# Search result: Catalogue data in Autumn Semester 2018

CAS in Computer Science | ||||||

Focus Courses and Electives | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

252-0237-00L | Concepts of Object-Oriented Programming | W | 6 credits | 3V + 2U | P. Müller | |

Abstract | Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection | |||||

Objective | After this course, students will: Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be able to learn new languages more rapidly. Be aware of many subtle problems of object-oriented programming and know how to avoid them. | |||||

Content | The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages. The topics discussed in the course include among others: The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing) The key problems of single and multiple inheritance and how different languages address them Generic type systems, in particular, Java generics, C# generics, and C++ templates The situations in which object-oriented programming does not provide encapsulation, and how to avoid them The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing How to maintain the consistency of data structures | |||||

Literature | Will be announced in the lecture. | |||||

Prerequisites / Notice | Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience | |||||

252-0286-00L | System Construction Number of participants limited to 30. | W | 4 credits | 2V + 1U | F. O. Friedrich | |

Abstract | Main goal is teaching knowledge and skills needed for building custom operating systems and runtime environments. Relevant topics are studied at the example of sufficiently simple systems that have been built at our Institute in the past, ranging from purpose-oriented single processor real-time systems up to generic system kernels on multi-core hardware. | |||||

Objective | The lecture's main goal is teaching of knowledge and skills needed for building custom operating systems and runtime environments. The lecture intends to supplement more abstract views of software construction, and to contribute to a better understanding of "how it really works" behind the scenes. | |||||

Content | Case Study 1: Embedded System - Safety-critical and fault-tolerant monitoring system - Based on an auto-pilot system for helicopters Case Study 2: Multi-Processor Operating System - Universal operating system for symmetric multiprocessors - Shared memory approach - Based on Language-/System Codesign (Active Oberon / A2) Case Study 3: Custom designed Single-Processor System - RISC Single-processor system designed from scratch - Hardware on FPGA - Graphical workstation OS and compiler (Project Oberon) Case Study 4: Custom-designed Multi-Processor System - Special purpose heterogeneous system on a chip - Masssively parallel hard- and software architecture based on message passing - Focus: dataflow based applications | |||||

Lecture notes | Lecture material will be made available from the lecture homepage. | |||||

252-0293-00L | Wireless Networking and Mobile Computing | W | 4 credits | 2V + 1U | S. Mangold | |

Abstract | This course gives a detailed overview about the wireless and mobile standards and summarizes the state of the art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such audio communication, cognitive radio, and visible light communications. The course combines lectures with a set of assignments in which students are asked to work with a simple JAVA simulation software. | |||||

Objective | The objective of the course is to learn about the general principles of wireless communications, including physics, frequency spectrum regulation, and standards. Further, the most up-to-date standards and protocols used for wireless LAN IEEE 802.11, Wi-Fi, Internet-of-Things, sensor networks, cellular networks, visible light communication, and cognitive radios, are analyzed and evaluated. Students develop their own add-on mobile computing algorithms to improve the behavior of the systems, using a Java-based event-driven simulator. We also hand out embedded systems that can be used for experiments for optical communication. | |||||

Content | Wireless Communication, Wi-Fi, Internet-of-Things, 5G, Standards, Regulation, Algorithms, Radio Spectrum, Cognitive Radio, Mesh Networks, Optical Communication, Visible Light Communication | |||||

Lecture notes | The script will be made available from the course webpage. | |||||

Literature | (1) The course webpage at http://www.lst.inf.ethz.ch/education/wireless1.html (2) The Java 802 protocol emulator "JEmula802" (3) WALKE, B. AND MANGOLD, S. AND BERLEMANN, L. (2006) IEEE 802 Wireless Systems Protocols, Multi-Hop Mesh/Relaying, Performance and Spectrum Coexistence. New York U.S.A.: John Wiley & Sons. Nov 2006. (4) BERLEMANN, L. AND MANGOLD, S. (2009) Cognitive Radio for Dynamic Spectrum Access . New York U.S.A.: John Wiley & Sons. Jan 2009. (5) MANGOLD, S. ET.AL. (2003) Analysis of IEEE 802.11e for QoS Support in Wireless LANs. IEEE Wireless Communications, vol 10 (6), 40-50. | |||||

Prerequisites / Notice | Students should have interest in wireless communication, and should be familiar with Java programming. | |||||

252-0417-00L | Randomized Algorithms and Probabilistic Methods | W | 8 credits | 3V + 2U + 2A | A. Steger | |

Abstract | Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks | |||||

Objective | After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas. | |||||

Content | Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas. | |||||

Lecture notes | Yes. | |||||

Literature | - Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995) - Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005) | |||||

252-0437-00L | Distributed Algorithms | W | 4 credits | 3V | F. Mattern | |

Abstract | Models of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates. | |||||

Objective | Become acquainted with models and algorithms for distributed systems. | |||||

Content | Verteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen. Im einzelnen werden u.a. folgende Themen behandelt: Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate. | |||||

Literature | - F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag - G. Tel: Topics in Distributed Algorithms, Cambridge University Press - G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition - A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press - N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ | |||||

252-0463-00L | Security Engineering | W | 5 credits | 2V + 2U | D. Basin | |

Abstract | Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems | |||||

Objective | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems | |||||

Content | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems Modules taught: 1. Introduction - Introduction of Infsec group and speakers - Security meets SW engineering: an introduction - The activities of SW engineering, and where security fits in - Overview of this class 2. Requirements Engineering: Security Requirements and some Analysis - overview: functional and non-functional requirements - use cases, misuse cases, sequence diagrams - safety and security - FMEA, FTA, attack trees 3. Modeling in the design activities - structure, behavior, and data flow - class diagrams, statecharts 4. Model-driven security for access control (design) - SecureUML as a language for access control - Combining Design Modeling Languages with SecureUML - Semantics, i.e., what does it all mean, - Generation - Examples and experience 5. Model-driven security (Part II) - Continuation of above topics 6. Security patterns (design and implementation) 7. Implementation-level security - Buffer overflows - Input checking - Injection attacks 8. Testing - overview - model-based testing - testing security properties 9. Risk analysis and management 1 (project management) - "risk": assets, threats, vulnerabilities, risk - risk assessment: quantitative and qualitative - safeguards - generic risk analysis procedure - The OCTAVE approach 10. Risk analysis: IT baseline protection - Overview - Example 11. Evaluation criteria - CMMI - systems security engineering CMM - common criteria 12. Guest lecture - TBA | |||||

Literature | - Ross Anderson: Security Engineering, Wiley, 2001. - Matt Bishop: Computer Security, Pearson Education, 2003. - Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001. - John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002. - Further relevant books and journal/conference articles will be announced in the lecture. | |||||

Prerequisites / Notice | Prerequisite: Class on Information Security | |||||

252-0527-00L | Probabilistic Graphical Models for Image Analysis | W | 4 credits | 3G | S. Bauer | |

Abstract | This course will focus on the algorithms for inference and learning with statistical models. We use a framework called probabilistic graphical models which include Bayesian Networks and Markov Random Fields. We will use examples from traditional vision problems such as image registration and image segmentation, as well as recent problems such as object recognition. | |||||

Objective | Students will be introduced to probablistic graphical models and will learn how to apply them to problems in image analysis and understanding. The focus will be to study various algorithms for inference and parameter learning. | |||||

Literature | Will be announced during the lecture. | |||||

252-0535-00L | Advanced Machine Learning | W | 8 credits | 3V + 2U + 2A | J. M. Buhmann | |

Abstract | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||

Objective | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||

Content | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||

Lecture notes | No lecture notes, but slides will be made available on the course webpage. | |||||

Literature | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||

Prerequisites / Notice | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. | |||||

252-0543-01L | Computer Graphics | W | 6 credits | 3V + 2U | M. Gross, J. Novak | |

Abstract | This course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes. | |||||

Objective | At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own. | |||||

Content | This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering. | |||||

Lecture notes | no | |||||

Prerequisites / Notice | Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class. | |||||

252-0546-00L | Physically-Based Simulation in Computer Graphics | W | 4 credits | 2V + 1U | M. Bächer, V. da Costa de Azevedo, B. Solenthaler | |

Abstract | This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application. | |||||

Objective | This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application. | |||||

Content | The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation. | |||||

Prerequisites / Notice | Fundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required. | |||||

252-1411-00L | Security of Wireless Networks | W | 5 credits | 2V + 1U + 1A | S. Capkun | |

Abstract | Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques. | |||||

Objective | After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks. | |||||

Content | Wireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions. | |||||

252-1414-00L | System Security | W | 5 credits | 2V + 2U | S. Capkun, A. Perrig | |

Abstract | The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. | |||||

Objective | In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met. | |||||

Content | The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX). Along the lectures, model cases will be elaborated and evaluated in the exercises. | |||||

252-1425-00L | Geometry: Combinatorics and Algorithms | W | 6 credits | 2V + 2U + 1A | E. Welzl, L. F. Barba Flores, M. Hoffmann | |

Abstract | Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?) | |||||

Objective | The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project. | |||||

Content | Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations. | |||||

Lecture notes | yes | |||||

Literature | Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008. Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011. Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004. Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002. Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004. | |||||

Prerequisites / Notice | Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH. Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area. | |||||

263-2210-00L | Computer Architecture | W | 8 credits | 6G + 1A | O. Mutlu | |

Abstract | Computer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance and cost goals. This course introduces the basic components of a modern computing system (processors, memory, interconnects, storage). The course takes a hardware/software cooperative approach to understanding and evaluating computing systems. | |||||

Objective | We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest trends by exploring the recent research in Industry and Academia. We will extensively cover memory technologies (including DRAM and new Non-Volatile Memory technologies), memory scheduling, parallel computing systems (including multicore processors and GPUs), heterogeneous computing, processing-in-memory, interconnection networks, etc. | |||||

Content | The principles presented in the lecture are reinforced in the laboratory through the design and simulation of a register transfer (RT) implementation of a MIPS-like pipelined processor in System Verilog. In addition, we will develop a cycle-accurate simulator of this processor in C, and we will use this simulator to explore processor design options. | |||||

Lecture notes | All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/ The video recordings of the lectures are expected to be made available after lectures. | |||||

Literature | We will provide required and recommended readings in every lecture. They will be mostly recent research papers presented in major Computer Architecture conferences and journals. | |||||

Prerequisites / Notice | Design of Digital Circuits | |||||

263-2400-00L | Reliable and Interpretable Artificial Intelligence | W | 4 credits | 2V + 1U | M. Vechev | |

Abstract | Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models. | |||||

Objective | The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems. To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material. | |||||

Content | The course covers the following inter-connected directions. Part I: Robust and Explainable Deep Learning ------------------------------------------------------------- Deep learning technology has made impressive advances in recent years. Despite this progress however, the fundamental challenge with deep learning remains that of understanding what a trained neural network has actually learned, and how stable that solution is. Forr example: is the network stable to slight perturbations of the input (e.g., an image)? How easy it is to fool the network into mis-classifying obvious inputs? Can we guide the network in a manner beyond simple labeled data? Topics: - Attacks: Finding adversarial examples via state-of-the-art attacks (e.g., FGSM, PGD attacks). - Defenses: Automated methods and tools which guarantee robustness of deep nets (e.g., using abstract domains, mixed-integer solvers) - Combing differentiable logic with gradient-based methods so to train networks to satisfy richer properties. - Frameworks: AI2, DiffAI, Reluplex, DQL, DeepPoly, etc. Part II: Program Synthesis/Induction ------------------------------------------------ Synthesis is a new frontier in AI where the computer programs itself via user provided examples. Synthesis has significant applications for non-programmers as well as for programmers where it can provide massive productivity increase (e.g., wrangling for data scientists). Modern synthesis techniques excel at learning functions over discrete spaces from (partial) intent. There have been a number of recent, exciting breakthroughs in techniques that discover complex, interpretable/explainable functions from few examples, partial sketches and other forms of supervision. Topics: - Theory of program synthesis: version spaces, counter-example guided inductive synthesis (CEGIS) with SAT/SMT, lower bounds on learning. - Applications of techniques: synthesis for end users (e.g., spreadsheets) and data analytics. - Combining synthesis with learning: application to learning from code. - Frameworks: PHOG, DeepCode. Part III: Probabilistic Programming ---------------------------------------------- Probabilistic programming is an emerging direction, recently also pushed by various companies (e.g., Facebook, Uber, Google) whose goal is democratize the construction of probabilistic models. In probabilistic programming, the user specifies a model while inference is left to the underlying solver. The idea is that the higher level of abstraction makes it easier to express, understand and reason about probabilistic models. Topics: - Probabilistic Inference: sampling based, exact symbolic inference, semantics - Applications of probabilistic programming: bias in deep learning, differential privacy (connects to Part I). - Frameworks: PSI, Edward2, Venture. | |||||

Prerequisites / Notice | The course material is self-contained: needed background is covered in the lectures and exercises, and additional pointers. | |||||

263-2800-00L | Design of Parallel and High-Performance Computing | W | 7 credits | 3V + 2U + 1A | T. Hoefler, M. Püschel | |

Abstract | Advanced topics in parallel / concurrent programming. | |||||

Objective | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. | |||||

263-3010-00L | Big Data | W | 8 credits | 3V + 2U + 2A | G. Fourny | |

Abstract | The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations. | |||||

Objective | This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm". Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small. The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof. After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently. | |||||

Content | This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem. - physical storage: distributed file systems (HDFS), object storage(S3), key-value stores - logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP) - data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro) - data shapes and models (tables, trees, graphs, cubes) - type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +) - an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX) - the most important query paradigms (selection, projection, joining, grouping, ordering, windowing) - paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark) - resource management (YARN) - what a data center is made of and why it matters (racks, nodes, ...) - underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j) - optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing) - applications. Large scale analytics and machine learning are outside of the scope of this course. | |||||

Literature | Papers from scientific conferences and journals. References will be given as part of the course material during the semester. | |||||

Prerequisites / Notice | This course, in the autumn semester, is only intended for: - Computer Science students - Data Science students - CBB students with a Computer Science background Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added. Another version of this course will be offered in Spring for students of other departments. However, if you would like to already start learning about databases now, a course worth taking as a preparation/good prequel to the Spring edition of Big Data is the "Information Systems for Engineers" course, offered this Fall for other departments as well, and introducing relational databases and SQL. | |||||

263-3210-00L | Deep Learning Number of participants limited to 300. | W | 4 credits | 2V + 1U | F. Perez Cruz | |

Abstract | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Objective | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Prerequisites / Notice | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following conditions: 1) The number of participants is limited to 300 students (MSc and PhDs). 2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Machine Learning https://ml2.inf.ethz.ch/courses/ml/ Computational Intelligence Lab http://da.inf.ethz.ch/teaching/2018/CIL/ Learning and Intelligent Systems/Introduction to Machine Learning https://las.inf.ethz.ch/teaching/introml-S18 Statistical Learning Theory http://ml2.inf.ethz.ch/courses/slt/ Computational Statistics https://stat.ethz.ch/lectures/ss18/comp-stats.php Probabilistic Artificial Intelligence https://las.inf.ethz.ch/teaching/pai-f17 Data Mining: Learning from Large Data Sets https://las.inf.ethz.ch/teaching/dm-f17 | |||||

252-3610-00L | Smart Energy | W | 5 credits | 3G + 1A | F. Mattern, V. C. Coroama, V. Tiefenbeck | |

Abstract | The lecture covers the role of ICT for sustainable energy usage. It starts out with a general background on the current landscape of energy generation and consumption and outlines concepts of the emerging smart grid. The lecture combines technologies from ubiquitous computing and traditional ICT with socio-economic and behavioral aspects and illustrates them with examples from actual applications. | |||||

Objective | Participants become familiar with the diverse challenges related to sustainable energy usage, understand the principles of a smart grid infrastructure and its applications, know the role of ubiquitous computing technologies, can explain the challenges regarding security and privacy, can reflect on the basic cues to induce changes in consumer behavior, develop a general understanding of the effects of a smart grid infrastructure on energy efficiency. Participants will apply the learnings to two course-accompanying projects, which include both programming and data analysis. The lecture further includes interactive exercises, case studies and practical examples. | |||||

Content | - Background on energy generation and consumption; characteristics, potential, and limitations of renewable energy sources - Introduction to energy economics - Smart grid and smart metering infrastructures, virtual power plants, security challenges - Demand management and home automation using ubiquitous computing technologies - Changing consumer behavior with smart ICT - Benefits and challenges of a smart energy system - Smart heating, electric mobility | |||||

Literature | Will be provided during the course, though a good starting point is "ICT for green: how computers can help us to conserve energy" from Friedemann Mattern, Thosten Staake, and Markus Weiss (available at http://www.vs.inf.ethz.ch/publ/papers/ICT-for-Green.pdf). | |||||

263-3850-00L | Informal Methods | W | 4 credits | 2G + 1A | D. Cock | |

Abstract | Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code. | |||||

Objective | This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and therby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems. The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work. | |||||

Content | This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch. Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one). | |||||

263-4500-00L | Advanced Algorithms | W | 6 credits | 2V + 2U + 1A | M. Ghaffari, A. Krause | |

Abstract | This is an advanced course on the design and analysis of algorithms, covering a range of topics and techniques not studied in typical introductory courses on algorithms. | |||||

Objective | This course is intended to familiarize students with (some of) the main tools and techniques developed over the last 15-20 years in algorithm design, which are by now among the key ingredients used in developing efficient algorithms. | |||||

Content | the lectures will cover a range of topics, including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and a bried glance at MapReduce algorithms. | |||||

Prerequisites / Notice | This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students. Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consulte the instructor. | |||||

263-4640-00L | Network Security | W | 6 credits | 2V + 1U + 2A | A. Perrig, S. Frei | |

Abstract | Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them. | |||||

Objective | - Students are familiar with fundamental network security concepts. - Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures. - Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools). - Students have an in-depth understanding of a range of important security technologies. - Students learn how formal analysis techniques can help in the design of secure networked systems. | |||||

Content | The course will cover topics spanning five broad themes: (1) network defense mechanisms such as secure routing protocols, TLS, anonymous communication systems, network intrusion detection systems, and public-key infrastructures; (2) network attacks such as denial of service (DoS) and distributed denial-of-service (DDoS) attacks; (3) analysis and inference topics such as network forensics and attack economics; (4) formal analysis techniques for verifying the security properties of network architectures; and (5) new technologies related to next-generation networks. | |||||

Prerequisites / Notice | This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a Communication Networks lecture. The course will involve a course project and some smaller programming projects as part of the homework. Students are expected to have basic knowledge in network programming in a programming language such as C/C++, Go, or Python. | |||||

263-5210-00L | Probabilistic Artificial Intelligence | W | 4 credits | 2V + 1U | A. Krause | |

Abstract | This course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. | |||||

Objective | How can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students. | |||||

Content | Topics covered: - Search (BFS, DFS, A*), constraint satisfaction and optimization - Tutorial in logic (propositional, first-order) - Probability - Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks) - Probabilistic palnning (MDPs, POMPDPs) - Reinforcement learning - Combining logic and probability | |||||

Prerequisites / Notice | Solid basic knowledge in statistics, algorithms and programming | |||||

263-5701-00L | Visualization | W | 4 credits | 2V + 1U | T. Günther | |

Abstract | This lecture provides an introduction into visualization of scientific and abstract data. | |||||

Objective | This lecture provides an introduction into the visualization of scientific and abstract data. The lecture introduces into the two main branches of visualization: scientific visualization and information visualization. The focus is set onto scientific data, demonstrating the usefulness and necessity of computer graphics in other fields than the entertainment industry. The exercises contain theoretical tasks on the mathematical foundations such as numerical integration, differential vector calculus, and flow field analysis, while programming exercises familiarize with the Visualization Tool Kit (VTK). In a course project, the learned methods are applied to visualize one real scientific data set. The provided data sets contain measurements of volcanic eruptions, galaxy simulations, fluid simulations, meteorological cloud simulations and asteroid impact simulations. | |||||

Content | This lecture opens with human cognition basics, and scalar and vector calculus. Afterwards, this is applied to the visualization of air and fluid flows, including geometry-based, topology-based and feature-based methods. Further, the direct and indirect visualization of volume data is discussed. The lecture ends on the viualization of abstract, non-spatial and multi-dimensional data by means of information visualization. | |||||

Prerequisites / Notice | Fundamentals of differential calculus. Knowledge on numerical mathematics, computer algebra systems, as well as ordinary and partial differential equations is an asset, but not required. | |||||

263-5902-00L | Computer Vision | W | 6 credits | 3V + 1U + 1A | M. Pollefeys, V. Ferrari, L. Van Gool | |

Abstract | The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises. | |||||

Objective | The objectives of this course are: 1. To introduce the fundamental problems of computer vision. 2. To introduce the main concepts and techniques used to solve those. 3. To enable participants to implement solutions for reasonably complex problems. 4. To enable participants to make sense of the computer vision literature. | |||||

Content | Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition | |||||

Prerequisites / Notice | It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course. | |||||

227-0778-00L | Hardware/Software Codesign | W | 6 credits | 2V + 2U | L. Thiele | |

Abstract | The course provides advanced knowledge in the design of complex computer systems, in particular embedded systems. Models and methods are discussed that are fundamental for systems that consist of software and hardware components. | |||||

Objective | The course provides advanced knowledge in the design of complex computer systems, in particular embedded systems. Models and methods are discussed that are fundamental for systems that consist of software and hardware components. | |||||

Content | The course covers the following subjects: (a) Models for describing hardware and software components (specification), (b) Hardware-Software Interfaces (instruction set, hardware and software components, reconfigurable computing, heterogeneous computer architectures, System-on-Chip), (c) Application specific instruction sets, code generation and retargetable compilation, (d) Performance analysis and estimation techniques, (e) System design (hardware-software partitioning and design space exploration). | |||||

Lecture notes | Material for exercises, copies of transparencies. | |||||

Literature | Peter Marwedel, Embedded System Design, Springer, ISBN-13 978-94-007-0256-1, 2011. Wayne Wolf. Computers as Components. Morgan Kaufmann, ISBN-13: 978-0123884367, 2012. | |||||

Prerequisites / Notice | Prerequisites for the course is a basic knowledge in the following areas: computer architecture, digital design, software design, embedded systems | |||||

401-0647-00L | Introduction to Mathematical Optimization | W | 5 credits | 2V + 1U | D. Adjiashvili | |

Abstract | Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering. | |||||

Objective | The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering. | |||||

Content | Topics covered in this course include: - Linear programming (simplex method, duality theory, shadow prices, ...). - Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...). - Modelling with mathematical optimization: applications of mathematical programming in engineering. | |||||

Literature | Information about relevant literature will be given in the lecture. | |||||

Prerequisites / Notice | This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications. | |||||

636-0007-00L | Computational Systems Biology | W | 6 credits | 3V + 2U | J. Stelling | |

Abstract | Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification). | |||||

Objective | The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks. | |||||

Content | Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods. | |||||

Lecture notes | http://www.csb.ethz.ch/education/lectures.html | |||||

Literature | U. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006. Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010. B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013 | |||||

636-0017-00L | Computational Biology | W | 6 credits | 3G + 2A | T. Stadler, C. Magnus, T. Vaughan | |

Abstract | The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced. | |||||

Objective | Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are: * stochastic models in molecular evolution * phylogenetic & phylodynamic inference * maximum likelihood and Bayesian statistics Attendees will apply these concepts to a number of applications yielding biological insight into: * epidemiology * pathogen evolution * macroevolution of species | |||||

Content | The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises. | |||||

Lecture notes | Lecture slides will be available on moodle. | |||||

Literature | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Yang, Z. 2006. Computational Molecular Evolution. * Felsenstein, J. 2004. Inferring Phylogenies. * Semple, C. & Steel, M. 2003. Phylogenetics. * Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST. | |||||

Prerequisites / Notice | Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.cbb.ethz.ch/news-events.html For the Zurich-based students without R experience, we recommend the R course Link, or working through the script provided as part of this R course. | |||||

263-2810-00L | Advanced Compiler Design Does not take place this semester. | W | 7 credits | 3V + 2U + 1A | T. Gross | |

Abstract | This course covers advanced topics in compiler design: SSA intermediate representation and its use in optimization, just-in-time compilation, profile-based compilation, exception handling in modern programming languages. | |||||

Objective | Understand translation of object-oriented programs, opportunities and difficulties in optimizing programs using state-of-the-art techniques (profile-based compilation, just-in-time compilation, runtime system interaction) | |||||

Content | This course builds conceptually on Compiler Design (a basic class for advanced undergraduates), but this class is not a prerequisite. Students should however have a solid understanding of basic compiler technology. The focus is on handling the key features of modern object-oriented programs. We review implementations of single and multiple inheritance (incl. object layout, method dispatch) and optimization opportunities. Specific topics: intermediate representations (IR) for optimizing compilers, static single assignment (SSA) representation, constant folding, partial redundancy optimizations, profiling, profile-guided code generation. Special topics as time permits: debugging optimized code, multi-threading, data races, object races, memory consistency models, programming language design. Review of single inheritance, multiple inheritance, object layout, method dispatch, type analysis, type propagation and related topics. This course provides another opportunity to explore software design in a medium-scale software project. | |||||

Literature | Aho/Lam/Sethi/Ullmann, Compilers - Principles, Techniques, and Tools (2nd Edition). In addition, papers as provided in the class. | |||||

Prerequisites / Notice | A basic course on compiler design is helpful but not mandatory. Student should have programming skills/experience to implement an optimizer (or significant parts of an optimizer) for a simple object-oriented language. The programming project is implemented using Java. | |||||

263-3800-00L | Advanced Operating Systems Does not take place this semester. Takes place next spring semester (SS19)! | W | 6 credits | 2V + 2U + 1A | T. Roscoe | |

Abstract | This course is intended to give students a thorough understanding of design and implementation issues for modern operating systems, with a particular emphasis on the challenges of modern hardware features. We will cover key design issues in implementing an operating system, such as memory management, scheduling, protection, inter-process communication, device drivers, and file systems. | |||||

Objective | The goals of the course are, firstly, to give students: 1. A broader perspective on OS design than that provided by knowledge of Unix or Windows, building on the material in a standard undergraduate operating systems class 2. Practical experience in dealing directly with the concurrency, resource management, and abstraction problems confronting OS designers and implementers 3. A glimpse into future directions for the evolution of OS and computer hardware design | |||||

Content | The course is based on practical implementation work, in C and assembly language, and requires solid knowledge of both. The work is mostly carried out in teams of 3-4, using real hardware, and is a mixture of team milestones and individual projects which fit together into a complete system at the end. Emphasis is also placed on a final report which details the complete finished artifact, evaluates its performance, and discusses the choices the team made while building it. | |||||

Prerequisites / Notice | The course is based around a milestone-oriented project, where students work in small groups to implement major components of a microkernel-based operating system. The final assessment will be a combination grades awarded for milestones during the course of the project, a final written report on the work, and a set of test cases run on the final code. | |||||

Seminars | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

252-4202-00L | Seminar in Theoretical Computer Science The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | E. Welzl, B. Gärtner, M. Hoffmann, J. Lengler, A. Steger, B. Sudakov | |

Abstract | Presentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates. | |||||

Objective | The goal is to introduce students to current research, and to enable them to read, understand, and present scientific papers. | |||||

252-4601-00L | Current Topics in Information Security Number of participants limited to 24. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | D. Basin, S. Capkun, A. Perrig | |

Abstract | The seminar covers various topics in information security: security protocols (models, specification & verification), trust management, access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in backbone networks, key-management for sensor networks. | |||||

Objective | The main goals of the seminar are the independent study of scientific literature and assessment of its contributions as well as learning and practicing presentation techniques. | |||||

Content | The seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given. Selected Topics - security protocols: models, specification & verification - trust management, access control and non-interference - side-channel attacks - identity-based cryptography - host-based attack detection - anomaly detection in backbone networks - key-management for sensor networks | |||||

Literature | The reading list will be published on the course web site. | |||||

252-5051-00L | Advanced Topics in Machine Learning Number of participants limited to 40. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | J. M. Buhmann, A. Krause, G. Rätsch | |

Abstract | In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning. | |||||

Objective | The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations. | |||||

Content | The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models. | |||||

Literature | The papers will be presented in the first session of the seminar. | |||||

252-5701-00L | Advanced Topics in Computer Graphics and Vision Number of participants limited to 24. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | M. Gross, M. Pollefeys, O. Sorkine Hornung | |

Abstract | This seminar covers advanced topics in computer graphics, such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each time the course is offered, a collection of research papers is selected and each student presents one paper to the class and leads a discussion about the paper and related topics. | |||||

Objective | The goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills. | |||||

Content | This seminar covers advanced topics in computer graphics, including both seminal research papers as well as the latest research results. Each time the course is offered, a collection of research papers are selected covering topics such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each student presents one paper to the class and leads a discussion about the paper and related topics. All students read the papers and participate in the discussion. | |||||

Lecture notes | no script | |||||

Literature | Individual research papers are selected each term. See http://graphics.ethz.ch/ for the current list. | |||||

Prerequisites / Notice | Prerequisites: The courses "Computer Graphics I and II" (GDV I & II) are recommended, but not mandatory. | |||||

263-2100-00L | Research Topics in Software Engineering Number of participants limited to 22. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | Z. Su | |

Abstract | This seminar is an opportunity to become familiar with current research in software engineering and more generally with the methods and challenges of scientific research. | |||||

Objective | Each student will be asked to study some papers from the recent software engineering literature and review them. This is an exercise in critical review and analysis. Active participation is required (a presentation of a paper as well as participation in discussions). | |||||

Content | The aim of this seminar is to introduce students to recent research results in the area of programming languages and software engineering. To accomplish that, students will study and present research papers in the area as well as participate in paper discussions. The papers will span topics in both theory and practice, including papers on program verification, program analysis, testing, programming language design, and development tools. A particular focus will be on domain-specific languages. | |||||

Literature | The publications to be presented will be announced on the seminar home page at least one week before the first session. | |||||

Prerequisites / Notice | Organizational note: the seminar will meet only when there is a scheduled presentation. Please consult the seminar's home page for information. | |||||

263-3504-00L | Hardware Acceleration for Data Processing The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | G. Alonso, T. Hoefler, C. Zhang | |

Abstract | The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular. | |||||

Objective | The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular. | |||||

Content | The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers. | |||||

Prerequisites / Notice | Students taking this seminar should have the necessary background in systems and low level programming. | |||||

263-3900-00L | Communication Networks Seminar Number of participants limited to 20. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | A. Singla | |

Abstract | We explore recent advances in networking by reading high quality research papers, and discussing open research opportunities, most of which are suitable for students to later take up as thesis or semester projects. | |||||

Objective | The objectives are (a) to understand the state-of-the-art in the field; (b) to learn to read, present and critique papers; (c) to engage in discussion and debate about research questions; and (d) to identify opportunities for new research. Students are expected to attend the entire seminar, choose a topic for presentation from a given list, make a presentation on that topic, and lead the discussion. Further, for each reading, every student needs to submit a review before the in-class discussion. Students are evaluated on their submitted reviews, their presentation and discussion leadership, and participation in seminar discussions. | |||||

Literature | A program will be posted here: https://ndal.ethz.ch/courses/networks-seminar.html, comprising of a list of papers the seminar group will cover. | |||||

Prerequisites / Notice | An undergraduate-level understanding of networking, such that the student is familiar with concepts like reliable transport protocols (like TCP) and basics of Internet routing. ETH courses that fulfill this requirement: Computer Networks (252-0064-00L) and its predecessor (Operating Systems and Networks -- 252-0062-00L). Similar courses at other universities are also sufficient. | |||||

263-4505-00L | Algorithms for Large-Scale Graph Processing The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 credits | 2S | M. Ghaffari | |

Abstract | This is a theory seminar, where we present and discuss recent algorithmic developments for processing large-scale graphs. In particular, we focus on Massively Parallel Computation (MPC) algorithms. MPC is a clean and general theoretical framework that captures the essential aspects of computational problems in large-scale processing settings such as MapReduce, Hadoop, Spark, Dryad, etc. | |||||

Objective | This seminar familiarizes students with foundational aspects of large-scale graph processing, and especially the related algorithmic tools and techniques. In particular, we discuss recent developments in the area of Massively Parallel Computation. This is a mathematical abstraction of practical large-scale processing settings such as MapReduce, and it has been receiving significant attention over the past few years. The seminar assumes no particular familiarity with parallel computation. However, we expect that all the students are comfortable with basics of algorithms design and analysis, as well as probability theory. In the course of the seminar, the students learn how to structure a scientific presentation (in English) which covers the key ideas of a paper, while omitting the less significant details. | |||||

Content | The seminar will cover a number of the recent papers on Massively Parallel Computation. As mentioned above, no familiarity with parallel computation is needed and all the relevant background information will be explain by the instructor in the first lecture. | |||||

Literature | The papers will be presented in the first session of the seminar. |