From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Search result: Catalogue data in Autumn Semester 2016

Health Sciences and Technology Master Information
Major in Human Movement Science and Sport
Elective Courses II
376-1127-00LSociology of SportW2 credits2VM. Lamprecht
AbstractThese lectures deal with the current changes in society and sport and provide an overview of the many different problems and perspectives of sport sociology.
ObjectiveThe lectures set out to:
- present the different dimensions, functions and interrelationships of present-day sport
- provide an introduction to the central theories and models of (sport) sociology
- show how far sport reflects society and how it changes and becomes more differentiated in the process
- take current examples from newspapers, magazines and television to highlight the sociological view of sport.
Content• Sport and social change: developments and trends
• The economy and the media: dependencies, consequences, scandals
• Social inequalities and distinctions: gender differences and group behavior
• Conflicts and politics: sports organizations, doping, violence
Lecture notesSelected materials for the lecture are available under --> Lehre
Literature- Coakley, Jay und Elizabeth Pike (2009): Sport in Society: Issues and Controversies. New York: Mc.Graw-Hill.
- Lamprecht, Markus und Hanspeter Stamm (2002): Sport zwischen Kultur, Kult und Kommerz. Zürich: Seismo.
- Thiel Ansgar, Klaus Seiberth und Jochen Mayer (2013): Sportsoziologie: Ein Lehrbuch in 13 Lektionen. Aachen: Meyer & Meyer.
- Weis, Kurt und Robert Gugutzer (Hg.) (2008): Handbuch Sportsoziologie. Schorndorf: Hofmann.

A detailed program with additional references will be delivered at the beginning of the lecture.
376-1117-00LSport PsychologyW2 credits2VH. Gubelmann
AbstractThis lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject.
ObjectiveStudents are given insight into different work areas of sport psychology. In order to understand what «sport psychology» is, it is necessary to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions. Students' expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised. Case studies and practical exercises (e.g. objective training) are intended to prompt students to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their teaching.
ContentMain Topics
- Introduction to sport psychology
- Cognitions in sports: mental rehearsal and mental training
- Emotions and stress
- Motivation: goal-setting in sports
- Career and career transition in elite sport
- Coach-Athlete-Interaction
- Psychological aspects of sport-injury rehabilitation
- Group dynamics in sport
Lecture notesUnterrichtsmaterialien zu den einzelnen Veranstaltungen werden den Studierenden zur Verfügung gestellt.
LiteraturePflichtlektüre: Alfermann, D. & Stoll, O. (2010). Sportpsychologie: Ein Lehrbuch in 12 Lektionen. (3. Aufl.), Aachen u.a.: Meyer & Meyer.

Empfohlen: Gerrig, J.P. (2014). Psychologie. (20. Aufl.), München u.a.: Pearson.
376-1177-00LHuman Factors IW2 credits2VM. Menozzi Jäckli, R. Huang, M. Siegrist
AbstractEvery day humans interact with various systems. Strategies of interaction, individual needs, physical & mental abilities, and system properties are important factors in controlling the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's satisfaction & overall performance.
ObjectiveThe goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.
Content- Physiological, physical, and cognitive factors in sensation and perception
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance and well-being
- Human factors and ergonomics in system designs, product development and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks
Literature- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
376-1179-00LApplications of Cybernetics in ErgonomicsW1 credit1UM. Menozzi Jäckli, Y.‑Y. Hedinger Huang, R. Huang
AbstractCybernetics systems have been studied and applied in various research fields, such as applications in the ergonomics domain. Research interests include the man-machine interaction (MMI) topic which involving the performance in multi-model interactions, quantification in gestalt principles in product development; or the information processing matter.
ObjectiveTo learn and practice cybernetics principles in interface designs and product development.
Content- Fitt's law applied in manipulation tasks
- Hick-Hyman law applied in design of the driver assistance systems - Vigilance applied in quality inspection
- Accommodation/vergence crosslink function
- Cross-link models in neurobiology- the ocular motor control system
- Human performance in optimization of production lines
LiteratureGavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012)
376-1219-00LRehabilitation Engineering II: Rehabilitation of Sensory and Vegetative FunctionsW3 credits2VR. Riener, R. Gassert, L. Marchal Crespo
AbstractRehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.
ObjectiveProvide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
ContentIntroduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
LiteratureIntroductory Books:

An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007.

Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000.

Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS).

Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008.

The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.

Selected Journal Articles and Web Links:

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432
Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and
Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at:

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.

The vOICe.

VideoTact, ForeThought Development, LLC.
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
376-1714-00LBiocompatible MaterialsW4 credits3GK. Maniura, J. Möller, M. Zenobi-Wong
AbstractIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
ObjectiveThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
ContentIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
Lecture notesHandouts can be accessed online.
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
376-1720-00LApplication of MATLAB in the Human Movement SciencesW2 credits2GR.  van de Langenberg
AbstractStudents will learn to import, process and graphically present experimental data using the MATLAB computing environment. Both the data and the methods of analysis will be typical for experiments in Human Movement Science (i.e. kinematics, kinetics and electromyography).
ObjectiveStudents will acquire the ability to independently load, plot, and process kinematic, kinetic and electromyographical data using the MATLAB computing environment.
ContentDrawbacks of Excel; Possibilities in MATLAB; Import of several data formats; Plot of one and more signals; Removing of an offset and filtering of data based on self-written functions; Normalisation and parametrisation of data; Reliability; Interpolation, Differentiation and Integration in MATLAB.
LiteratureDuring the lecture, several electronically available MATLAB introductions are indicated. Course-specific scripts will be provided by the lecturer.
Prerequisites / NoticeA Laptop with MATLAB installed (v2009 or higher) and wireless internet access is mandatory. Two students can share a laptop if necessary. A MATLAB student version can be obtained at Stud-IDES for free.
376-1722-00LSpinal Cord Injury and Exercise
Prerequisite: Anatomy and Physiology
W2 credits2VC. Perret
AbstractIntensive discussion concerning complications of a spinal cord injury and their consequences on trainability and exercise performance of persons sitting in a wheelchair. Overview on the clinical application of exercise testing as well as on the implementation of sport scientific findings to optimise performance of spinal cord injured subjects in rehabilitation and elite sports.
ObjectiveKnowledge of the pathophysiology and the concomitant complications of a spinal cord injury and the consequences for physical exercise and trainability during rehabilitation as well as in recreational and elite sport.
ContentThe following issues will be discussed: Epidemiology and etiology of spinal cord injury; complications and consequences of spinal cord injury; trainability/exercise physiology and spinal cord injury; history and organisation of wheelchair sports; elite sport and spinal cord injury
LiteratureGeneral literature:

G.A. Zäch, H. G. Koch
Paraplegie - ganzheitliche Rehabilitation
Karger-Verlag, 2006
ISBN 3-8055-7980-2

V. Goosey-Tolfrey
Wheelchair sport: A complete guide for athletes, coaches and teachers
Human Kinetics, 2010

Y.C. Vanlandewijck, W.R. Thompson
The Paralympic Athlete
Wiley-Blackwell, 2011
ISBN 978-1-4443-3404-3

Liz Broad
Sports Nutrition for Paralympic Athletes
CRC Press 2014
ISBN 978-1-4665-0756-2
Prerequisites / NoticeVoraussetzung:Vorlesung Anatomie/Physiologie besucht!
376-1974-00LColloquium in Biomechanics Information W2 credits2KB. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong
AbstractCurrent topics in biomechanics presented by speakers from academia and industry.
ObjectiveGetting insight into actual areas and problems of biomechanics.
376-1985-00LTrauma BiomechanicsW4 credits2V + 1UK.‑U. Schmitt, M. H. Muser
AbstractTrauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics.
ObjectiveIntroduction to the basic principles of trauma biomechanics.
ContentThis lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations using multi-body and finite element modelling techniques, aspects of passive safety of vehicles (focusing on restraint systems and vehicle compatibility). Real world examples mainly from automobile safety are used to augment lecture material.
Lecture notesHandouts will be made available.
LiteratureSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics", Springer Verlag
376-2017-00LBiomechanics of Sports Injuries and RehabilitationW3 credits2VK.‑U. Schmitt, J. Goldhahn
AbstractThis lectures introduces the basic principles of injury mechanics and rehabilitation focussing on sports injuries.
ObjectiveWithin the scope of this lecture you will learn the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore you should be able to develop measures to prevent such injury.
ContentThis lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore possibilities to prevent injuries are discussed. Thereby the lecture focuses on sports injuries.
Lecture notesHandouts will be made available.
LiteratureSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - Accidental Injury in traffic and sports", Springer Verlag
Prerequisites / NoticeA course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture.
376-2019-00LApplied Movement Analysis Information W2 credits2GR. Scharpf, S.  Lorenzetti
AbstractBased on practical examples out of sport, everyday movement and therapy, students use and compare different methods of movement analysis.
ObjectiveStudents are able to assess human movement using different methods of movement analysis.
ContentDuring the course students get acquainted with different methods of movement analysis such as: functional, morphological, clinical, mechanical, and others.
Based on practical examples, these methods are used and compared. The examples range from sport, everyday movement and therapy, such as hockey, gymnastics, acrobatics, badminton, gait / running and strength training. In the first phase of the class, the different approaches are applied. In the second phase, small teams are working on individual projects. These will be discussed and presented in plenum.
Lecture notesClass material will be distributed using the moodle platform.
551-1153-00LSystems Biology of Metabolism
Number of participants limited to 15.
W4 credits2VU. Sauer, N. Zamboni, M. Zampieri
AbstractStarting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.
ObjectiveDevelop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.
ContentThe course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.
Lecture notesScript and original publications will be supplied during the course.
Prerequisites / NoticeThe course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.
752-6105-00LEpidemiology and Prevention
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module CS16_101 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
W3 credits2VM. Puhan, R. Heusser
AbstractThe module „Epidemiology and prevention“ describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
ObjectiveThe overall goal of the course is to introduce students to epidemiological thinking and methods, which are criticial pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.
ContentThe module „Epidemiology and prevention“ follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples form nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
752-6151-00LPublic Health ConceptsW3 credits2VR. Heusser
AbstractThe module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
ObjectiveAt the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
ContentConcepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveilllance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, Tuberculosis, Obesity, Public health nutrition).
Lecture notesHandouts are provided to students in the classroom.
Prerequisites / NoticeLanguage of the course is english
752-6403-00LNutrition and PerformanceW2 credits2VS. Mettler, M. B. Zimmermann
AbstractThe course introduces basic concepts of the interaction between nutrition and exercise and cognitive performance.
ObjectiveTo understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.
ContentThe course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise.
Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.
Lecture notesLecture slides and required handouts will be available on the ETH website.
LiteratureInformation on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.
Prerequisites / NoticeGeneral knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

Language: English

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.
Major in Human Health, Nutrition and Environment
Compulsory Courses
701-1701-00LHuman Health, Nutrition and Environment: Term Paper Restricted registration - show details
Only for students of the Major Human Health, Nutrition and Environment.
O6 credits13AJ. Nuessli Guth, T. Julian, K. McNeill, M. B. Zimmermann
AbstractWriting of a review paper of scientific quality on a topic in the domain of Human Health, Nutrition and Environment based on critical evaluation of scientific literature.
Objective- Acquisition of knowledge in the field of the review paper
- Assessment of original literature as well as synthesis and analysis of the findings
- Practising of academic writing in English
- Giving an oral presentation with discussion on the topic of the review paper
ContentTopics are offered in the domains of the major 'Human Health, Nutrition and Environment' covering 'Public Health', 'Infectious Diseases', 'Nutrition and Health' and 'Environment and Health'.
Lecture notesGuidelines will be handed out in the beginning.
LiteratureLiterature will be identified based on the topic chosen.
376-0300-00LTranslational Science for Health and Medicine Restricted registration - show details O3 credits2GJ. Goldhahn, C. Wolfrum
AbstractTranslational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.
ObjectiveAfter completing this course, students will be able to understand:
Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
ContentWhat is translational science and what is it not?
How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
How to measure success?
- Outcome variables
- Improving the translational process
Challenges of communication?
How independent is translational science?
- Academic boundary conditions vs. industrial influences
Positive and negative examples will be illustrated by distinguished guest speakers.
Elective Courses I
401-0629-00LApplied BiostatisticsW4 credits3GM. Müller
AbstractPrinciples and main methods in biostatistics with emphasis on practical aspects. Experimental and observational studies. Regression and analysis of variance. Introduction into survival analysis.
ObjectiveGetting an overwiew of the problems and statistical methods used in health sciences. Practise in using the software R to analyze data and interpreting the sults.
ContentExperimental and observational studies. Relative risks and odds ratios. Diagnostic tests, ROC analysis. Multiple linear and logistic regression, analysis of variance. Introduction into survival analysis.
Lecture notessee teaching document repository
LiteratureLe, Chap T. and Eberly, L.: Introductory Biostatistics. Wiley Interscience, 2014.

Norman, G. and Streiner, D.: Biostatistics. The Bare Essentials. pmph USA. 3th edition 2008.

Rosner B: Fundamentals of Biostatistics. Duxbury Press, 7th edition, 2010.
Prerequisites / NoticeThe statistical package R will be used in the exercises.
If you are unfamiliar with R, I highly recommend the online R course etutoR.
752-6105-00LEpidemiology and Prevention
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module CS16_101 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
W3 credits2VM. Puhan, R. Heusser
AbstractThe module „Epidemiology and prevention“ describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
ObjectiveThe overall goal of the course is to introduce students to epidemiological thinking and methods, which are criticial pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.
ContentThe module „Epidemiology and prevention“ follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples form nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
  • First page Previous page Page  2  of  8 Next page Last page     All