Search result: Catalogue data in Autumn Semester 2020

Electrical Engineering and Information Technology Bachelor Information
Laboratory Courses, Projects, Seminars
A minimum of 18 cp (under the 2016 regulations), respectively at least 15 cp (under the 2018 regulations) must be achieved in the category "Laboratory Courses, Projects, Seminars".
Projects & Seminars Autum Semester 2020)
From HS 2020 onwards, Projects and Seminars (P&S) will be offered as individual courses.
Enrolment is only possible for students in the BSc Electrical Engineering and Information Technology from Friday before the start of the semester.
Places are allocated using the P&S application tool (Link).
Please only enrol for P&S for which you apply via the tool.
NumberTitleTypeECTSHoursLecturers
227-0085-08LProjects & Seminars: Bluetooth Low Energy Programming for IoT Sensing System Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits4PC. Franck
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveBluethoot Low Energy System on Chip – Firmware Programming and sensors Interfacing using an Arm Cortex-M (Nordic nrf52838) Microcontroller

The NRF52832 Bltuethoo Low Energy System on Chip produced by Nordic Semiconductor is one of the pioneering low-power chip to integrate Bluetooth Low Energy (BLE 5.0) and microcontroller functionality into a single die. With the introduction of the BLE 5.0 standard, Bluetooth has achieved high data bandwidth with low power consumption. This makes the technology an ideal match for many applications i.e. IoT sensor application or audio streaming, by address
two of the greatest bottlenecks of these devices. This course offers the chance for participants to do hands-on programming of microcontrollers. In particular, the focus will be laid on interfacing with sensors, acquisition of data, on-board event-driven data processing and BLE transmissions. The programming will be performed in C.

Today’s microcontrollers offer a low power, efficient and cost-effective
solution of tackling a nearly infinite number of task specific applications. Ranging from IoT devices, wearable system, sensor (mesh) device, all the way to be being integrated as submodule for the most complex of system such as cars, planes and rockets. Microcontrollers derive their advantages from the efficient use of resources and as such require very efficient and resource-saving
programming. It is therefore mandatory to understand the microcontroller’s hardware components such as processor cores, ADC, clocks, serial communication, wireless communication, timers, interrupts, etc. The P&S includes 5 weeks project where the student will setup a IoT sensor node to monitor electric power transmission and distribution system.

The course will be taught in English.
227-0085-09LProjects & Seminars: Spiking Neural Network on Neuromorphic processors Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PG. Indiveri
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMachine Learning – Spiking Neural Network – DVS Cameras - Programming Neuromoripch processors – Intel Loihi - Final Project with a presentation.

Compared to the “traditional” artificial neural network, the spiking neural network (SNN) can provided both latency and energy efficiency. Moreover, SNN has demonstrated in previous works a better performance in processing physiological information of small sample size, and only the output layer of the spiking neural network needs to be trained, which results in a fast training rate. This couse focuses on giving the bases of spiking neural networks and neuromorphic processors. Students will learn the tools to implement SNN algorithm in both academic processors and Intel Loihi using data from Event-based Vision camera and biomedical sensors (i.e. ECG and EEG). The course will end with 4 weeks project
where the students can target a specif application scenario.

The course will be taught in English.
227-0085-11LProjects & Seminars: Deep Learning for Image Manipulation (DLIM) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Van Gool
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDeep Learning – Image Manipulation – Image Enhancement – Image Restoration – Style Transfer – Image to Image Translation – Generative Models – TensorFlow/PyTorch – Projects

With the advent of deep learning tremendous advances were achieved in numerous areas from computer vision, computer graphics, and image processing. Using these techniques, an image can be automatically manipulated in various ways with high-quality results, often fooling the human observer. Deep learning based image processing and manipulation are being applied in a vast number of emerging technologies, including image enhancement in smartphone cameras, automated image editing, image content creation, graphics, and autonomous driving. This course focuses on the fundamentals of deep learning and image manipulation. Students will learn the tools to implement and develop deep learning solutions for a variety of image manipulation tasks. The course will end with a 4 weeks project where the students can target a specific application scenario.

The course will be taught in English.
227-0085-12LProjects & Seminars: Electronic Circuits & Signals Exploration Laboratory Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits1PH.‑A. Loeliger
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveAs everyday electronic circuits have transitioned into integrated circuits, they have become increasingly difficult to examine and tinker with. As a result, students become less exposed to basic analog electronic circuits and their fundamental operating principles. At university level, bachelor classes in analog circuits and electronics provide rigorous theoretical insights but are typically focused on linearised operating behaviour.

The goal of this lab course is for the students to enhance their understanding on how basic analog electronic circuits work, or perhaps don't work, and provide enough practical experience for the students to feel at ease using transistors, resistors, capacitances, diodes etc., to create working circuits.

For example, students create circuits that make physical quantities audible. Students are encourage to realise their own circuit ideas.
227-0085-13LProjects & Seminars: Let’s Build and Control our own Atomic Force Microscope... Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3.5 credits3.5PJ. Vörös
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveInvented in the 1980s in Zurich and awarded with a Nobel price, the atomic force microscope (AFM) has enabled us to visualize surfaces at the single atom level, and to measure single molecule and cell-cell interactions, deepening our understanding of material science and biology. This is enabled by controlling micromechanical piezo actuators with nanometer precision and processing noisy signals in order to achieve meaningful data.

In order to introduce you to the capabilities of modern AFMs in biomedical sensing, you will build your own setups in groups of two. You will be introduced to an AFM’s functionality, control, and signal read-out using LabView. A tuning fork signal will be used as the feedback for the self-built AFM. In order to better understand the working principle of a tuning fork, you will also build your own frequency sweeper and analyze it with self-built low-pass filters.
After you have implemented your own setup, you will have the chance to characterize different biomedical samples on state-of-the-art setups. This data will then be analyzed using Matlab.
The focus of this P&S seminar is to enable you to transfer your theoretical knowledge into practice and at the same time get to know how electrical engineering can be used in biomedical research.

The course requires active participation during the practical sessions, a 10-15 min presentation and a short written report on the acquired results. The course will be given in English.

Dates:
05.10, 08.10, 12.10, 15.10, , 26.10, 29.10, 9.11, 12.11
227-0085-14LProjects & Seminars: Technical and Economic Aspects of Renewable Energy Supply Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PG. Hug
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMore and more sustainable and renewable energy technologies are used for electricity generation to cope with climate change. These distributed resources transform the electric power grid and impose major challenges.

In this seminar, students have the opportunity to glance at cutting-edge research in the field of power systems. Possible research questions might be:

- How to integrate distributed energy generation like PV plants and wind turbines into the electricity grid?
- What challenges does the increasing share of electric vehicles and batteries impose on the power grid?
- How to cope for the uncertain generation capacity of renewables and how to forecast it?
- How does the electricity market work and how do the new sources of flexibility transform it?

Students will prepare a presentation and a report on their individual research question, which is based on an assigned paper. The main objectives are to practice literature review, scientific writing and presenting. Students will learn to independently understand specific research results – a crucial skill for academic research including semester and master projects.

The language of instruction is English. Registrations for the seminar are binding.
227-0085-15LProjects & Seminars: Python for Engineers - Get Productive in the Classroom, in the Lab and at Home Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectivePython is an interpreted high-level programming language which is becoming increasingly popular in the academic scientific community as well as in industry. The course will introduce the basics of the python programming language, and will cover some of the most useful Python modules, such as numpy, scipy and matplotlib. The classes will further cover simple GUIs, data analysis and linking with shared libraries or C code. They will further familiarize with the GIT version control system, with the linux shell and with the most common software licenses. Students are not required to have previous Python programming experience.
227-0085-16LProjects & Seminars: Machine Learning for Brain-Computer Interfaces Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Benini
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveA brain-computer interface (BCI) provides a communication and control channel based on the recognition of subject’s intention from spatiotemporal activity of the brain. A typical method to acquire neural activity signals is electroencephalograhy (EEG), which is often used in BCI. In order to make these data usable and get useful information out of them, signal processing techniques play a crucial role. Moreover, feature extraction and machine learning methods are applied to obtain a highly accurate BCI.
The aim of the Project and Seminars course is to give insights of signal processing and machine learning applied to brain-computer interfaces to undergraduate students, by having hands-on experience in brain signal acquisition, data processing, feature extraction, and machine learning.
227-0085-17LProjects & Seminars: Bau eines drahtlosen Infrarot-Kopfhörers Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits4PA. Wittneben
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveInhalt ist der Aufbau eines optischen Infrarot-Audioübertragungssystems. Wir machen uns mit wichtigen Messgeräten (Oszilloskop, Spektrumanalyser) und Messmethoden (Frequenzgang aufnehmen, S/N Verhältnis, nichtlineare Störungen)
vertraut. Der Einfluss der Modulation zur Unterdrückung von Störungen wird untersucht. Jeder Student baut für sich je einen Infrarot-Sender und -Empfänger zusammen und kann diese am Ende
mit nach Hause nehmen. Beim Zusammenbau sammeln wir praktische Erfahrungen mit dem Löten von konventionellen und SMD Bauteilen. Die fertigen Schaltungen werden in Betrieb genommen, abgeglichen und ausgemessen.

Das Praktikum wird an fünf Nachmittagen in Zweiergruppen jeweils Donnerstags durchgeführt. Absenzen werden nur in begründeten Ausnahmefällen erlaubt.

Die Daten der Praktikumsnachmittage, weitere Informationen sowie die Unterlagen für die Vorbereitung können auf unserer Homepage gefunden werden.
227-0085-18LProjects & Seminars: Bits on Air Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PH. Bölcskei
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveTäglich sind wir mit digitaler Nachrichtenübertragung konfrontiert, sei es beim Fernsehen, beim Mobiltelefon oder bei der Internet-Nutzung. Um die Funktionsweise dieser Systeme kennenzulernen, sollen in diesem P&S-Kurs die Grundzüge der Digitalkommunikation vermittelt werden. Auf herkömmlichen PCs werden dazu selber geschriebene Software-Modems implementiert. Diese Modems bestehen genau wie die in der Wirklichkeit verwendeten digitalen Kommunikationssysteme aus einem Modulator, einem Demodulator und einem Algorithmus zur
Synchronisation des Trägers der eintreffenden Nachricht. Einmal implementiert, können mit Hilfe dieser Modems akustisch beliebige Daten (z.B. kleine Textdateien) zwischen verschiedenen PCs übertragen werden.

Zum Programmieren wird MATLAB verwendet. MATLAB-Kenntnisse werden nicht vorausgesetzt. Vielmehr ist das Ziel dieses P&S-Kurses, neben dem Kennenlernen der Grundlagen der Digitalkommunikation auch das Programmieren mit MATLAB zu üben.

Die Daten der Nachmittage können der Bits on Air-Homepage entnommen werden.

Absenzen werden nur in begründeten Ausnahmefällen erlaubt. Der verpasste Stoff muss selbstständig nachgeholt und in einem kurzen Bericht zusammengefasst werden.
227-0085-19LProjects & Seminars: Software Defined Radio Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PH. Bölcskei
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDrahtlose Übermittlung von Informationen über Funk ist heute allgegenwärtig. Je nach Anwendung und Frequenzbereich werden dabei verschiedene Modulationsarten benutzt, wobei digitale Verfahren weitgehend die alten analogen Verfahren abgelöst haben.
Tools für Software Defined Radio (SDR) ermöglichen es, mit relativ kleinem Aufwand in diese Welt einzutauchen und “auf den Wellen zu surfen”. Durch schnellere Computer wird es möglich, dass immer
komplexere Signalverarbeitung in Sendern und Empfängern auf einem Rechner erfolgen können. Dabei können die Algorithmen sehr flexibel und schnell angepasst und verändert werden.

In diesem P&S werden wir uns näher anschauen, wie dies funktioniert und was dahintersteckt. Dazu erarbeiten wir uns in einem ersten Teil Grundlagen zu Frequenzen, Spektren, Modulationsarten,
Signalverarbeitung, u.s.w.

Im zweiten Teil werden wir in Gruppen verschiedene Projekte mit SDR-Tools erarbeiten. Dabei können auch eigene Ideen eingebracht werden. Am Schluss werden die Projekte in einer Präsentation den anderen Teilnehmern vorgestellt.
227-0085-21LProjects & Seminars: Quad-rotors: Control and Estimation Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PJ. Lygeros
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe objective of this P&S is to make a real-world quad-rotor fly autonomously by applying the control and estimation theory taught in class.
Details of this P&S course can be found at: Link
A video showing highlights from HS2018 can be see here: Link

In the first half of the P&S, we will introduce the physical model for a quad-rotor and use this to apply the control and estimation techniques that are taught in the 5th semester in the Control System 1 class. The students will then create their own control function for a quad-rotor and test these in simulation. The second half of the course will involve the students implementing the control and estimation algorithms they design in the real-world on our fleet of nano-quad-rotors. Once stable flight is achieved, the students will have the freedom to perform tasks with the quad-rotor. By implementing the control and estimation algorithms on a real-quadcopter, the students will gain experience with how decisions in the modelling and design stage affect real-world performance.

Important Information:
Students must be in the 5th semester.
The first class will be Monday, September 21 for all students.
Classes will then occur every second week. The students will be split into two groups and the classes for each group will occur on alternating weeks.
It is preferable to be taking the Control Systems 1 (CS1) course but not mandatory. Those students who are not taking CS1 will need to complete some extra reading to understand some aspects of this P&S.
Due to COVID-19, the course will be offered in an online setting with classes being held over Zoom. The students will be able to take a real-world quad-rotor to their homes in order to implement the control and estimation algorithms taught in the course.
227-0085-22LProjects & Seminars: Programmierung eines Blackfin DSP Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits4PH.‑A. Loeliger
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDie Echtzeitverarbeitung von digitalen Signalen ist eine Herausforderung welche in der Praxis häufig auftritt (digitale Kommunikation, Audio- und Videovearbeitung, ...).

Es gibt eine Familie von Mikroprozessoren welche spezifisch für die Echtzeitverarbeitung von digitalen Signalen optimiert sind: Sogenannte "Digital Signal Processor" oder kurz DSP. In diesem Praktikum lernt ihr einige Grundlagen der digitalen Signalverarbeitung und deren Implementation auf einem DSP kennen.

In Zweiergruppen werdet ihr euch am Beispiel von akustischen Signalen Schritt für Schritt an die Theorie und die Programmierung in Assembler herantasten. In der zweiten Hälfte des Semesters könnt ihr ein kleines, selbst bestimmtes Audio-Projekt verwirklichen.

Für die Implementierung verwenden wir ein für dieses P&S entwickeltes Board mit Komponenten welche auch in der Industrie verwendet werden. Es ist bestückt mit Ein- und Ausgängen für analoge Audiosignale, einem Codec, welcher das analoge Signal in ein digitales und zurück umwandelt, einem DSP der Familie "Blackfin" von Analog Devices (BF532) und 32MB Arbeitsspeicher.
227-0085-23LProjects & Seminars: Phase Change Materials and Memories Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W1 credit1PM. Yarema
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveYou will learn how to make and characterize phase change materials, which are being researched by companies like Intel and Micron for next generation transistor free memory, known as phase change memory (PCM). In the first laboratory session, you characterize the phase change of a PCM material using x-ray diffraction. In the second laboratory session, you will synthesize nanoparticles of the PCM material germanium telluride to understand the challenges and potential for addressing scaling issues in PCMs.

Important information:
In addition to the 8 hours of laboratory time, 6 hours of additional reading, preparation, and data analysis is expected. For the laboratory class, you must adhere to the safety rules introduced by the instructor and to the dress code (long pants and close-toed shoes must be worn, long hair must be pulled back, and no watches/jewelry on hands or wrists).

The course will be held in English. Minimum number of students is 3.
227-0085-24LProjects & Seminars: Vision and Control in RoboCup Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W1 credit1PL. Van Gool
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveRoboCup is a tournament where teams of autonomous robots compete in soccer matches against each other. The ETH team NomadZ plays in the standard platform league with the humanoid NAO robot, where the focus lies on developing robust and efficient algorithms for vision, control and behavior. In this course, the basic challenges we encounter in RoboCup are presented and approached in practical exercises using MATLAB and Python. The topics cover visual localization, deep learning for object detection and reinforcement learning for control.

The course is offered to students of the 5th semester.
227-0085-25LProjects & Seminars: Magnetresonanz: Vom Spektrum zum Bild Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W1 credit1PK. P. Prüssmann
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDas Phänomen der magnetischen Kernresonanz (NMR) und ihre Anwendung in der Spektroskopie und in der Bildgebung werden kennen gelernt. Der Kurs beginnt mit einer allgemeinen Einführung in die NMR. Danach werden Messungen an einem klinischen MRI-Gerät durchgeführt. Dabei werden die NMR-Experimente selbst entwickelt und programmiert. Vom einfachen spektroskopischen Experiment ausgehend werden schrittweise die Grundlagen der Bildgebung erarbeitet. So können schliesslich Schnittbilder von Testobjekten erstellt werden.

Aufgrund der Corona-Situation wir der Kurs nicht direkt am Scanner sondern per Remote-Verbindung in einem Seminarraum abgehalten. Bei Verbot von Präsenz-Unterricht muss die Veranstaltung entfallen.
Der Kurs kann erst ab einer Mindestteilnehmerzahl von 2 durchgeführt werden.

Kurstermine:
23.11., 30.11., 7.12., 14.12.2020
227-0085-26LProjects & Seminars: Biosignal Acquisition and Processing for IoT Low Power Wearable Sensing... Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PS. Kozerke
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveBiosignal acquisition and processing – Wearable sensor node design and analysis for bio-impedance sensor using an Arm Cortex-M (Nordic nrf52838) Microcontroller
Wearable smart sensor electronics has the potential to revolutionize the medical field. Various body conformal flexible sensors have been used to monitor motion and physiological electrical signals such as electrocardiography (ECG), electroencephalography (EEG) and body composition analysis via body bio-impedance measurements. Smart sensor nodes not only provide accurate and continuous data in time but also automate the process of maintaining medical records, thereby lowering the workload oft he health worker or clinician. This course offers an avenue for the students to understand the interdisciplinary principles that make it possible to interpret human physiology by utilizing discreet electronic components. Most importantly, participants will get a chance to do hands-on system design specific to electronically tracking a particular physiological phenomenon. In particular, the focus will be laid on programming of micro controllers, interfacing with sensors, acquisition of data and utilizing discreet analog elements for bio-signal processing. The programming will be performed in C.


The course will be taught in English and by the ITET center for project based learning.
227-0085-27LProjects & Seminars: Android Application Development (AAD) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits3PS. Kozerke
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveAndroid Applications – Programming and development of Application - Android Studio – Smart Phone Sensors – GPS and Google Maps.

Although the App-Industry is dominated by the giant Apps right now, it is still crucial that one knows how those Apps function and how those Apps are communicating with their hardware. This course offers the opportunity for the participants to understand the development of application using Android Studio. Most importantly, participants will get a chance to do hands-on software design specific to Android smartphone and the data acquisition from sensors, GPS, google maps and other internal devices. The main goal of the course if providing the students with the basic principle and software programming for build up every android application. The course include 4-5 weeks project were the students alone or in group will build up a working demo of a target application. The course will conclude with the presentation of the students work. Previous experience in C/Java or other languages is preferable but not mandatory. The students will program their own Android Smartphone.

The course will be taught in English by the new Project-based learning centre.
227-0085-28LProjects & Seminars: iCEBreaker FPGA For IoT Sensing Systems Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Benini
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveUltra Low Lattice FPGA – High Level Programming – Peripehrals Interfacing using an Lattice FPGA

Field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing , so they are also "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). However more and more nowdays producers and open source community are providing higher level toolls to program them similary than processors. On the other side still it is important know the hardware architectures. This course will give to the students the opportunity to program FPGA in a high level way and use them to connect with external peripherals such as display, sensors, etc. In particular, the course will use the iCEBreaker FPGA boards that is specifically designed for students and engineers . They work out of the box with the latest open source FPGA development tools and next-generation open CPU architectures. The course will also iCEBreaker can be expandable through its Pmod connectors, so the students can make use of a large selection of third-party modules. The course will include a project where the students will learn how to build a full working system for the next generation of Internet of Things intelligent smart sensing.

The course will be taught in English by the new D-ITET center for Project-based learning.
227-0085-29LProjects & Seminars: Practical Embedded Deep Neural Networks with Special Hardware Accelerator Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PS. Kozerke
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDeep neural networks (DNNs) have become the leading method for a wide range of data analytics tasks, after a series of major victories at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). For ILSVRC, the task was to classify images into 1000 different classes, many of which are difficult to distinguish (e.g. many classes are different breeds of dogs). All that was given were 1.2 million labelled images. Meanwhile, this recipe for success has taken over many more areas, from image-based tasks like segmenting objects in images, detecting objects, enhancing images using super-resolution and compression artifact reduction, to robotics and reinforcement learning, and a wide range of industrial applications.
DNNs and their subtype convolutional neural networks (CNNs) have not been new in the 2013 when the wave of success has started, but they got this huge boost through the new availability of large-scale dataset and—at least as importantly—the availability of the necessary compute resources by using GPUs to perform the computations required during training.
While GPUs were then also used to stem the high computation effort of DNNs during inference (e.g. classifying images directly using a trained DNN rather than training the DNN itself). The high demand, the need for cost efficiency, and the goal of deploying DNNs not just in data centers but pervasively in everyday devices, wearables, and low-latency industrial or interactive applications, has triggered the development of various application-specific processors which are much faster, vastly more energy efficient, and cheaper at the same time—such as the Google TPU, Graphcore, …, and Huawei’s Ascend/Atlas platforms.

In this course, you will learn:
1) the basics of deep neural networks, how they work, and what challenges there are for inference,
2) how platforms with specialized hardware accelerators, specifically the Huawei Atlas 200, can be used for running DNN inference and getting a practical application running, and
3) work on your own project using DNNs and hardware accelerators based on your own ideas or on some of our proposals.

The course will be taught in English by the new D-ITET center for Project-Based Learning and a special guest lecturer from Huawei. Individual interactions/help can also be in (Swiss) German.
Most sessions will be around 1 hour of lecture and 2 hours of practical computer exercises. We will start an introduction and then you will have ca. 8 weeks to work on your project, which will concluded with a final presentation of your results.
  • First page Previous page Page  3  of  5 Next page Last page     All