Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Neural Systems and Computation Master Information
Kernfächer
Wählbare Kernfächer
Neurotechnologie und Neuromorphe Ingenieurwissenschaften
NummerTitelTypECTSUmfangDozierende
227-1032-00LNeuromorphic Engineering II Information
Information für UZH Studierende:
Die Lerneinheit kann nur an der ETH belegt werden. Die Belegung des Moduls INI405 ist an der UZH nicht möglich.

Beachten Sie die Einschreibungstermine an der ETH für UZH Studierende: Link
W6 KP5GT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the fall semester course "Neuromorphic Engineering I".
LernzielDesign of a neuromorphic circuit for implementation with CMOS technology.
InhaltThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the autumn semester course "Neuromorphic Engineering I".

The principles of CMOS processing technology are presented. Using a set of inexpensive software tools for simulation, layout and verification, suitable for neuromorphic circuits, participants learn to simulate circuits on the transistor level and to make their layouts on the mask level. Important issues in the layout of neuromorphic circuits will be explained and illustrated with examples. In the latter part of the semester students simulate and layout a neuromorphic chip. Schematics of basic building blocks will be provided. The layout will then be fabricated and will be tested by students during the following fall semester.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; software documentation.
Voraussetzungen / BesonderesPrerequisites: Neuromorphic Engineering I strongly recommended
227-1048-00LNeuromorphic Intelligence (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI508

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadlines.htm
W6 KP2VG. Indiveri, E. Donati
KurzbeschreibungIn this course we will study the computational properties of spiking neural networks implemented using analog "neuromorphic" electronic circuits. We will present network architectures and computational primitives that can use the dynamics of these circuits to exhibit intelligent behaviors. We will characterize these networks and validate them using full custom chips in laboratory experiments.
LernzielThe objective of this course is to introduce students to the field of “neuromorphic intelligence” with lectures on spiking neural network architectures implemented using mixed-signal silicon neuron and synapse circuits, and with laboratory sessions using neuromorphic chips to measure the computational properties of different spiking neural network architectures. Class projects will be proposed to validate the models presented in the lectures and carry out real-time signal processing and pattern recognition tasks on real-world sensory data.
InhaltStudents will learn about the dynamical properties of adaptive integrate and fire neurons connected with each other via dynamic synapses. They will explore different neural circuits configured to implement computational primitives such as normalization, winner-take-all computation, selective amplification, and pattern discrimination. The experiments will consist of measuring the properties of real silicon neurons using full-custom neuromorphic processors, and configuring them to create neural architectures that can robustly process sensory signals and perform pattern discrimination despite, or thanks to, the limited resolution and large variability of their individual processing
element
Voraussetzungen / BesonderesAccessible to NSC Master students.
It is recommended (but not mandatory) to have taken the Introduction to Neuroinformatics course (INI-401/227-1037-00).
  •  Seite  1  von  1