entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity
LiteraturT.M. Cover and J. Thomas, Elements of Information Theory (second edition)
227-0427-00LSignal and Information Processing: Modeling, Filtering, LearningW6 KP4GH.‑A. Loeliger
KurzbeschreibungFundamentals in signal processing, detection/estimation, and machine learning.
I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.
II. Learning linear and nonlinear functions and filters: kernel methods, neural networks.
III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, parameter estimation.
LernzielThe course is an introduction to some basic topics in signal processing, detection/estimation theory, and machine learning.
InhaltPart I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis.
Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods.
Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximisation, sparse Bayesian learning.
SkriptLecture notes.
Voraussetzungen / BesonderesPrerequisites:
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory
227-0627-00LAngewandte Computer ArchitekturW6 KP4GA. Gunzinger
KurzbeschreibungDiese Vorlesung gibt einen Überblick über die Anforderungen und die Architektur von parallelen Computersystemen unter Berücksichtigung von Rechenleistung, Zuverlässigkeit und Kosten.
LernzielArbeitsweise von parallelen Computersystemen verstehen, solche Systeme entwerfen und modellieren.
InhaltDie Vorlesung Angewandte Computer Architektur gibt technische und unternehmerische Einblicke in innovative Computersysteme/Architekturen (CPU, GPU, FPGA, Spezialprozessoren) und deren praxisnahe Umsetzung. Dabei werden oft die Grenzen der technologischen Möglichkeiten ausgereizt.
Wie ist das Computersystem aufgebaut, das die über 1000 Magneten an der Swiss Light Source (SLS) steuert?
Wie ist das hochverfügbare Alarmzentrum der SBB aufgebaut?
Welche Computer Architekturen werden in Fahrerassistenzsystemen verwendet?
Welche Computerarchitektur versteckt sich hinter einem professionellen digitalen Audio Mischpult?
Wie können Datenmengen von 30 TB/s, wie sie bei einem Protonen-Beschleuniger entstehen, in Echtzeit verarbeitet werden?
Kann die aufwändige Berechnung der Wettervorhersage auch mit GPUs erfolgen?
Nach welcher Systematik können optimale Computerarchitekturen gefunden werden?
Welche Faktoren sind entscheidend, um solche Projekte erfolgreich umzusetzen?
SkriptSkript und Übungsblätter.
Voraussetzungen / BesonderesVoraussetzungen:
Grundlagen der Computerarchitektur.
252-0237-00LConcepts of Object-Oriented Programming Information W6 KP3V + 2UP. Müller
KurzbeschreibungCourse that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection
LernzielAfter this course, students will:
Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
Be able to learn new languages more rapidly.
Be aware of many subtle problems of object-oriented programming and know how to avoid them.
InhaltThe main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
The key problems of single and multiple inheritance and how different languages address them
Generic type systems, in particular, Java generics, C# generics, and C++ templates
The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
How to maintain the consistency of data structures
LiteraturWill be announced in the lecture.
Voraussetzungen / BesonderesPrerequisites:
Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience
252-0417-00LRandomized Algorithms and Probabilistic MethodsW7 KP3V + 2U + 1AA. Steger, E. Welzl
KurzbeschreibungLas Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
LernzielAfter this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
InhaltRandomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.
SkriptYes.
Literatur- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995)
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005)
252-0546-00LPhysically-Based Simulation in Computer Graphics Information W4 KP2V + 1UB. Solenthaler, B. Thomaszewski
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden.
LernzielDie Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden.
InhaltIn der Vorlesung werden Themen aus dem Gebiet der physikalisch-basierten Modellierung wie Partikel-Systeme, Feder-Masse Modelle, die Methoden der Finiten Differenzen und der Finiten Elemente behandelt. Diese Methoden und Techniken werden verwendet um deformierbare Objekte oder Flüssigkeiten zu simulieren mit Anwendungen in Animationsfilmen, 3D Computerspielen oder medizinischen Systemen. Es werden auch Themen wie Starrkörperdynamik, Kollisionsdetektion und Charakteranimation behandelt.
Voraussetzungen / BesonderesBasiskenntnisse in Analysis und Physik, Algorithmen und Datenstrukturen und der Programmierung in C++. Kenntnisse auf den Gebieten Numerische Mathematik sowie Gewoehnliche und Partielle Differentialgleichungen sind von Vorteil, werden aber nicht vorausgesetzt.
401-3611-00LAdvanced Topics in Computational Statistics
Findet dieses Semester nicht statt.
W4 KP2VM. H. Maathuis
KurzbeschreibungThis lecture covers selected advanced topics in computational statistics, including various classification methods, the EM algorithm, clustering, handling missing data, and graphical modelling.
LernzielStudents learn the theoretical foundations of the selected methods, as well as practical skills to apply these methods and to interpret their outcomes.
InhaltThe course is roughly divided in three parts: (1) Supervised learning via (variations of) nearest neighbor methods, (2) the EM algorithm and clustering, (3) handling missing data and graphical models.
SkriptLecture notes.
Voraussetzungen / BesonderesWe assume a solid background in mathematics, an introductory lecture in probability and statistics, and at least one more advanced course in statistics.
401-3627-00LHigh-Dimensional Statistics
Findet dieses Semester nicht statt.
W4 KP2VP. L. Bühlmann
Kurzbeschreibung"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.
LernzielKnowledge of methods and basic theory for high-dimensional statistical inference
InhaltLasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
LiteraturPeter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag.
ISBN 978-3-642-20191-2.
Voraussetzungen / BesonderesKnowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).
401-4623-00LTime Series AnalysisW6 KP3GN. Meinshausen
KurzbeschreibungStatistical analysis and modeling of observations in temporal order, which exhibit dependence. Stationarity, trend estimation, seasonal decomposition, autocorrelations,
spectral and wavelet analysis, ARIMA-, GARCH- and state space models. Implementations in the software R.
LernzielUnderstanding of the basic models and techniques used in time series analysis and their implementation in the statistical software R.
InhaltThis course deals with modeling and analysis of variables which change randomly in time. Their essential feature is the dependence between successive observations.
Applications occur in geophysics, engineering, economics and finance. Topics covered: Stationarity, trend estimation, seasonal decomposition, autocorrelations,
spectral and wavelet analysis, ARIMA-, GARCH- and state space models. The models and techniques are illustrated using the statistical software R.
SkriptNot available
LiteraturA list of references will be distributed during the course.
Voraussetzungen / BesonderesBasic knowledge in probability and statistics
401-3901-00LMathematical Optimization Information W11 KP4V + 2UR. Weismantel
KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielAdvanced optimization theory and algorithms.
Inhalt1. Linear optimization: The geometry of linear programming, the simplex method for solving linear programming problems, Farkas' Lemma and infeasibility certificates, duality theory of linear programming.

2. Nonlinear optimization: Lagrange relaxation techniques, Newton method and gradient schemes for convex optimization.

3. Integer optimization: Ties between linear and integer optimization, total unimodularity, complexity theory, cutting plane theory.

4. Combinatorial optimization: Network flow problems, structural results and algorithms for matroids, matchings and, more generally, independence systems.
401-3640-66LMonte Carlo and Quasi-Monte Carlo Methods: Mathematical and Numerical Analysis Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 6
W4 KP2SC. Schwab
KurzbeschreibungIntroduction and current research topics in the theory and implementation of Monte Carlo and quasi-Monte Carlo methods and applications.
Lernziel
Voraussetzungen / BesonderesPrerequisites:
Completed courses
Numerical Analysis of Elliptic/ Parabolic PDEs,
or Numerical Analysis of Hyperbolic PDEs,
or Numerical Analysis of Stochastic ODEs,
and FAI, Probability Theory I.
402-0777-00LParticle Accelerator Physics and Modeling IW6 KP2V + 1UA. Adelmann
KurzbeschreibungThis is the first of two courses, introducing particle accelerators from a theoretical point of view and covers state-of-the-art modeling techniques. It emphasizes the multidisciplinary aspect of the field, both in methodology (numerical and computational methods) and with regard to applications such as medical, industrial, material research and particle physics.
LernzielYou understand the building blocks of particle accelerators. Modern analysis tools allows you to model state-of-the art particle accelerators. In some of the exercises you will be confronted with next generation machines. We will develop a Python simulation tool
(AcceLEGOrator) that reflects the theory from the lecture.
InhaltHere is the rough plan of the topics, however the actual pace may vary relative to this plan.

- Particle Accelerators an Overview
- Relativity for Accelerator Physicists
- Building Blocks of Particle Accelerators
- Lie Algebraic Structure of Classical Mechanics and Applications to Particle Accelerators
- Symplectic Maps & Analysis of Maps
- Particle Tracking
- Linear & Circular Machines
- Cyclotrons
- Free Electron Lasers
- Collective effects in linear approximation
- Preview of Particle Accelerator Physics and Modeling II
LiteraturParticle Accelerator Physics, H. Wiedemann, ISBN-13 978-3-540-49043-2, Springer

Theory and Design of Charged Particle Beams, M. Reiser, ISBN 0-471-30616-9, Wiley-VCH
Voraussetzungen / BesonderesPhysics, Computational Science (RW) at BSc. Level

This lecture is also suited for PhD. students
227-1033-00LNeuromorphic Engineering I Information Belegung eingeschränkt - Details anzeigen
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
W6 KP2V + 3UT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
LernzielUnderstanding of the characteristics of neuromorphic circuit elements.
InhaltNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Voraussetzungen / BesonderesParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
227-1037-00LIntroduction to Neuroinformatics Information W6 KP2V + 1UK. A. Martin, M. Cook, V. Mante, M. Pfeiffer
KurzbeschreibungThe course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.
LernzielUnderstanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.
InhaltThis course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.
151-0104-00LUncertainty Quantification for Engineering & Life Sciences Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Number of participants limited to 60.
W4 KP3GP. Koumoutsakos
KurzbeschreibungQuantification of uncertainties in computational models pertaining to applications in engineering and life sciences. Exploitation of massively available data to develop computational models with quantifiable predictive capabilities. Applications of Uncertainty Quantification and Propagation to problems in mechanics, control, systems and cell biology.
LernzielThe course will teach fundamental concept of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences. Emphasis will be placed on practical and computational aspects of UQ+P including the implementation of relevant algorithms in multicore architectures.
InhaltTopics that will be covered include: Uncertainty quantification under
parametric and non-parametric modelling uncertainty, Bayesian inference with model class assessment, Markov Chain Monte Carlo simulation, prior and posterior reliability analysis.
SkriptThe class will be largely based on the book: Data Analysis: A Bayesian Tutorial by Devinderjit Sivia as well as on class notes and related literature that will be distributed in class.
Literatur1. Data Analysis: A Bayesian Tutorial by Devinderjit Sivia
2. Probability Theory: The Logic of Science by E. T. Jaynes
3. Class Notes
Voraussetzungen / BesonderesFundamentals of Probability, Fundamentals of Computational Modeling
327-1201-00LTransport Phenomena I Information W4 KP4GH. C. Öttinger
KurzbeschreibungPhenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; fundamentals, applications, and simulations
LernzielThe teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers, ...
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions
(4) Knowledge of a number of applications
(5) Flavor of numerical techniques: finite elements, finite differences, lattice Boltzmann, Brownian dynamics, ...
InhaltApproach to Transport Phenomena
Diffusion Equation
Brownian Dynamics
Refreshing Topics in Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Measuring Transport Coefficients
Pressure-Driven Flows
Driven Separations
Complex Fluids
SkriptA detailed manuscript is provided; this manuscript will be developed into a book entitled "A Modern Course in Transport Phenomena" by David C. Venerus and Hans Christian Öttinger
Literatur1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001)
2. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, 2nd Ed. (Dover, 1984)
3. W. M. Deen, Analysis of Transport Phenomena (Oxford University Press, 1998)
4. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287
Voraussetzungen / BesonderesComplex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations. Programming and simulation techniques (Matlab, Monte Carlo simulations).
» siehe auch Angebot im Abschnitt Vertiefungsgebiete
Fallstudien
NummerTitelTypECTSUmfangDozierende
401-3667-66LCase Studies Seminar (Autumn Semester 2016)W3 KP2SV. C. Gradinaru, R. Hiptmair, M. Reiher
KurzbeschreibungIn der Lehrveranstaltung Fallstudien präsentieren ETH-interne und -externe Referenten Fallbeispiele aus ihren eigenen Anwendungsgebieten. Zudem müssen die Studierenden einen Kurzvortrag (10 Minuten) halten aus einer Liste von publizierten Arbeiten.
Lernziel
Semesterarbeit
Es gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
NummerTitelTypECTSUmfangDozierende
401-3740-01LSemesterarbeit Belegung eingeschränkt - Details anzeigen
Sie können diese Lerneinheit nicht selber in myStudies belegen, sondern müssen sich beim Studiensekretariat via Online-Anmeldeformular dafür registrieren.
Bedingungen und Anmeldeformular unter www.math.ethz.ch/intranet/students/study-administration/theses.html
(Danach erfolgt die Belegung durch das Studiensekretariat.)
W8 KP11AProfessor/innen
KurzbeschreibungSemesterarbeiten dienen der Vertiefung in einem spezifischen Fachbereich; die Themen werden den Studierenden zur individuellen Auswahl angeboten. Semesterarbeiten sollen die Fähigkeit der Studierenden zu selbständiger mathematischer Tätigkeit und zur schriftlichen Darstellung mathematischer Ergebnisse fördern.
Lernziel
Voraussetzungen / BesonderesEs gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
401-3740-02LSemesterarbeit Belegung eingeschränkt - Details anzeigen
Sie können diese Lerneinheit nicht selber in myStudies belegen, sondern müssen sich beim Studiensekretariat via Online-Anmeldeformular dafür registrieren.
Bedingungen und Anmeldeformular unter www.math.ethz.ch/intranet/students/study-administration/theses.html
(Danach erfolgt die Belegung durch das Studiensekretariat.)
W8 KP11AProfessor/innen
KurzbeschreibungSemesterarbeiten dienen der Vertiefung in einem spezifischen Fachbereich; die Themen werden den Studierenden zur individuellen Auswahl angeboten. Semesterarbeiten sollen die Fähigkeit der Studierenden zu selbständiger mathematischer Tätigkeit und zur schriftlichen Darstellung mathematischer Ergebnisse fördern.
Lernziel
Voraussetzungen / BesonderesEs gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
GESS Wissenschaft im Kontext
» siehe Studiengang Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
» siehe Studiengang Wissenschaft im Kontext: Sprachkurse ETH/UZH
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-MATH.
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics Information
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.

Obligatorisch für alle Bachelor- und Master-Studierenden mit Immatrikulation ab dem HS 2014.
Weisung Link
O0 KPE. Kowalski
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
SkriptMoodle of the Mathematics Library: https://moodle-app2.let.ethz.ch/course/view.php?id=519
Voraussetzungen / BesonderesThis course is completed by the optional course "Recherchieren in der Mathematik" (held in German) by the Mathematics Library. For more details see: http://www.math.ethz.ch/library/services/schulungen
401-4990-01LMaster's Thesis Belegung eingeschränkt - Details anzeigen
Zur Master-Arbeit wird nur zugelassen, wer:
a. das Bachelor-Studium erfolgreich abgeschlossen hat;
b. allfällige Auflagen für die Zulassung zum Master-Studiengang erfüllt hat.
Zusätzlich für Studienreglement 2014:
c. im Master-Studium mindestens die folgenden Studienleistungen erbracht hat:
1) in der Kategorie "Kernfächer" müssen mindestens zwei Lerneinheiten bestanden sein;
2) in der Kategorie "Vertiefungsgebiete" müssen mindestens fünf Lerneinheiten, davon ein Seminar, bestanden sein; und
3) die Semesterarbeit muss bestanden sein.

Sie können diese Lerneinheit nicht selber in myStudies belegen, sondern müssen sich beim Studiensekretariat via Online-Anmeldeformular dafür registrieren.
Bedingungen und Anmeldeformular unter www.math.ethz.ch/intranet/students/study-administration/theses.html
(Danach erfolgt die Belegung durch das Studiensekretariat.)
O30 KP57DProfessor/innen
KurzbeschreibungDie Master-Arbeit bildet den Abschluss des Studiengangs. Die Studierenden sollen mit der Master-Arbeit ihre Fähigkeit zu selbständiger, strukturierter und wissenschaftlicher Tätigkeit unter Beweis stellen.
LernzielDie Studierenden sollen mit der Master-Arbeit, die den Abschluss des Studiengangs bildet, ihre Fähigkeit zu selbständiger, strukturierter und wissenschaftlicher Tätigkeit unter Beweis stellen.
Kolloquien
NummerTitelTypECTSUmfangDozierende
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information E-0 KP2KR. Abgrall, H. Ammari, R. Hiptmair, A. Jentzen, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungResearch colloquium
Lernziel
Auflagen-Lerneinheiten
Das untenstehende Lehrangebot gilt nur für MSc Studierende mit Zulassungsauflagen.
NummerTitelTypECTSUmfangDozierende
151-0122-AALFluid Dynamics for CSE
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-5 KP11RT. Rösgen
KurzbeschreibungAn introduction to the physical and mathematical foundations of fluid dynamics is given.
Topics include dimensional analysis, integral and differential conservation laws, inviscid and viscous flows, Navier-Stokes equations, boundary layers, turbulent pipe flow. Elementary solutions and examples are presented.
LernzielAn introduction to the physical and mathematical principles of fluid dynamics. Fundamental terminology/principles and their application to simple problems.
InhaltPhänomene, Anwendungen, Grundfragen
Dimensionsanalyse und Ähnlichkeit; Kinematische Beschreibung; Erhaltungssätze (Masse, Impuls, Energie), integrale und differentielle Formulierungen; Reibungsfreie Strömungen: Euler-Gleichungen, Stromfadentheorie, Satz von Bernoulli; Reibungsbehaftete Strömungen: Navier-Stokes-Gleichungen; Grenzschichten; Turbulenz
SkriptEine erweiterte Formelsammlung zur Vorlesung wird elektronisch zur Verfügung gestellt.
LiteraturEmpfohlenes Buch: Fluid Mechanics, P. Kundu & I. Cohen, Elsevier
Voraussetzungen / BesonderesPerformance Assessment: session examination
Allowed aids:
Textbook (free selection, list of assignments), list of formulars IFD, 8 Sheets (=4 Pages) own notes, calculator
406-0353-AALAnalysis III Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-4 KP9RM. Soner
KurzbeschreibungEinführung in die partiellen Differentialgleichungen. Klassifizieren und Lösen von in der Praxis wichtigen Differentialgleichungen. Es werden elliptische, parabolische und hyperbolische Differentialgleichungen behandelt. Folgende mathematischen Techniken werden vorgestellt: Laplacetransformation, Fourierreihen, Separation der Variablen, Methode der Charakteristiken.
LernzielMathematische Behandlung naturwissenschaftlicher Probleme lernen. Verstehen der Eigenschaften der verschiedenen Typen von partiellen Differentialgleichungen.
InhaltLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
LiteraturE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Voraussetzungen / BesonderesWeitere Informationen unter:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet
406-0603-AALStochastics (Probability and Statistics)
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-4 KP9RM. Kalisch
KurzbeschreibungIntroduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.
LernzielThe objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".
InhaltFrom "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation
Literatur- "Statistics for research" by S. Dowdy et. al. (3rd
edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI:
10.1002/0471477435
From within the ETH, this book is freely available online under:
http://onlinelibrary.wiley.com/book/10.1002/0471477435

- "Introductory Statistics with R" by Peter Dalgaard; ISBN
978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1
From within the ETH, this book is freely available online under:
http://www.springerlink.com/content/m17578/
406-0663-AALNumerical Methods for CSE
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-7 KP15RR. Hiptmair
Kurzbeschreibunghe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to participants.
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesSolid knowledge about fundamental concepts and technques from linear algebra & calculus as taught in the first year of science and engineering curricula.

The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
252-0232-AALSoftware Design
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-6 KP13RD. Gruntz
KurzbeschreibungIm Kurs Software Design werden häufig verwendete Entwurfsmuster der objektorientierten Programmierung und des objektorientierten Designs vorgestellt und diskutiert. Die behandelten Muster werden mit Beispielen aus den Java Bibliotheken illustriert und in einem Projekt angewendet.
LernzielDie Studierenden
- kennen die Grundprinzipien der objektorientierten Programmierung und können diese anwenden.
- kennen die wichtigsten objektorientierten Entwurfsmuster.
- können diese anwenden um Designprobleme zu lösen.
- erkennen in einem gegebenen Design die Verwendung von Entwurfsmustern.
529-0483-AALStatistical Physics and Computer Simulation
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-4 KP9RM. Reiher
KurzbeschreibungDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Sie wird mittels Computersimulationen dargelegt. Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren.
LernzielEinführung in die statistische Mechanik mit Hilfe von Computersimulationen, erwerben der Fertigkeit Computersimulationen durchzuführen und die Resultate zu interpretieren.
InhaltDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Die statistisceh Mechanik wird mit Hilfe von Computersimulationen dargelegt.
Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren; Prinzipien und Anwendungen der stochastischen Dynamik; Einführung und Anwendungne der Nichtgleichgewichts-Molekulardynamik.
Skriptvorhanden
Literatursiehe "Course Schedule"
Voraussetzungen / BesonderesZusätzliche Informationen werden bei Veranstaltungsbeginn bekanntgegeben.