# Search result: Catalogue data in Spring Semester 2018

Micro- and Nanosystems Master | ||||||

Core Courses | ||||||

Elective Core Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

151-0211-00L | Convective Heat TransportDoes not take place this semester. | W | 5 credits | 4G | H. G. Park | |

Abstract | This course will teach the field of heat transfer by convection. This heat transport process is intimately tied to fluid dynamics and mathematics, meaning that solid background in these disciplines are necessary. Convection has direct implications in various industries, e.g. microfabrication, microfluidics, microelectronics cooling, thermal shields protection for space shuttles. | |||||

Objective | Advanced introduction to the field of heat transfer by convection. | |||||

Content | The course covers the following topics: 1. Introduction: Fundamentals and Conservation Equations 2. Laminar Fully Developed Velocity and Temperature Fields 3. Laminar Thermally Developing Flows 4. Laminar Hydrodynamic Boundary Layers 5. Laminar Thermal Boundary Layers 6. Laminar Thermal Boundary Layers with Viscous Dissipation 7. Turbulent Flows 8. Natural Convection. | |||||

Lecture notes | Lecture notes will be delivered in class via note-taking. Textbook serves as a great source of the lecture notes. | |||||

Literature | Text: (Main) Kays and Crawford, Convective Heat and Mass Transfer, McGraw-Hill, Inc. (Secondary) A. Bejan, Convection Heat Transfer References: Incropera and De Witt, Fundamentals of Heat and Mass Transfer, or Introduction to Heat Transfer Kundu and Cohen, Fluid Mechanics, Academic Press V. Arpaci, Convection Heat Transfer | |||||

151-0361-00L | An Introduction to the Finite-Element Method | W | 4 credits | 3G | G. Kress, C. Thurnherr | |

Abstract | The class includes mathematical ancillary concepts, derivation of element equations, numerical integration, boundary conditions and degree-of-freedom coupling, compilation of the system’s equations, element technology, solution methods, static and eigenvalue problems, iterative solution of progressing damage, beam-locking effect, modeling techniques, implementation of nonlinear solution methods. | |||||

Objective | Obtain a theoretical background of the finite-element method. Understand techniques for finding numerically more efficient finite elements. Understand degree-of-freedom coupling schemes and recall typical equations solution algorithms for static and eigenvalue problems. Learn how to map specific mechanical situations correctly to finite-element models. Understand how to make best use of FEM for structural analysis. Obtain a first inside into the implementation of nonlinear FEM procedures. | |||||

Content | 1. Introduction, direct element derivation of truss element 2. Variational methods and truss element revisited 3. Variational methods and derivation of planar finite elements 4. Curvilinear finite elements and numerical integration 5. Element Technology 6. Degrees-of-freedom coupling and solution methods 7. Iterative solution methods for damage progression analysis 8. Shear-rigid and shear compliant beam elements and locking effect 9. Beam Elements and Locking Effect 10. Harmonic vibrations and vector iteration 11. Modeling techniques 12. Implementation of nonlinear FEM procedures | |||||

Lecture notes | Script and handouts are provided in class and can also be down-loaded from: Link | |||||

Literature | No textbooks required. | |||||

151-0534-00L | Advanced Dynamics | W | 4 credits | 3V + 1U | P. Tiso | |

Abstract | Lagrangian dynamics - Principle of virtual work and virtual power - holonomic and non holonomic contraints - 3D rigid body dynamics - equilibrium - linearization - stability - vibrations - frequency response | |||||

Objective | This course provides the students of mechanical engineering with fundamental analytical mechanics for the study of complex mechanical systems .We introduce the powerful techniques of principle of virtual work and virtual power to systematically write the equation of motion of arbitrary systems subjected to holonomic and non-holonomic constraints. The linearisation around equilibrium states is then presented, together with the concept of linearised stability. Linearized models allow the study of small amplitude vibrations for unforced and forced systems. For this, we introduce the concept of vibration modes and frequencies, modal superposition and modal truncation. The case of the vibration of light damped systems is discussed. The kinematics and dynamics of 3D rigid bodies is also extensively treated. | |||||

Lecture notes | Lecture notes are produced in class and are downloadable right after each lecture. | |||||

Literature | The students will prepare their own notes. A copy of the lecture notes will be available. | |||||

Prerequisites / Notice | Mechanics III or equivalent; Analysis I-II, or equivalent; Linear Algebra I-II, or equivalent. | |||||

151-0622-00L | Measuring on the Nanometer Scale | W | 2 credits | 2G | A. Stemmer, T. Wagner | |

Abstract | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||

Objective | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||

Content | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||

Lecture notes | Class notes and special papers will be distributed. | |||||

151-0630-00L | Nanorobotics | W | 4 credits | 2V + 1U | S. Pané Vidal | |

Abstract | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||

Objective | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. | |||||

151-0642-00L | Seminar on Micro and Nanosystems | Z | 0 credits | 1S | C. Hierold | |

Abstract | Scientific presentations from the field of Micro- and Nanosystems | |||||

Objective | The students will be informed about the latest news from the state-of-the-art in the field and will take the opportunity to start scientific and challenging discussions with the presenters. | |||||

Content | Selected and hot topics from Micro- and Nanosystems, progress reports from PhD projects. | |||||

151-0735-00L | Dynamic Behavior of Materials and StructuresDoes not take place this semester. | W | 4 credits | 2V + 2U | D. Mohr | |

Abstract | Lectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events. | |||||

Objective | Students will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and navel engineering. | |||||

Content | Topics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures; | |||||

Lecture notes | Slides of the lectures, relevant journal papers and users manuals will be provided. | |||||

Literature | Various books will be recommended covering the topics discussed in class | |||||

Prerequisites / Notice | Course in continuum mechanics (mandatory), finite element method (recommended) | |||||

151-0966-00L | Introduction to Quantum Mechanics for Engineers | W | 4 credits | 2V + 2U | D. J. Norris | |

Abstract | This course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering. | |||||

Objective | To work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated. | |||||

Content | Fundamentals of Quantum Mechanics - Historical Perspective - Schrödinger Equation - Postulates of Quantum Mechanics - Operators - Harmonic Oscillator - Hydrogen atom - Multielectron Atoms - Crystalline Systems - Spectroscopy - Approximation Methods - Applications in Engineering | |||||

Lecture notes | Class Notes and Handouts | |||||

Literature | Text: David J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Pearson International Edition. | |||||

Prerequisites / Notice | Analysis III, Mechanics III, Physics I, Linear Algebra II | |||||

227-0158-00L | Semiconductor Devices: Transport Theory and Monte Carlo Simulation Does not take place this semester. | W | 4 credits | 2V + 1U | ||

Abstract | The first part deals with semiconductor transport theory including the necessary quantum mechanics. In the second part, the Boltzmann equation is solved with the stochastic methods of Monte Carlo simulation. The exercises address also TCAD simulations of MOSFETs. Thus the topics include theoretical physics, numerics and practical applications. | |||||

Objective | On the one hand, the link between microscopic physics and its concrete application in device simulation is established; on the other hand, emphasis is also laid on the presentation of the numerical techniques involved. | |||||

Content | Quantum theoretical foundations I (state vectors, Schroedinger and Heisenberg picture). Band structure (Bloch theorem, one dimensional periodic potential, density of states). Pseudopotential theory (crystal symmetries, reciprocal lattice, Brillouin zone). Semiclassical transport theory (Boltzmann transport equation (BTE), scattering processes, linear transport).<br> Monte Carlo method (Monte Carlo simulation as solution method of the BTE, algorithm, expectation values).<br> Implementational aspects of the Monte Carlo algorithm (discretization of the Brillouin zone, self-scattering according to Rees, acceptance- rejection method etc.). Bulk Monte Carlo simulation (velocity-field characteristics, particle generation, energy distributions, transport parameters). Monte Carlo device simulation (ohmic boundary conditions, MOSFET simulation). Quantum theoretical foundations II (limits of semiclassical transport theory, quantum mechanical derivation of the BTE, Markov-Limes). | |||||

Lecture notes | Lecture notes (in German) | |||||

227-0159-00L | Semiconductor Devices: Quantum Transport at the Nanoscale | W | 6 credits | 2V + 2U | M. Luisier, A. Emboras | |

Abstract | This class offers an introduction into quantum transport theory, a rigorous approach to electron transport at the nanoscale. It covers different topics such as bandstructure, Wave Function and Non-equilibrium Green's Function formalisms, and electron interactions with their environment. Matlab exercises accompany the lectures where students learn how to develop their own transport simulator. | |||||

Objective | The continuous scaling of electronic devices has given rise to structures whose dimensions do not exceed a few atomic layers. At this size, electrons do not behave as particle any more, but as propagating waves and the classical representation of electron transport as the sum of drift-diffusion processes fails. The purpose of this class is to explore and understand the displacement of electrons through nanoscale device structures based on state-of-the-art quantum transport methods and to get familiar with the underlying equations by developing his own nanoelectronic device simulator. | |||||

Content | The following topics will be addressed: - Introduction to quantum transport modeling - Bandstructure representation and effective mass approximation - Open vs closed boundary conditions to the Schrödinger equation - Comparison of the Wave Function and Non-equilibrium Green's Function formalisms as solution to the Schrödinger equation - Self-consistent Schödinger-Poisson simulations - Quantum transport simulations of resonant tunneling diodes and quantum well nano-transistors - Top-of-the-barrier simulation approach to nano-transistor - Electron interactions with their environment (phonon, roughness, impurity,...) - Multi-band transport models | |||||

Lecture notes | Lecture slides are distributed every week and can be found at https://iis-students.ee.ethz.ch/lectures/quantum-transport-in-nanoscale-devices/ | |||||

Literature | Recommended textbook: "Electronic Transport in Mesoscopic Systems", Supriyo Datta, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1997 | |||||

Prerequisites / Notice | Basic knowledge of semiconductor device physics and quantum mechanics | |||||

227-0198-00L | Wearable Systems II: Design and Implementation The course is offered for the last time in the Spring Semester 2018. Please note the specific provisions for the performance assessment. | W | 6 credits | 4G | G. Tröster | |

Abstract | Concepts and methods to integrate mobile computers into our daily outfit. Textile sensors: strain, pressure, temperature, ECG, EMG New substrates (eTextile, Smart Textile), organic material (foils) State-of-the-art in Wearable Systems and components Economical conditions Evaluation of research institutions, groups, projects and proposals. | |||||

Objective | To integrate wearable computers also commercially successful in our daily outfit, innovative sensing and communication technologies as well as economical and ethical aspects have to be considered. The course deals with > Textile Sensors: strain, pressure, temperature, ECK, EMG, ... > Packaging: new substrates (eTextiles), organic material (foils) > State-of-the-art and research in Wearable components and systems. > Privacy and Ethics Using a business plan we will practice the commercialisation of our 'Wearable Computers'. Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the used language (German or English) | |||||

Content | To integrate wearable computers also commercially successful in our daily outfit, innovative sensing and communication technologies as well as economical and ethical aspects have to be considered. The course deals with > Textile Sensors: strain, pressure, temperature, ECK, EMG, ... > Packaging: new substrates (eTextiles), organic material (foils) > State-of-the-art and research in Wearable components and systems.. > Privacy and Ethics Using a business plan we will practice the commercialisation of our 'Wearable Computers'. Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the used language (German or English) | |||||

Lecture notes | A wiki-tool will be available for the internal communication; that includes lecture notes for all lessons, assignments and solutions. http://www.ife.ee.ethz.ch/education/wearable-systems-ii.html | |||||

Literature | Will be provided in the course material | |||||

Prerequisites / Notice | Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the date and the used language (German or English) No special prerequisites, also not the participation of 'Wearable Systems 1' | |||||

227-0303-00L | Advanced Photonics | W | 6 credits | 2V + 1U + 1A | A. Dorodnyy, A. Emboras, M. Burla, P. Ma, T. Watanabe | |

Abstract | Lecture gives comprehensive insight into nano-scale photonic devices, physical fundamentals behind, simulation techniques and an overview of the design and fabrication. Following applications of nano-scale photonic structures are discussed: waveguides, fiber couplers, light sources, modulators and detectors, photovoltaic cells, atomic-level devices, integrated microwave/optical devices. | |||||

Objective | General training in advanced photonic device design with an overview of simulation, fabrication, and characterization techniques. Hands-on experience with photonic and optoelectronic device modeling and simulation. | |||||

Lecture notes | The presentation and the lecture notes will be provided every week. | |||||

Literature | Prof. Thomas Inn: Semiconductor Nanostructures, Oxford University Press Prof. Peter Wurfel: Physics of Solar Cells, Wiley Prof. H. Gatzen, Prof. Volker Saile, Prof. Juerg Leuthold: Micro and Nano Fabrication, Springer | |||||

Prerequisites / Notice | Basic knowledge of semiconductor physics, physics of the electromagnetic filed and thermodynamics. | |||||

227-0966-00L | Quantitative Big Imaging: From Images to Statistics | W | 4 credits | 2V + 1U | K. S. Mader, M. Stampanoni | |

Abstract | The lecture focuses on the challenging task of extracting robust, quantitative metrics from imaging data and is intended to bridge the gap between pure signal processing and the experimental science of imaging. The course will focus on techniques, scalability, and science-driven analysis. | |||||

Objective | 1. Introduction of applied image processing for research science covering basic image processing, quantitative methods, and statistics. 2. Understanding of imaging as a means to accomplish a scientific goal. 3. Ability to apply quantitative methods to complex 3D data to determine the validity of a hypothesis | |||||

Content | Imaging is a well established field and is rapidly growing as technological improvements push the limits of resolution in space, time, material and functional sensitivity. These improvements have meant bigger, more diverse datasets being acquired at an ever increasing rate. With methods varying from focused ion beams to X-rays to magnetic resonance, the sources for these images are exceptionally heterogeneous; however, the tools and techniques for processing these images and transforming them into quantitative, biologically or materially meaningful information are similar. The course consists of equal parts theory and practical analysis of first synthetic and then real imaging datasets. Basic aspects of image processing are covered such as filtering, thresholding, and morphology. From these concepts a series of tools will be developed for analyzing arbitrary images in a very generic manner. Specifically a series of methods will be covered, e.g. characterizing shape, thickness, tortuosity, alignment, and spatial distribution of material features like pores. From these metrics the statistics aspect of the course will be developed where reproducibility, robustness, and sensitivity will be investigated in order to accurately determine the precision and accuracy of these quantitative measurements. A major emphasis of the course will be scalability and the tools of the 'Big Data' trend will be discussed and how cluster, cloud, and new high-performance large dataset techniques can be applied to analyze imaging datasets. In addition, given the importance of multi-scale systems, a data-management and analysis approach based on modern databases will be presented for storing complex hierarchical information in a flexible manner. Finally as a concluding project the students will apply the learned methods on real experimental data from the latest 3D experiments taken from either their own work / research or partnered with an experimental imaging group. The course provides the necessary background to perform the quantitative evaluation of complicated 3D imaging data in a minimally subjective or arbitrary manner to answer questions coming from the fields of physics, biology, medicine, material science, and paleontology. | |||||

Lecture notes | Available online. | |||||

Literature | Will be indicated during the lecture. | |||||

Prerequisites / Notice | Ideally students will have some familiarity with basic manipulation and programming in languages like Matlab and R. Interested students who are worried about their skill level in this regard are encouraged to contact Kevin Mader directly (mader@biomed.ee.ethz.ch). More advanced students who are familiar with Java, C++, and Python will have to opportunity to develop more of their own tools. | |||||

402-0448-01L | Quantum Information Processing I: ConceptsThis theory part QIP I together with the experimental part 402-0448-02L QIP II (both offered in the Spring Semester) combine to the core course in experimental physics "Quantum Information Processing" (totally 10 ECTS credits). | W | 5 credits | 2V + 1U | L. Pacheco Cañamero B. del Rio | |

Abstract | The course will cover the key concepts and ideas of quantum information processing, including descriptions of quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer. Key concepts such as quantum error correction will be described. These ideas provide fundamental insights into the nature of quantum states and measurement. | |||||

Objective | We aim to provide an overview of the central concepts in Quantum Information Processing, including insights into the advantages to be gained from using quantum mechanics and the range of techniques based on quantum error correction which enable the elimination of noise. | |||||

Content | The topics covered in the course will include 1. Entanglement 2. Circuits, circuit elements, universality 3. Efficiency ideas, Gottesmann Knill 4. Teleportation + dense coding 5. Swapping/Gate Teleportation 6. Algorithms: Shor, Grover, 7. Deutsch-Josza, simulations of local systems 8. Cryptography 9. Error correction, basic circuit, 10. ideas of construction, Fault-tolerant design, | |||||

Lecture notes | Will be made available on the Moodle for the course. More details to follow. | |||||

Literature | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||

402-0448-02L | Quantum Information Processing II: ImplementationsThis experimental part QIP II together with the theory part 402-0448-01L QIP I (both offered in the Spring Semester) combine to the core course in experimental physics "Quantum Information Processing" (totally 10 ECTS credits). | W | 5 credits | 2V + 1U | A. Wallraff | |

Abstract | Introduction to experimental systems for quantum information processing (QIP). Quantum bits. Coherent Control. Measurement. Decoherence. Microscopic and macroscopic quantum systems. Nuclear magnetic resonance (NMR). Photons. Ions and neutral atoms in electromagnetic traps. Charges and spins in quantum dots and NV centers. Charges and flux quanta in superconducting circuits. Novel hybrid systems. | |||||

Objective | Throughout the past 20 years the realm of quantum physics has entered the domain of information technology in more and more prominent ways. Enormous progress in the physical sciences and in engineering and technology has allowed us to build novel types of information processors based on the concepts of quantum physics. In these processors information is stored in the quantum state of physical systems forming quantum bits (qubits). The interaction between qubits is controlled and the resulting states are read out on the level of single quanta in order to process information. Realizing such challenging tasks is believed to allow constructing an information processor much more powerful than a classical computer. This task is taken on by academic labs, startups and major industry. The aim of this class is to give a thorough introduction to physical implementations pursued in current research for realizing quantum information processors. The field of quantum information science is one of the fastest growing and most active domains of research in modern physics. | |||||

Content | Introduction to experimental systems for quantum information processing (QIP). - Quantum bits - Coherent Control - Measurement - Decoherence QIP with - Ions - Superconducting Circuits - Photons - NMR - Rydberg atoms - NV-centers - Quantum dots | |||||

Lecture notes | Course material be made available at www.qudev.ethz.ch and on the Moodle platform for the course. More details to follow. | |||||

Literature | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||

Prerequisites / Notice | The class will be taught in English language. Basic knowledge of concepts of quantum physics and quantum systems, e.g from courses such as Phyiscs III, Quantum Mechanics I and II or courses on topics such as atomic physics, solid state physics, quantum electronics are considered helpful. More information on this class can be found on the web site www.qudev.ethz.ch | |||||

402-0573-00L | Aerosols II: Applications in Environment and Technology | W | 4 credits | 2V + 1U | J. Slowik, U. Baltensperger, H. Burtscher | |

Abstract | Major topics: Important sources and sinks of atmospheric aerosols and their importance for men and environment. Particle emissions from combustion systems, means to reduce emissions like particle filters. | |||||

Objective | Profound knowledge about aerosols in the atmosphere and applications of aerosols in technology | |||||

Content | Atmospheric aerosols: important sources and sinks, wet and dry deposition, chemical composition, importance for men and environment, interaction with the gas phase, influence on climate. Technical aerosols: combustion aerosols, techniques to reduce emissions, application of aerosols in technology | |||||

Lecture notes | Information is distributed during the lectures | |||||

Literature | - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J.H., and S.N. Pandis, Atmospheric chemistry and physics, John Wiley, New York, (1998). | |||||

529-0502-00L | CatalysisWill be offered the last time during spring semester 2018. | W | 4 credits | 3G | J. A. van Bokhoven, M. Ranocchiari | |

Abstract | Fundamental principles of adsorption and catalysis, physics and chemistry of solid-state surfaces and methods for determining their structure and composition. Homogeneous catalysis with transition-metal complexes. | |||||

Objective | Basic knowledge of heterogeneous and homogeneous catalysis | |||||

Content | Fundamental principles of adsorption and catalysis, physics and chemistry of solid-state surfaces and methods for determining their structure and composition, thermodynamic and kinetic fundamentals of heterogeneous catalysis (physisorption, chemisorption, kinetic modelling, selectivity, activity, stability), catalyst development and manufacture, homogeneous catalysis with transition-metal complexes; catalytic reaction cycles and types. | |||||

Lecture notes | A script is available | |||||

Literature | J.M. Thomas and W.J. Thomas, Heterogeneous Catalysis, VCH, 1997 Homogeneous Catalysis Basics: R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley, 2009 Industrial Processes: G. P. Chiusoli, P. M. Maitlis, Metal-catalysis in Industrial Organic Processes, RSC Publishing, 2008 Online: Catalysis - An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis Edited by: J.A. Moulijn, P.W.N.M. van Leeuwen and R.A. van Santen Basic Coordination Chemistry: J. Huheey, E. Keiter, R. Keiter, Anorganische Chemie - Prinzipien von Struktur und Reaktivität, de Gruyter | |||||

529-0625-00L | Chemical Engineering | W | 3 credits | 3G | W. J. Stark | |

Abstract | Chemical Engineering provides an introduction to production and process design. Beyond different types and operation of chemical or bio-reactors, issues of scaling, new synthesis methods and problems of industrial production are addressed. An introduction in heterogeneous catalysis and transport of impulse, mass and energy connect the new concepts to the basic education in chemistry and biology. | |||||

Objective | Intended for chemists, chemical engineers, biochemists and biologists, the course Chemical and Bioengineering 4th semester addresses the basics of production and process design. Starting with different reactors, process steps and unit operations in production, the industrial scale usage of chemicals and reagents are discussed and further illustrated by examples. Material and energy balances and the concept of selectivity are used to broaden the students view on the complexity of production and show how modern engineering can contribute to an environmentally sustainable production. In the second part of the lecture, reactors, single cells or living matter are discussed in terms of transport properties. Beyond metabolism or chemical processes, transport of impulse, mass and energy heavily influence chemical and biological processes. They are introduced simultaneously and provide a basis for the understanding of flow, diffusion and heat transport. Dimensionless numbers are used to implement transport properties in unit operations and process design. An introduction to heterogeneous catalysis connects the acquired concepts to chemistry and biology and shows how powerful new processes arise from combining molecular understanding and transport. | |||||

Content | Elements of chemical transformations: preparation of reactants, reaction process, product work-up and recycling, product purification; continuous, semibatch and batch processes; material balances: chemical reactors and separation processes, multiple systems and multistage systems; energy balances: chemical reactors and separation processes, enthalpy changes, coupled material and energy balances; multiple reactions: optimisation of reactor performance, yield and selectivity; mass transport and chemical reaction: mixing effects in homogeneous and heterogeneous systems, diffusion and reaction in porous materials; heat exchange and chemical reaction: adiabatic reactors, optimum operating conditions for exothermic and endothermic equilibrium reactions, thermal runaway, reactor size and scale up. | |||||

Lecture notes | Supporting material to the course is available on the homepage www.fml.ethz.ch | |||||

Literature | Literature and text books are announced at the beginning of the course. | |||||

752-3000-00L | Food Process Engineering I | W | 4 credits | 3V | E. J. Windhab | |

Abstract | To procure students with the basic physics of food process engineering, especially with the mechanical futures of food systems, i.e. basic principles of engineering mechanics, of thermodynamics, fluid dynamics and of dimension analyses for process design and Non-Newtonian fluid mechanics. | |||||

Objective | 1. Verständnis der Grundprinzipien der Thermodynamik, Fluiddynamik und ingenieurtechnischen Apparateauslegung. 2. Anwendung dieser Prinzipien auf Prozesse der Lebensmittelverfahrenstechnik.3. Molekulares Verständnis der Fliesseigenschaften von Lebensmittelsystemen mit nicht-Newtonschem Fliessverhalten. | |||||

Content | 1. Einführung 2. Grundlagen der Fluiddynamik 3. Grundlagen derThermodynamik 4. Grundlagen der Mechanik 5. Austausch und Transportvorgänge 6. Grundlagen der Ingenieurtechnischen Apparateauslegung 7. Grundlagen der Rheologie 8. Grundlagen der Schüttgutmechanik | |||||

Lecture notes | Vorlesungsskriptum (ca. 100 Seiten, 60 Abbildungen) wird vor der ersten Vorlesung und Folien jeweils vor der Vorlesung bereit gestellt. | |||||

Literature | - P. Grassmann: Einführung in die thermische Verfahrenstechnik, deGruyter Berlin, 1997 - H.D. Baehr: Thermodynamik, Springer Verlag, Berlin, 1984 | |||||

Prerequisites / Notice | Die Vorlesung erfordert während des Semesters wöchentliche Vor-/Nachbereitung. Im Unterricht wird aktive Mitarbeit erwartet. |

- Page 1 of 1