Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Spring Semester 2015

Agroecosystem Science Master Information
Majors According
Major in Animal Science
Disciplinary Competences
Ruminant Science
NumberTitleTypeECTSHoursLecturers
751-6502-00LRuminant Science (FS) Information W+4 credits4GM. Kreuzer, M. C. Härdi-Landerer, S. Marquardt, S. Neuenschwander, C. Soliva
AbstractThe course provides the scientific basis of the central aspects in ruminants of cattle, sheep and goat breeding, diseases and the interrelationship of animal nutrition and environment. Aspects of organic farming and tropical livestock systems form part of the course. Means of knowledge transfer include interdisciplinary approaches, disciplinary parts, web-based learning and self-study.
ObjectiveAt the end of the course the students are able to apply, by a comprehensive understanding of the underlying mechanisms, their knowledge in various fields of ruminant science. They will be able to develop and recommend best strategies for large and small ruminant breeding, for sustained animal health and disease prophylaxis, for environmentally friendly animal nutrition etc. They will be trained to carry out interdisciplinary and disciplinary research at the highest level. The course Ruminant Science (HS) offered in autumn has a similar structure but is complementary to this course.
ContentFields (contact hours)
- Introduction
- Interdisciplinary topics: 12 h
- Organic Ruminant Systems
- Tropical Ruminant Systems
- Mastitis
- Disciplinary topics: 36 h
- Cattle, Sheep and Goat Breeding: 12 h
- Ruminant Diseases and Prophylaxis: 12 h
- Ruminant Nutrition and the Environment (incl. general introduction): 12 h
- Lectures held by the students: 4 h
In summary
- Contact hours: 52 h
- Self-study within semester: 30 h (especially preparation for the interdisciplinary courses and the own lecture)
- Self-study in semester break: 38 h
Total: 120 h
Lecture notesDocumentations, links and other materials will be provided at the start of the course.
LiteratureInformation on books and other references will be communicated during the course.
Prerequisites / NoticeThe specialty of this course is that for the first time the animal science disciplines are unified. This is realised with a particular emphasis on interdisciplinary focal areas and new forms of teaching. At the same time the essential basics in the central fields are communicated.

The field of Ruminant Science will also be a part of the spring semester (planned interdisciplinary topics: Lameness, Fertility in Cows, Food Intake; disciplinary courses: Animal Husbandry, Ruminant Reproduction, Nutrition Physiology in Ruminants). However both courses are organized independently.

Conditions for successful participation: Background on animal science from the Bachelor is desired. In order to attend the Minor in Ruminant Science without any animal science background, 2 credit units are reserved for an initial self-study of the basics necessary to successfully pass the minor. A realistic self-assessment concerning the need for additional self-study is recommended for students which focused on Agricultural and Resource Economics in the Bachelor of Agricultural Science ETH. This necessary effort depends on the extent to which animal science courses have been already attended in the BSc.

The control of performance will consist of:
- an own lecture
- an interdisciplinary final oral examination with focus on comprehension of the fundamental linkages rather than of specific details
Non-Ruminant Science
NumberTitleTypeECTSHoursLecturers
751-6602-00LPig Science (FS)W+3 credits2GG. Bee, E. Hillmann, S. Neuenschwander
AbstractThe overall goal of the course is to provide the essential scientific knowledge of the genetic, physiological, behavioural and special nutritional aspects of pigs metabolism, health and diseases, and of the implications for product quality and economics.
ObjectiveStudents will
- understand the complex interactions of nutrition, quality traits of products, breeding and reproduction, health management and husbandry as well as various production systems including economics.
- be able to critically analyze published research data.
- be able to present precise scientific reports in oral form.
ContentAfter the Introduction (Aims of the course, organisation, program, student contribution & evaluation), actual topics that are relevant for pig production will be presented:
Nutrition; SGD; Breeding; Slaughtering; Economic Aspects; Meat Quality; presentation of Current Dissertations.
Lecture notesHandouts/scripts are being individually distributed by the the lecturers.
LiteratureSpecific literature is being indicated individually by the lecturers.
751-6802-00LPoultry ScienceW+2 credits1GR. Messikommer, R. Zweifel
AbstractThe overall goal of the course is to provide the essential scientific knowledge of the genetic, physiological and special nutritional aspects of poultry's metabolism, animal health and diseases, and of the implications for environment, product quality, housing and animal welfare, and breeding programs.
ObjectiveStudents will
- understand the complex interactions of nutrition, quality traits of products, breeding and reproduction, health management, diseases and husbandry as well as various production systems including environmental aspects and sustainable resource use.
- be trained to carry out interdisciplinary and disciplinary research at the highest level.
- be able to critically analyze published research data.
- be able to present precise scientific reports in oral and written form.
ContentAfter an introduction, the nutrition and health/diseases (2x2h each) are discussed.
In addition to the lectures held at the ETH, there are two days external courses at the Aviforum in Zollikofen (held by Aviforum and BVET). In this two days, relevant topics important for poultry science/production are discussed:

Aviforum:
- Introduction, development and impact of the poultry production (egg & meat, national & international), organization and division of work, importance of the wholesale merchants;
- Poultry: production systems, Good Manufacturing Practice
- Egg production: sorting, handling and storage, product quality, foodstuff legislation, production scheduling and economics.
- Genetics: breeds, gene reservoirs, hybrid breeding, organizations and hybrids
- Hygiene: concept and needs, assessment
- Actual experiments (hens and broiler): practical training (exterior and performance test, assessment of husbandry).

BVET:
- Origin of the chicken and its original habitat, wood hen -> requirements for livestock husbandry, anatomy and normal behavior, development of alternatives
- Animal welfare aspects of poultry production.
Lecture notesHandouts/scripts are being individually distributed by the lecturers.
LiteratureSpecific literature is being indicated individually by the lecturers.
Livestock in the World Food System
NumberTitleTypeECTSHoursLecturers
751-7702-00LTropical Animal Genetics and BreedingW+1 credit1VM. Goe
AbstractThe course provides an overview on animal breeding and genetics in the tropics with focus on livestock production in low-input farming systems. Topics covered include elements of different types of breeding programmes and the management and conservation of animal genetic resources.
ObjectiveLectures and independent exercises allow students to gain a general understanding of animal genetics and breeding in the tropics.
Lecture notesHandouts will be provided at the beginning of the course. Selected books and other references will be communicated as needed during the course.
752-2302-00LMilk Science Information W+1 credit1VJ. Berard, C. Lacroix, L. Meile
AbstractThe course provides information on synthesis and composition of milk, and the effects of various factors. Furthermore, specific hygienic and microbial problems of milk and fermented milk products, as well as basics on processing of milk into dairy products will be presented and discussed. The course is conceptually oriented towards the agri-food chain.
ObjectiveStudents attending this course get a comprehensive overview on milk and important milk products both from an agricultural and a food science perspective. In this way they earn competence at this borderline which is a pre-requisite for an efficient collaboration between milk producers, processors and consumers.
ContentTopics (contact hours)
- Milk synthesis and composition (Michael Kreuzer): 4 h
- Hygienic aspects of milk and milk products (Leo Meile): 6 h
- Milk processing (Christophe Lacroix): 4 h
Total contact hours: 14 h
Self-study within semester: 16 h (especially preparation for the examination)
Lecture notesDocumentations, links and other materials will be provided by each lecturer at the start of his part of the course. Additionally, an extensive German documentation for the part of M. Kreuzer can be downloaded via Moodle in "Kurs Nutztierwissenschaften". The access code will be communicated by e-mail.
LiteratureInformation on books and other references will be communicated during the course.
Prerequisites / NoticeA special point for this course is that it is taught by professors from food and agricultural sciences and is aimed to integrate both fields and provide a clear illustration of this important duality for the production of high quality, and safe dairy food.

This course is a core element of the Minor in Food Quality and Safety for students of the Master in Agroecosystem Science. It is optional (i) in the Major of Animal Science, (ii) for students selecting Majors in Crop Science or Food & Resource Economics. No specific qualification is demanded to attend the course.

Performance control is done by a final written examination of 60 min duration of the open-books type (all paper files can be brought and used).
752-5106-00LMeat Technology Restricted registration - show details
Prerequisite: successful participation in "Quality of Products of Animal Origin" (751-7800-00L, take place in FS).
W+1 credit1GD. Suter, M. Kreuzer
AbstractThe understanding of procedures and quality requirements in meat production and processing is the focus of this course. The basis for that is a modern meat technology at all steps of processing. In the form of a block course these procedures are demonstrated in practice, while the corresponding theoretical background is taught by accompanying lectures.
ObjectiveThe course in meat technology shall give in a reality-near manner an insight into meat production and processing, cover theoretical and practical aspects, and provide knowledge of the versatile aspects of meat hygiene and meat technology. The language used in this MSc course is German.
ContentBlockkurs Fleischtechnologie
- Vorlesungen: Einführung in die Fleischwirtschaft und Schlachtviehvermarktung (Landesversorgung, Marktgeschehen, Organisationen, Preis- und Qualitätsmerkmale). Technik und Hygiene des Schlachtvorganges (Geflügel, Schweine, Grossvieh). Fleischqualität und Fleischwarensorten. Fleisch- und Fleischwarentechnologien (Handwerk und Industrie). Aspekte der Fleisch- und Fleischwaren - Mikrobiologie und -Hygiene. Fleischchemie. Molekularbiologische Aspekte (Tierartbestimmung, BSE). Gesetzgebung und Produktehaftpflicht im Bereich Fleisch und Fleischwaren.
- Praktische Uebungen: Kalbs- und Schweine-Zerlegung. Stückbenennung und -verwendung. Herstellung verschiedener Fleischwaren.
- Exkursion: Besuch eines Grossbetriebs mit Schweineschlachtung und Produktion sowie eines Geflügelschlachthofes unter fachlicher Leitung.
Lecture notesVorhanden, wird stundenweise verteilt.
LiteratureFleisch, Technologie und Hygiene der Gewinnung und Verarbeitung; Verlag Eugen Ulmer 1988. ISBN 3-8001-2135-2
Fleischtechnologie; Behr's Verlag1996 ISBN 3-86022-188-4
Prerequisites / NoticeBesonderes zum Besuch der Veranstaltungsteile der Lerneinheit „Fleischtechnologie“:

Die Lehrveranstaltung „Qualität tierischer Produkte“ ist Voraussetzung für die Belegung des Blockkurses.

- Der Blockkurs Fleischtechnologie findet in Spiez (Ausbildungszenter für die Schweizer Fleischwirtschaft) und in Courtepin nach Ende des Frühjahrssemester statt.
Animal Health and Genetics
NumberTitleTypeECTSHoursLecturers
751-6212-00LGenetic Evaluation of LifestockW+1 credit1GC.  Baes
AbstractMethods for practical genetic evaluation in livestock populations are presentend and applied in assignments using small numerical examples. Applications in practical pig and cattle breeding are dealt with in guest lectures.
ObjectiveThe students know the most important methods used for genetic evaulation in livestock populations. They are able to apply these methods to simple examples.
Content- Selection index and BLUP
- The BLUP Multitrait Animal Model
- Genetic evaulation using maternal effekts
- Random Regression and the test day model
- Guest lectures on practical applications of genetic evaluation in pigs and cattle.
Lecture notesCopies of the slides are available on the net.
LiteratureTo be announced in the lectures.
751-6111-00LPhysiology and Pathophysiology in Selected Organ Systems
Does not take place this semester.
W+2 credits1VS. E. Ulbrich
AbstractThe course procures detailed understanding on the development of diseases and their impact on the apparatus. The focus is on the understanding of mechanism and their variations, which compared to normality, lead to restrictions and diseases.
ObjectiveAm Ende dieser Lehrveranstaltung sind die Studierenden in der Lage, Zusammenhänge zwischen Krankheiten, ihren Uraschen, Symptomen und Auswirkungen zu erkennen und verstehen. Sie sind befähigt, dieses Wissen auf neue, ihnen unbekannte Krankheiten zu Übertragen und Folgerungen für Therapie und Prophylaxe zu ziehen.
751-7406-00LCurrent Problems of Herd Health and ManagementW+1 credit1SM. C. Härdi-Landerer
AbstractCurrent problems of animal health and husbandry with a view to latest scientific findings, statutory aspects and evolutions in practice.
ObjectiveThe students are informed about current problems. They know how to acquire information independently and to discuss a predefined topic well informed
751-6220-00LFuntional Genomics in Livestock PhysiologyW2 credits2GS. E. Ulbrich, S. Bauersachs
AbstractFundamentals in functional genome analysis will be teached in this interactive lecture and the practical part. The topics will include the areas transcriptomics, proteomics, and epigenetics, and their impact on research in domestic animals.
ObjectiveThe conveyed knowledge shall enable the students to recognize the potential impact of omics technologies on the research in the context of animal physiology and genetics as well as on future animal production. Recently published studies in the field of reproductive biology will be discussed with regard to agricultural sciences.
ContentA main focus of this lecture and the corresponding practical course will be on next-generation sequencing technologies, e.g., RNA sequencing (RNA-Seq), small RNA-Seq, as well as methyl-Seq und ChIP-Seq. In proteomics, methodological basics will be given, such as 2D gel-based and mass spectrometry approaches. An important point of the lecture and the subsequent practical course will be the bioinformatics data analysis. Fundamental principles and strategies for the analysis of genomics data will be discussed and basic bioinformatics analyses will be performed.
LiteratureA selection of review articles will be provided at the beginning oft he lecture series.
Prerequisites / NoticeBasics in molecular biology
751-6122-00LPhysiology of LactationW2 credits2GS. E. Ulbrich, R. Bruckmaier
AbstractIm Rahmen der Lehrveranstaltung Laktationsphysiologie lernen die Studierenden die detaillierten Vorgänge kennen, die zur Milchbildung und Milchabgabe im Rahmen der Laktation bei Säugetieren, insbesondere bei Nutz- und Wildtieren, führen.
ObjectiveZiel der Vorlesung ist das Verständnis der komplexen Funktion der Laktation. Mit den erworbenen Kenntnissen werden die Studierenden befähigt, das Potential und die Problematiken zu beurteilen und weiterzuentwickeln, die sich in der Tierproduktion im Rahmen der Milchproduktion ergeben.
ContentDie interaktive Vorlesung, die durch zwei Praktikumstage komplementiert wird, ermöglicht den Studierenden die detaillierten Vorgänge kennenzulernen, die zur Milchbildung und Milchabgabe bei Säugetieren führen.
Dazu gehören das grundlegende Verständnis der Entwicklung und Funktionsstadien der Milchdrüse und ihre Bedeutung für die verschiedenen Nutztierspezies und den Menschen als Nahrungsmittel. Auch werden hormonelle Veränderungen, die sich während der unterschiedlichen Phasen der Laktation einstellen, eingehend erörtert. Zudem werden Techniken des Milchentzugs in Vorlesung und Praktikum diskutiert und die mitunter herausfordernde Interaktionen zwischen Melktechnik und Tier thematisiert.
Lecture notesDen Studierenden werden die Folien der Vorlesung als pdf zeitnah bereitgestellt.
LiteratureF. Döcke, "Veterinärmedizinische Endokrinologie"
Prerequisites / NoticeVorraussetzung:
Die Vorlesung "Endokrinologie und Reproduktionsbiologie" (751-6113-00L, findet im HS statt) eignet sich als sehr gute Vorbereitung und Ergänzung zur "Laktationsphysiologie".
Termine:
Die genauen Termine insbesondere für die stattfindenden Praktika werden beim ersten Termin nach gemeinsamer Absprache festgelegt.
Methodology Competences
Methods in Animal Sciences
NumberTitleTypeECTSHoursLecturers
751-7512-00LPractical Course in Applied EthologyW+2 credits3GE. Hillmann
AbstractThe course imparts the knowledge of conducting of scientific projects in applied ethology by performing a project in small teams. This includes planning, methods and implementation, analysis and presentation. After the end of the course, the students write a short manuscript about their project in form af a scientific paper.
ObjectiveStudents know the procedure and most important steps within a scientific project. They know important statistical methods for data analysis in ethological experiments und are able to illustrate the results and present them in a short scientific talk. This knowledge can be applied in future projects, e.g. master or PhD theses.
ContentWährend des fünftägigen Blockkurses an der Agroscope Reckenholz-Tänikon in Tänikon führen die Studierenden in Kleingruppen ein wissenschaftliches ethologisches Projekt durch. Sie erarbeiten am ersten Tag die Fragestellung und Hypothese und nehmen am zweiten und dritten Tag Daten auf, die am vierten Tag statistisch ausgewertet und graphisch dargestellt werden. Am letzen Tag werden alle Projekte präsentiert und diskutiert. Zusätzlich werden in Seminaren Grundlagen zu Hypothesenbildung und Versuchsplanung, zur Methodik ethologischer Datenaufnahme sowie zu problemorientierter Staistik vermittelt. Im Anschluss an den Kurs wird durch die Studierenden über ihr Projekt ein kurzer Bericht in Form einer wissenschaftlichen Arbeit verfasst.
Lecture notesnone
LiteratureMartin, P & Bateson, P. Measuring Behaviour. 1993, 2nd edition, Cambridge University Press
Prerequisites / NoticeThe course will take place from 24.-28.8.2015 at Agrospcope in Tänikon. Accomodation in Tänikon (ca. 280.-). Please bring with you suitable clothes and your laptop if available.
A preliminary meeting will take place during spring semester. Registration until 31.6.15, minimum number of participants: 4, maximum 15.
751-7602-00LApplied Statistical Methods in Animal ScienceW+1 credit2VC.  Baes
AbstractRefresh matrix operations and solving of systems of linear equations using the generalised inverse. Introduction to theory and application of linear models: regression, models with fixed effects (one factor, multiple factors, interactions), models with random effects, mixed models. Assignments using the statistics programmes R and SAS.
ObjectiveThe students are familiar with matrix operations and the solving of systems of linear equations. They know the possibilities to solve systems of linearly dependent equations using the generalized inverse. They are able to set up linear models for the analysis of animal science data. They know the difference between fixed and random effects. They are familiar with the application of the statistics programmes R and SAS to solve linear models and to interpret their results.
Content- Matrix algebra, systems of linear equations, generalised inverse
- Linear models with fixed effects:
- Regression: simple linear, multiple, non linear regression
- Models with 1 factor, 2 factors (without and with interaction), generalisation
- Linear models with random effects, mixed linear models
Lecture notesCopies of the slides are available on the net.
LiteratureTo be announced in the lectures.
751-6003-00LTraining Course in Research Groups (Large) Restricted registration - show details W+6 credits13PM. Kreuzer, E. Hillmann, S. Neuenschwander, S. E. Ulbrich
AbstractThe students will learn the conceptual and methodological background of research in the animal science groups of the Institute of Plant, Animal and Agroecosystem Science. In addition to teaching the theoretical background, the major aim of the course is to integrate the students into the research groups (on job training) and, hence, to focus on the practical application of the knowledge.
Objective- Introduction into the conceptual and methodological basis of research
- Integration of the students into the research groups (on job training)
- Application of the gained knowledge
ContentThe students will be integrated into the research groups’ day-to-day work and will thus deal with all aspects of scientific work. This comprises the planning (conceptually and logistically), execution (data collection, laboratory analyses) and evaluation (statistics, data presentation) of experiments as well as the basics of scientific writing (aim: later publication, Master thesis). The research topics and the range of methodologies vary between the animal science research groups of the Institute of Plant, Animal and Agroecosystem Sciences.
Lecture notesNone
LiteratureSpecific readings after enlisting in a particular research group.
Prerequisites / NoticeThe number of training slots in the various groups is limited. It is therefore highly recommended to contact the group leaders early enough (first come first serve).
The full integration in a research group often means to work on weekends.
The total time budget is equivalent to about 180 hours. Active participation in group meetings (discussion, presentation) and short written reports about the work conducted are required for the 6 credit points. There are no grades, it is only pass or fail.
751-6003-01LTraining Course in Research Groups (Small) Restricted registration - show details W+3 credits6PM. Kreuzer, E. Hillmann, S. Neuenschwander, S. E. Ulbrich
AbstractThe students will learn the conceptual and methodological background of research in the animal science groups of the Institute of Plant, Animal and Agroecosystem Science. In addition to teaching the theoretical background, the major aim of the course is to integrate the students into the research groups (on job training) and, hence, to focus on the practical application of the knowledge.
Objective- Introduction into the conceptual and methodological basis of research
- Integration of the students into the research groups (on job training)
- Application of the gained knowledge
ContentThe students will be integrated into the research groups’ day-to-day work and will thus deal with all aspects of scientific work. This comprises the planning (conceptually and logistically), execution (data collection, laboratory analyses) and evaluation (statistics, data presentation) of experiments as well as the basics of scientific writing (aim: later publication, Master thesis). The research topics and the range of methodologies vary between the animal science research groups of the Institute of Plant, Animal and Agroecosystem Sciences.
Lecture notesNone
LiteratureSpecific readings after enlisting in a particular research group.
Prerequisites / NoticeThe number of training slots in the various groups is limited. It is therefore highly recommended to contact the group leaders early enough (first come first serve).
The full integration in a research group often means to work on weekends.
The total time budget is equivalent to about 90 hours. Active participation in group meetings (discussion, presentation) and short written reports about the work conducted are required for the 3 credit points. There are no grades, it is only pass or fail.
Project Management and Presentation Skills
NumberTitleTypeECTSHoursLecturers
751-1000-00LInterdisciplinary Project Work Information Restricted registration - show details
Prerequisite: successful completion of the bachelor programme.
O3 credits4UB. Dorn, E. Frossard, L. Meile, H. Adelmann, N. Buchmann, C. De Moraes, P. A. Fischer, M. C. Härdi-Landerer, M. Kreuzer, U. Merz, S. Peter, M. Schuppler, M. Siegrist, J. Six, S. E. Ulbrich, A. Walter
AbstractDie Studierenden der Agrar- und Lebensmittelwissenschaften erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartner im Bereich der Nahrungsmittelwertschöpfungskette gestellt werden.
ObjectiveDie Studierenden kennen
- die Grundlagen des Zeit- und Projektmanagements
- Vorgehensweisen, um Probleme, die ihnen von Projektpartnern gestellt werden, zielorientiert zu lösen.
ContentDie Studierenden der Agrar- und Lebensmittelwissenschaft erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartnern entlang der Nahrungsmittelwertschöpfungskette gestellt werden. Die Studierenden präsentieren und diskutieren die Lösungsvorschläge an der Schlussveranstaltung mit den Projektpartnern und verfassen einen schriftlichen Projektbericht.
Prerequisites / NoticeDie Anwesenheit der Studierenden an der Startveranstaltung am 26.2.2015 gemäss speziellem Programm ist Pflicht.
Major in Crop Science
Disciplinary Competences
Cropping Systems
NumberTitleTypeECTSHoursLecturers
751-4704-00LWeed Science IIW+2 credits2GB. Streit, N. Delabays, U. J. Haas
AbstractModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops.
ObjectiveAt the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats.
ContentModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.
751-3604-00LPlant Breeding
Does not take place this semester.
W+3 credits3GA. Hund, B. Boller, C. Grieder, R. Kölliker, B. Studer
AbstractSuccessful plant breeding requires knowledge of genetics, the methods to detect genetic variation and to utilize it for selection. The course builds on the course "Pflanzengenetik" and illustrates these basics by means of exercises and practical examples. This will be complemented by lessons in molecular breeding and latest developments in genotyping and phenotyping.
ObjectiveAt the end of the course you will be able to design, assess and analyze variety test experiments. You will have basic knowledge on phenotyping and genotyping technologies, and know how to connect this information for quantitative trait loci (QTL) mapping and association analysis. Furthermore, you will be able to assess relationships among genotypes by means of multivariate statistics (e.g. cluster analysis) using genetic and phenotypic information.
ContentThe course is organized in the following three modules:
Module 1: Phenotyping of plant breeding experiments in the field phenotyping platform (FIP) at Eschikon Field Station.
Module 2: Statistical evaluation of the assessed data in R
Module 3: Molecular breeding
The course will be held at Eschikon Field Station, where 12 computers will be available for exercises with R.
We will observe the development of crops planted in the unique filed phenotyping platform. The field part includes two full days (July 02/03) during the summer semester break. The dates are chosen to allow you assessing buckwheat and wheat plants at stages of development, when meaningful measurements can be taken. In case somebody can't attend the course at these two days for justified reasons, we will seek for an alternative exercise.
During the course, we will have a closer look at wheat and buckwheat.
In wheat, we aim to teach the basic skills of phenotyping of plant development. You will assess the development using the simple scoring method, to train your breeder's eyes. Furtheremore, you will use sensors and indices used in the novel Field Phenotyping Platform (FIP), such as normalized difference vegetation index (NDVI), thermography and multispectral sensing. At the end of the course you will be able to judge the advantages of the "NDV-eye" vs. your Breeder's eye.
With Buckwheat we aim to establish a breeding program at ETH which is mainly operated by students. Here we need your enthusiasm, experience and input in order to succeed. You will score different traits of agronomic importance during the field day in summer. At the end of the course you should be able to pick the best varieties to make crosses for a planned breeding program organized by you and your fellow students of subsequent semesters.
In the statistical part of the course (module 2), you will learn how to process your data using the statistic package R and ASREML-R. For example, you will use the data assessed in module 1 to calculate heritabilities by means of analysis of variance. This part requires a basic understanding of R as taught in "Experimental Design and Applied Statistics in Agroecosystem Science" as well as of quantitative genetics as taught in "Pflanzengenetik". However these courses are not mandatory to enroll in plant breeding.
In the third module, you will learn about the genetic toolbox that is available for molecular breeding. Starting with the latest developments in DNA marker and genotyping technologies, the basic principles of genetic linkage mapping and QTL analysis will be illustrated. Novel breeding concepts such as genomic selection or breeding by design will be explained, discussed and evaluated for their potential to accelerate breeding progress in different crop species.
Prerequisites / NoticeYou need a Basic understanding of R as taught in "Experimental Design and Applied Statistics in Agroecosystem Science" as well as quantitative genetics as taught in "Pflanzengenetik". However these courses are not mandatory to enroll in plant breeding.
751-4106-00LCrop PhenotypingW4 credits4GA. Walter, A. Hund, J. Leipner, F. Liebisch
AbstractPhenotyping is mostly understood as a non-invasive, quantitative assessment of plant and organ morphology at different wavelengths. In this course, standard and customized phenotyping platforms and approaches are introduced and applied to characterize crop performance in the field and in the lab. The relevance of phenotyping for breeding, field management and precision agriculture is shown.
ObjectiveAt the end of the course you will know a range of different phenotyping methods and how to assess their utility for different issues. You also know the critical stages of individual crops and you can identify promising traits and phenotyping approaches that are appropriate to improve a crop or its management in the field.
ContentBasic knowledge in physiology, breeding and management of our major crops will be combined with concepts of inheritance, experimental design, crop modelling and abiotic stress. By lectures, discussions, and hands-on experiments, you will learn to use image-based phenotyping methods for a performance assessment of genotypes of a breeding population and to assess the efficiency of measures of field management.
Crops are exposed to different abiotic stress factors during their development. Adaptation of crops to extreme environmental conditions likely to be encountered in the course of the year (e.g. cold and heat stress; water-saturated or dry soils) has been achieved by plant breeding to a good extent. In many cases, however, there is enormous potential for optimization.
The most important mechanisms of plant adjustment towards stress will be explained, as well as critical stages identified in which stress affects yield most severely. You will learn methods by which the response of plants to environmental parameters is quantified non-destructively. You learn how to deal with the challenge of spatial variability in the field, when it is necessary to analyze a lot of genotypes. You will get to know different phenotyping methods in the field and under controlled conditions. An important parameter of analysis will be the measurement of the growth of roots and shoots and the response of this parameter to environmental stress. Moreover, you will apply thermography and multispectral image analysis as exemplary remote sensing methods and you will use these methods to calculate parameters such as canopy cover, water status and leaf greenness of individual plants or crop stands. Also, you will learn the use of chlorophyll fluorescence to assess the efficiency of the photosynthetic apparatus.
751-3606-00LMolecular Plant BreedingW3 credits2GB. Studer, C. Grieder, A. Hund, R. Kölliker
AbstractMolecular tools have contributed significantly to improve the process of plant breeding throughout the last decades. The course Molecular Plant Breeding illustrates - on the basis of lectures, exercises and practical examples - the most important molecular breeding tools (QTL, association studies..) and how these tools are applied to plant breeding by means of marker-assisted or genomic selection.
ObjectiveAt the end of the course Molecular Plant Breeding you will be able to:
- design and statistically analyze genetic experiments for important characteristics such as repeatability, heritability, or least square means
- understand different molecular marker technologies and genotyping methods, and how the generated data can be used for genetic distance measures and multivariate statistics in experimental and natural populations
- use the most important molecular breeding tools such as genetic linkage mapping, QTL analysis, genome-wide association studies and to apply these tools to plant breeding by marker-assisted and genomic selection
- describe different sequencing technologies and strategies for genome sequencing, transcriptome profiling (RNAseq) and genotyping by sequencing
- apply basic bioinformatics tools for sequence data management and comparative genomics (BLAST, simple assemblies, alignments and gene annotations)
ContentThe course Molecular Plant Breeding is based on complementing lectures, exercises and practical examples. The examples cover a wide range of species and traits and will be taught by four different experts in the field. A detailed program including dates and specific contents will be provided by the end of 2014.
Lecture notesScripts and slides for each lecture and will be made available through eDoz.
LiteratureFor each lecture, additional literature covering the topic will be provided.
Prerequisites / NoticeThe course will be held at Eschikon Field Station, where 12 computers will be available for exercises with R or - if necessary - other specific software packages. Attendance of the courses Pflanzenzüchtung and Plant Breeding II is recommended; basic understanding of R (as taught in Experimental Design and Applied Statistics in Agroecosystem Science) is advantageous.
751-4204-01LHorticultural Science (FS)W2 credits2GL. Bertschinger, R. Baur, C. Carlen
AbstractAfter an introduction (2h), lectures address 2 horticultural cropping systems and value chains, each one in 2 2h-lecture blocks. Afterwards, students split in 2 groups for addressing a case study focusing on one of the cropping systems treated before. An excursion to a research site might be included. In a final colloquium, each group presents a report on their case study and their conclusions.
ObjectiveAchieve a deepened understanding of horticultural value chain challenges related with ecological intensification, resource efficiency, climate change and healthy, safe food production, and the problem solution strategies and scientific principles behind.
Deliver in a team effort a report and presentation with a comprehensive insight into the studied problem and its science-based solution strategy.
ContentIn the autumn semester, the two addressed cropping systems and value chains are fruit-production and viticulture.
In the spring semester, the two addressed cropping systems and value chains are vegetable-production- and berry-production or glasshouse-horticulture.
The selected topics address challenges with regard to ecological intensification, resource efficiency or climate change and branch into on-going research and development projects.
Lecture notesDocuments handed out during the case studies.
LiteratureProvided by the case study leaders.
Prerequisites / NoticeThe course builds on basic knowledge delivered by 'Horticultural Crops I & II' (BSc). If these courses have not been followed by interested participants, equivalent knowledge and experience will greatly support a successful and productive participation of the participating student.
Language: spoken E, G or F, Documents: Preferably English, G/F possible.
Crop Health
NumberTitleTypeECTSHoursLecturers
751-5110-00LInsects in AgroecosystemsW+2 credits2VS. Halloran, K. Mauck
AbstractThis class will focus on insect-plant interactions in Central European agroecosystems, and on regulators of insect pest populations. Lectures will cover important crop systems in central European agriculture. Within each system, major pests and their interactions will be described in an ecological context, focusing on key concepts in pest prediction and management.
ObjectiveAt the end of this course, students will have gained in-depth knowledge of the ecology of major pest species and their impacts within specific crop systems in Central Europe. Our approach will allow students to transfer this knowledge to related questions in other systems. Additionally, students will learn about current research goals in agroecology and how these goals are being addressed by scientists engaged in agricultural research.
ContentInsect-plant interactions in middle European agroecosystems are the focus of this course. Always starting from an important perennial or annual crop, specific insect species of economic significance are presented along with the life cycles, population dynamics, and the insect-plant interactions relevant to economic impacts on the crop. Natural factors which limit such damage are introduced, e.g. parasitoids and predators. Each section of the course is complemented by a basic ecological, biological or engineering theme or approach such as host shift, physiological time, or sampling techniques. Recent advances in research will also be addressed throughout the course and reinforced with periodic readings of recent primary literature.
Lecture notesProvided to students through ILIAS
LiteratureSelected required readings (peer reviewed literature, selected book chapters).
751-4904-00LMicrobial Pest ControlW+2 credits2GJ. Enkerli, G. Grabenweger, S. Kuske Pradal
AbstractThis lecture provides conceptual as well as biological and ecological background on microbial pest management. Methods and techniques applied to develop and monitor microbial control agents are elucidated.
ObjectiveTo know the most important groups of insect pathogens and their characteristics. To become familiar with the basic steps necessary for the development of microbial control agents. To understand the techniques and methods used to monitor field applications and the procedures involved in registration of products for microbial pest management.
ContentDefinitions and general terms used in microbial control are presented. Biological and ecological aspects of all arthropod-pathogenic groups (virus, bacteria, fungi, protozoa and nematodes) as well as their advantages and disadvantages in relation to biocontrol are discussed. Particular emphasis is put on hypocrealean and entomophthoralean fungi. Examples are used to demonstrate how projects in microbial control can be set up, how pathogens can be applied and how efficacy, non-target effects, persistence and dissemination are monitored. Furthermore, the necessary steps for product development, commercial aspects and registration requirements are discussed.
Lecture notesDie grundlegenden Aspekte werden als Skript (Präsentationsunterlagen) abgegeben.
LiteratureHinweise auf zusätzliche Literatur werde in der Lehrveranstaltung gegeben.
751-4902-00LModern Pesticides - Mode of Action, Residues and Environmental FateW+2 credits2VM. Müller, I. J. Bürge, T. Poiger
AbstractThe biochemical principles of the mode of action of plant protection products (PPP) are presented. Important topics are mechanisms for selectivity, development of resistance, residue formation in crops and food safety as well as behavior in the environment.
ObjectiveThe structures and modes of action of modern pesticides (synthetical compounds, natural compounds) are presented. The structure-activity relationships lead to considerations of actual use conditions in crops such as fungicides in viticulture, residues in edible parts of treated plants, possible side effects and environmental fate.
ContentAfter a short introduction on pesticide registration (administrative process as in Switzerland and EC, food safety), the biochemical background of the mode of action of important groups of PPP active ingredients is presented. Furthermore, selectivity of pesticides, leaching of herbicides to groundwater, accumulation of pesticides in soil, development of resistance of fungicides, formation of residues in edible parts of the crops, and side-effects on non-target organisms shall be covered.
Lecture notesAn e-script (pdf-files, in German) is is provided as download at the beginning of spring term.
Literaturenone
Agriculture and Environment
NumberTitleTypeECTSHoursLecturers
751-5118-00LGlobal Change Biology Information W+2 credits2GH. Bugmann, N. Buchmann, C. Emmel, L. Hörtnagl
AbstractThis course focuses on the effects of anthropogenic climate change as well as land use and land cover change on terrestrial systems. Our current understanding of the coupled human-environmental systems will be discussed, based on observations, experiments and modeling studies. Different management options for sustainable resource use, climate mitigation and adaptation will be studied.
ObjectiveStudents will understand consequences of global change at various spatial and temporal scales, be able to synthesize their knowledge in various disciplines in view of global change issues, know international and national treaties and negotiations concerning management and climate and land use/land cover change, and be able to evaluate different management options, including sustainable resource use and climate mitigation as well as adaptation options.

Students will learn to present scientific information to an audience of educated laymen by preparing an executive summary and an oral presentation to answer a specific scientific question. Students will get extensive feedback from teachers and peers. Thereby, students will also learn how to give constructive feedback to peers.
ContentChanges in climate and land use are major issues that students will be faced with during their working life, independently of where they will work. Thus, an advanced understanding on how global change, biogeochemistry, land use practices, politics, and society interact is critical to act responsibly and work as agricultural or environmental scientists in the future.

Thus, during this course, the effects of global change (i.e., changes in climate, atmospheric chemistry as well as land use and land cover) on forest and agro-ecosystems will be presented and discussed. Effects on ecosystem structure, composition, productivity and biogeochemical cycling, but also on stability of production systems against disturbances will be addressed. Current scenarios and models for coupled human-environmental systems will be discussed. The advantages and disadvantages of different management options will be studied, including the sustainable resource use and climate mitigation as well as adaptation.
Prerequisites / NoticeThis course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general.
751-3404-00LNutrient Fluxes in Soil-Plant SystemsW+4 credits4GA. Oberson Dräyer, E. K. Bünemann König
AbstractThe course teaches knowledge and experimental techniques to study pools and processes underlying nutrient fluxes in soil-plant systems. Methods will be learned i) to analyze elements dynamics, ii) to determine the use efficiency by crops of nutrients added with fertilizers, iii) to study the fate of fertilizer nutrients not taken up by the crop and iv) to estimate symbiotic N2 fixation by legumes.
ObjectiveUsing the element nitrogen (N) as model case, the student gets familiarized with techniques to assess the dynamics and availability of nutrients in the soil-plant system and to determine the use efficiency by crops of nutrients added with fertilizers. He/she learns about the use of stable isotope techniques for analyzing nutrient fluxes in soil-plant systems, and about the use of biochemical methods to obtain indicators on such fluxes. He/she is able to evaluate critically the tools used in agricultural or environmental studies dealing with fluxes of elements in soil-plant systems and the interpretation made of the results. Knowledge about processes and pools underlying nutrient cycles in agro-ecosystems will be improved.
The student learns to work in the laboratory within a small team, to organize work in sub-groups, to exchange results obtained by these sub-groups, to look for information outside of the course (e.g. in the library, in the internet), to read and analyze this information critically, to synthesize both, the information from the literature and from the groups, and to present it in a written report and in an oral presentation.
ContentThis course teaches knowledge and methods to analyze the dynamics of elements in soil-plant systems and to determine the use efficiency by crops of nutrients added with mineral and organic fertilizers. It provides knowledge about various techniques (isotopic, chemical, biochemical) that can be used to evaluate
i) content of elements in fertilizers, soils and plants;
ii) availability of elements in soils and fertilizers for plants;
iii) transfer of elements from a fertilizer to a crop;
iv) symbiotic N2 fixation by legumes.
Nitrogen will be used as model case.
The course will start with the discussion of analytical results on elemental contents in an organic fertilizer (e.g. animal manure, plant material) that has previously been labeled with the isotope 15N. To test the N efficiency of this fertilizer, a pot experiment (glasshouse study) will be designed. It will include soils with different characteristics, two test plants and fertilization treatments including the 15N labeled organic fertilizer and appropriate reference treatments.
Soils will be characterized for basic chemical properties and for biochemical characteristics that are related to the N dynamics. Plants will be harvested and analyzed for their dry matter production, their N isotope composition and for elemental contents. From the direct (15N) labeling approach, the proportion of N in the plant derived from the added fertilizers and the percentage of added fertilizer recovered in plant material will be calculated. The 15N analyses in the soil and in the plant material after the crop cycle will allow drawing a balance of the added fertilizer and discussing N losses. The comparison of 15N excess in legume and non-legume test plants will demonstrate the use of the enriched dilution method to estimate symbiotic N2 fixation by the legume.

The experiments are discussed and carried out by the students supervised by group members (two senior scientists, PhDs, laboratory staff). The students carry out the data analysis and report their findings in a written report and in an oral presentation.
Lecture notesDocumentations will be made available during the course.
LiteratureIndications during the course.
Prerequisites / NoticeStudents from the D-AGRL can get travel expenses (Zurich-Eschikon) reimbursed.
751-4003-02LCurrent Topics in Grassland Sciences (FS) Information W+2 credits2SN. Buchmann
AbstractResearch results in grassland will be presented by experienced researchers as well as Ph.D. students and graduate students. Citation classics as well as most recent research results from published or on-going studies will be presented and discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemical cycling to management aspects in agro- and forest ecosystems.
ObjectiveStudents will be able to understand and evaluate experimental design and data interpretation of on-going studies, be able to critically analyze published research results, practice to present and discuss results in the public, and gain a broad knowledge of recent research and current topics in agro- and forest ecosystem sciences.
ContentCitation classics as well as most recent research results from published or on-going studies will be presented and discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemical cycling to management aspects in agro- and forest ecosystems.
Lecture notesnone
Prerequisites / NoticePrerequisites: Attendance of the courses "Öko- und Ertragsphysiologie", "Futterbau", "Graslandsysteme" in the Bachelor or similar courses. Language will be English.
751-5102-00LBiogeochemical ModelingW2 credits2GJ. Lee, J. Six, A. Hofmann, M. Necpalova
AbstractThis class provides an introduction to biogeochemical modeling in the context of agricultural systems. It covers the general background and principles of modeling agroecosystem biogeochemistry. The topical focus is on soil processes. Plant growth and development is included as a side topic. The course consists of lectures and modeling exercises.
ObjectiveThe focus during the modeling exercise sessions is on the testing and application of the biochemical model DAYCENT to agroecosystems. This includes model parameterization, sensitivity analysis, validation, and uncertainty analysis.
Content- Introduction to biogeochemical cycles
- Overview of ecosystem models
- Spatial and temporal scales in modeling
- Century and DAYCENT model
- Controls on biogeochemical processes
- Modeling plant growth and development (DAYCENT)
- Modeling soil organic matter and nutrient dynamics (DAYCENT)
- Model testing and evaluation
- Sensitivity analysis
- Uncertainty analysis
- Bio-economic modeling
- Policy and agent-based modeling
LiteratureSmith, J., Smith, P. (2007) Introduction to environmental modelling. Oxford University Press, 180 p.

Wallach, D., Makowski, D., Jones, J.W., Brun, F. (2014) Working with dynamic crop models: Methods, tools and examples for agriculture and environment. Academic Press, 2nd ed., 487 p.
Prerequisites / NoticeStudents signing up for this course should have a strong interest in modeling.
Methodology Competences
Methods in Agricultural Sciences
NumberTitleTypeECTSHoursLecturers
751-4506-00LPlant Pathology IV Information W+2 credits2GU. Merz, M. Maurhofer Bringolf
AbstractIdentification based on host, symptoms and micro-morphology, completed with life cycles and related control measures of the most important fungal diseases and their causal pathogens of annual and perennial crops with agricultural significance.
ObjectiveThe students will learn and train preparation skills for microscopy, aquire knowledge of selected diseases (identification, biology of pathogen, epidemiology) and understand the corresponding integrated control measures practiced in Swiss agriculture.
ContentThe course will partly be an e-learning excercise (with computers).
Lecture notesA script will be used on annual and perennial crops and their most important diseases. It will be updated stepwise
Prerequisites / NoticeThe course will be in German (spec. nomenclature)
Design, Analysis and Communication of Science
NumberTitleTypeECTSHoursLecturers
751-1000-00LInterdisciplinary Project Work Information Restricted registration - show details
Prerequisite: successful completion of the bachelor programme.
O3 credits4UB. Dorn, E. Frossard, L. Meile, H. Adelmann, N. Buchmann, C. De Moraes, P. A. Fischer, M. C. Härdi-Landerer, M. Kreuzer, U. Merz, S. Peter, M. Schuppler, M. Siegrist, J. Six, S. E. Ulbrich, A. Walter
AbstractDie Studierenden der Agrar- und Lebensmittelwissenschaften erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartner im Bereich der Nahrungsmittelwertschöpfungskette gestellt werden.
ObjectiveDie Studierenden kennen
- die Grundlagen des Zeit- und Projektmanagements
- Vorgehensweisen, um Probleme, die ihnen von Projektpartnern gestellt werden, zielorientiert zu lösen.
ContentDie Studierenden der Agrar- und Lebensmittelwissenschaft erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartnern entlang der Nahrungsmittelwertschöpfungskette gestellt werden. Die Studierenden präsentieren und diskutieren die Lösungsvorschläge an der Schlussveranstaltung mit den Projektpartnern und verfassen einen schriftlichen Projektbericht.
Prerequisites / NoticeDie Anwesenheit der Studierenden an der Startveranstaltung am 26.2.2015 gemäss speziellem Programm ist Pflicht.
Major in Food and Resource Use Economics
Disciplinary Competences
Decision Making in Food Value Chains
NumberTitleTypeECTSHoursLecturers
751-1710-00LAgri-Food Marketing Information W+2 credits2GD. Barjolle, O. Schmid
AbstractThis course explores how market research is used by the actors in the value chains for positioning and promotion of food (course held in english).
ObjectiveThe objective of the course is to highlight how research marketing techniques can be mobilized for developing supply chains, in order to create and distribute value.
Students will be invited to discover advanced tools in marketing research (retailer and consumer panel data analysis, Likert scales. conjoint analysis and contingent valuation...), illustrated by a set of up date case-studies presented by professional invited lectures. This approach will allow students to be informed about present discussions in the Swiss agri-food supply chains.
ContentSome lectures are focused on methods presentation. Students then choose a mini-case, which they will carry out in groups of 5-6 students. Various issues are the key points of the mini-cases: construction of a USP (Unique Selling Proposition) for sustainability standards, ethical claims or origin-based labels; marketing and promotion of PDO-PGI products; marketing and promotion of organic products, collective promotion on Swiss products in Switzerland and abroad; produits du terroir and gastronomy; short supply chain; public procurement.
Lecture notespaper copies of the presentations are distributed during the lecture.
752-2123-00LRisk Awareness, Risk Acceptance and TrustW+3 credits2VM. Siegrist
AbstractThe course provides an overview about risk perception and acceptance of new technologies. In addition, the most important findings of the research related to decisions under uncertainty are presented.
ObjectiveStudents know the most important theoretical approaches in the domains of risk perception and acceptance of new technologies. Furthermore, students understand the paradigms and the research results in the domain of decision making under uncertainty.
Environmental and Resource Use Economics
NumberTitleTypeECTSHoursLecturers
701-1653-00LPolicy and Economics of Ecosystem ServicesW+3 credits2GS. Andrade de Sa
AbstractThe course introduces the concept of ecosystem services (ES), their value for society, the causes of their degradation and potential policies to reduce degradation, from an environmental economics perspective. The main focus is thus on policy options for addressing ecosystems' degradation. The strengths and weaknesses of alternative policies are analyzed and illustrated with examples.
ObjectiveThe objective is to draw on insights from environmental economics for explaining human-induced ecosystem change and for assessing the potential of policies and economic incentives as strategies to reduce ecosystem services degradation. Students understand the relevance of environmental economics in application to the sustainable provision of ecosystem services (ES). They can define different categories of ecosystem services and understand underlying sources of market failure that lead to suboptimal human decisions regarding ES provision. They understand the importance of policy choice and policy design. This incorporates both established and newer policy approaches that can be used to address market failure and move towards better outcomes from a societal point of view. They can assess strengths and weaknesses of alternative policy approaches and instruments and understand the basis for selecting among alternative instruments to address ecosystems' degradation. Students have an improved understanding of the political economy underlying the making of environmental policy. They know a variety of real-world applications of different policy approaches related to land use choices and ES in developing and developed countries. Finally, they understand approaches for assessing policy impacts.
ContentThe Millennium Ecosystem Assessment found that 60% of the world's ecosystem services (ES) are being degraded or used unsustainably. The UN report on 'The Economics of Ecosystems Services and Biodiversity' highlighted the impacts on human well-being and the role of policy in addressing ecosystems' degradation. Evaluating changes in ES from a societal perspective first requires an assessment of the societal value of different ES and the tradeoffs between them. Second, we need to understand the drivers of human decision-making affecting ES. Examples will be provided on resource use choices in developed and developing countries. Third, an assessment of the causes of excessive ES degradation is needed. Potential causes include the presence of externalities, improperly designed property rights systems, divergence of private and social discount rates, and lack of information and knowledge. Understanding the causes helps to design policies for more sustainable outcomes. Policies include command-and-control, economic incentives (for example, eco-taxes, tradable permits, government payments for ecosystem services), and decentralized approaches (for example, voluntary agreements, eco-labeling, participatory management). Choosing an appropriate policy instrument (or a combination thereof) requires an understanding of the relative strengths and weaknesses of alternative instruments, their preconditions for success and the political economy of their implementation. Finally, assessing the actual impacts of policy once implemented requires a careful assessment of appropriate baselines.
Lecture notesLecture notes, homework exercises and readings for each class will be made available on OLAT.
LiteratureThere is no single textbook for this class. Instead, a number of articles and book chapters will be suggested for each of the topics addressed during the lecture.
Prerequisites / NoticeThe course consists of a combination of lectures, homework assignments on real world case studies, a computer exercise, and an exam.
A prerequisite for this course is a bachelor-level course in Environmental Economics (e.g. 751-1551-00). In particular, students are expected to be familiar with basic environmental economics' concepts such as externality, public good, market failure, opportunity cost, social optimum and market equilibrium, among others. Students with no background in environmental economics can be provided with readings but will be expected to come up to the required standards on their own, prior to starting the class. Please contact Dr. Andrade de Sá (saraly.andrade@env.ethz.ch) for these.
851-0594-02LInternational Environmental Politics: Part IIW+4 credits2VT. Bernauer
AbstractThis course focuses on a selected set of important research topics in the area of international environmental politics.
ObjectiveBecome familiar with analytical approaches and research results in selected areas of political science and political economy research on international environmental politics.
ContentThe issues covered include, for example, the relationship between poverty, economic growth and environmental quality, the question whether environmental degradation can lead to political violence (e.g. civil war), the role of environmental regulation in international trade disputes, international negotiating processes in areas such as climate change mitigation, and the role of civil society in global environmental governance.

Prerequisites: If you did not attend the course International Environmental Politics in the autumn semester you can still attend the course International Environmental Politics: Insights from Recent Research in the spring semester. However, I suggest you do so only if you already have a fairly good knowledge of social sciences research on international environmental issues (e.g. if you have already taken one or more classes in environmental economics and/or environmental politics). Alternatively, you can watch the screencasts of the HS 2014 version of the International Environmental Politics course and complete the mandatory reading assignments for that course to acquire the necessary background for being able to keep the pace in the spring semester course: http://www.multimedia.ethz.ch/lectures/gess/2014/autumn/851-0594-00L. Login: with your nethz username and password. You should watch those podcasts and complete the reading assignments before the course starts. The slides and other teaching material for Part One are available at http://www.ib.ethz.ch/teaching (materials, login with your nethz username and password and select the appropriate items).
Lecture notesSlides and reading material will be available at www.ib.ethz.ch (teaching, materials). They are password protected. Your Nethz username and password are needed for login.
LiteratureAssigned reading materials and slides will be available at www.ib.ethz.ch (teaching, materials-login, international environmental politics, part two). Log in with your nethz name and password. Logistical questions concerning access to course materials can be addressed to Thomas Bernauer at thbe0520@ethz.ch. All assigned papers must be read ahead of the respective meeting. Each meeting consists of one part where we discuss the contents of the assigned papers, and another part where we present/discuss new/ongoing research that extends beyond the contents of the read papers. Following the course on the basis of on-line slides and papers alone is not sufficient. Physical presence in the classroom is essential. No podcasts for this course will be available. Many books and journals covering international environmental policy issues can be found at the D-GESS library at the IFW building, Haldeneggsteig 4, B-floor.
Prerequisites / NoticeIf you did not attend 'International Environmental Politics: Part One' you can still attend Part Two. However, I suggest you do so only if you already have a fairly good knowledge of social sciences research on international environmental issues (e.g. if you have already taken one or more classes in environmental economics and/or environmental politics). Alternatively, you can watch the screencasts of the HS 2014 version of Part One and complete the mandatory reading assignments for that course to acquire the necessary background for being able to keep up in Part II: http://www.multimedia.ethz.ch/lectures/gess/2014/autumn/851-0594-00L. Login: with your nethz username and password. You should watch those podcasts and complete the reading assignments before the course starts. The slides and other teaching material for Part One are available at http://www.ib.ethz.ch/teaching (materials, login with your nethz username and password and select the appropriate items).
851-0705-01LEnvironmental Law: Conceptions and FieldsW+3 credits2VC. Jäger, A. Bühler
AbstractOverview of Swiss Environmental Law. Rules and regulations, system and fields of Environmental Law with its principles and instruments, interrelations e.g. with construction and zoning law. Immission control (protection against noise, air pollution), clilmate protection, conservation of water, forest, nature and landscape, regulations on waste and contaminated sites.
Case studies.
ObjectiveBasic understanding of scope and function of Environmental Law. Basic knowledge of legal instruments and of interrelations between Environmental Law and other fields of the law such as planning and zoning law. The students will be able to comprehend all sides of a question and to develop a possible solution of the problem (practical training on case studies).
ContentDie Vorlesung gliedert sich in einzelne Teile und umfasst hauptsächlich folgende Themen: Grundkonzept des schweizerischen Umweltrechts; Rechtsquellen; Grundprinzipien; Instrumente und verfahrensrechtliche Aspekte (v.a. Umweltverträglichkeitsprüfung); Querbezüge zum Raumplanungsrecht; Immissionsschutz; Übersicht über einzelne Rechtsgebiete wie Klimaschutz, Gewässerschutz, Natur- und Landschaftsschutz, Wald, Behandlung von Abfällen. Diskussion von konkreten Fällen. Vorgesehen sind zudem zwei Gastreferate von externen Experten.
Lecture notesAls Skript gilt: Heribert Rausch/Arnold Marti/Alain Griffel, Umweltrecht. Ein Lehrbuch, Schulthess Zürich 2004
LiteratureBeatrice Wagner Pfeifer, Umweltrecht I und II, Schulthess Zürich, ab 1999
Klaus A. Vallender/Reto Morell, Umweltrecht, Stämpfli Bern 1997
Prerequisites / NoticeVorausgesetzt werden allgemeine Kenntnisse des Rechts (z.B. Besuch der Vorlesungen «Rechtslehre GZ» im Frühjahrssemester oder «Grundzüge der Rechts» im Herbstsemester)
363-0552-00LEconomic Growth and Resource UseW3 credits2GJ. Daubanes
AbstractThe lecture focuses on the economics of non-renewable resources and deals with the main economic issues regarding such commodities.
ObjectiveThe objective of the lecture is to make students familiar with the main topics in the economics of non-renewable natural resources so that they become able to autonomously read much of the academic literature on the issue. The economics of natural resources adds an intertemporal dimension to the classical static theory. The analyses provided in the lecture will use basic dynamic optimization tools; students are also expected to develop or consolidate their related technical skills.
ContentThe lecture focuses on the economics of non-renewable resources and deals with the main economic issues regarding such commodities. Two peculiarities of natural resources make them interesting economic objects. The intertemporal dimension of resource exploitation is absent in standard static treatments of classical economic theory. The non-renewability of natural resources further implies long-term supply limitations, unlike conventional goods that are indefinitely reproducible. Because of those peculiarities, many well-known economic results do not apply to the case of resources.

As it is appropriate in most chapters, priority will be given to a synthetic partial equilibrium setting. Elementary knowledge of microeconomics (like what is provided by H. Varian, Intermediate Microeconomics) is considered as a prerequisite. Moreover, an introduction to standard partial equilibrium analysis will be provided at the beginning of the lecture. General equilibrium effects should be introduced as they become crucial, as will be the case in the chapters on the interplay between economic growth and resource depletion.

The questions addressed in the lecture will be the following ones:
The intertemporal theory of non-renewable resource supply; the dynamic market equilibrium allocation; the exploration and development of exploitable reserves; the heterogenous quality of resource deposits; pollution and other externalities arising from the use of fossil fuels; the exercise of market power by resource suppliers and market structures; socially optimum extraction patterns and sustainability; the taxation of non-renewable resources; the international strategic dimension of resource taxation; the uncertainty about future reserves and market conditions; economic growth, resource limitations, and the innovation process...
Lecture notesLecture Notes of the course will be sent by email to officially subscribed students.
LiteratureThe main reference of the course is the set of lecture notes; students will also be encouraged to read some influential academic articles dealing with the issues under study.
Prerequisites / NoticeElementary knowledge of microeconomics (like what is provided by H. Varian, Intermediate Microeconomics) is considered as a prerequisite.
Agricultural Trade and Policies
NumberTitleTypeECTSHoursLecturers
751-2402-00LAgricultural Trade AgreementsW+2 credits2GJ. Niklaus
AbstractThe course focuses on the legal aspects of agricultural trade agreements.
Objective1. The students shall be able to understand the legal framework of agricultural trade agreements.

2. The course aims at analyzing legal, political and economic aspects of agricultural trade regulations.

3. Special emphasis is placed on the ongoing negotiations on an agricultural free trade agreement between Switzerland and the European Union.
ContentContent

- Overview on the international economic system

- Political and legal aspects of agricultural trade agreements

- Motivation and origin of agricultural trade agreements

- Implementation and monitoring of agricultural trade agreements

- Impact-analysis of statal, parastatal and private trade barriers

- Reduction and elimination of statal, parastatal and private trade barriers

- Case study 1: WTO Doha Round

- Case study 2: Agricultural free trade agreement Switzerland-EU

- Case study 3: Implementation of the Cassis de Dijon Principle in Switzerland
Lecture notesHandouts (power point slides)
751-1652-00LFood Security - from the Global to the Local Dimension Restricted registration - show details
Number of participants limited to 20.
W+2 credits2GM. Sonnevelt, D. Barjolle
AbstractBased on the complex nature and interactions of various driving forces such as e.g. poverty, resource scarcity, globalization and climate change, global food security depends on manifold aspects. To study food security, one must understand aspects such as the availability of, the access to and the adequate use of food as well as the stability of the economic, ecologic and political system.
ObjectiveThis year, the course focus on the role of Agroecology as a concept to support food security. Agroecology, once the exclusive domain of food sovereignty and ecology movements, it has begun to be promoted enthusiastically in both developed and developing countries by non-government organizations, international development organizations and others seeking more sustainable food production and consumption systems. The course will elaborate potential and bottlenecks of the concept for global food security.

A more detailed program will be uploaded in early 2015.
ContentThe main block of the course is a three-days workshop/seminar at the FAO headquarter in Rome during the week of 06.04.-10.04.2015 (exact dates will be announced in early 2015).
In February and March 2015, two preparatory events (each lasting +/- two hours) will be held at ETH Zurich. Exact date and time will be announced in early 2015.
Lecture notesBooks and Articles.

We will compose a document of the material presented and elaborated during the workshop for distribution after the event.
Prerequisites / NoticeThe Lecture is held in English and is limited to 20 MSc-students preferably from agriculture, environment and food sciences.
751-2102-00LHistory of Food and AgricultureW3 credits2VP. Aerni
AbstractKnowledge about the history of food and agriculture is crucial to understanding the emergence of modern agriculture and public resistance to industrial farming. The lecture discusses the evolution of agriculture and its impact on social structures, human health and the environment from an anthropological, a cultural, a political and a technological point of view.
Objective- to become familiar with the milestones of the history of food and agriculture
- to understand innovation in agriculture as one of the major forces of change in the history of mankind
- to learn how perceptions, politics and policies in food and agriculture are shaped by social, technological and environmental change
- to be able to embed the current debate on the food crisis and climate change into a historical context
ContentThis lecture starts with the Neolithic revolution and its cultural and environmental impact on humankind. In this context, it will discuss the transition from hunter-and-gatherer societies to societies that rely more upon the domestication of nature (agriculture and pastoralism) (Keeley 1996, Diamond 1999).
The various forms of domestication of plants and animals and their economic, political and environmental implications for society will be discussed using examples from different parts of the world (Stone et al.2007).
The emergence of civilization based on agrarian law will be discussed by using the example of the Roman Republic and later the Roman Empire (Weber 1891, Love, 1996).
Subsequent innovations such as the three-field system in medieval times, the introduction of new plants and animals during the colonial period, and scientific and technological breakthroughs in plant breeding, agricultural practices and food preservation in the 19th century gave a major boost to agricultural productivity, food availability and agro-biodiversity. These prior developments also laid the foundation for industrial agriculture at the beginning of the 20th century (Kingsbury 2009). The global implications resulting from change in food preferences and agricultural innovation will be illustrated by using selected examples of innovations in food and agriculture (Braudel 2002, Pendergast 2010).
Public resistance to industrial agriculture manifested itself in the early 1920s with counter-movements such as biodynamic farming (Kingsbury 2009) but also with organized lobbying groups that fought against change caused by refrigeration and cheap food (Freidberg 2009). Applying science to plant and animal breeding also caused a cultural divide in biology departments at universities between those who changed nature (plant breeders) and those who wanted to preserve it (botanists, ecologists) (Anker 2001).
The period during and after the two World Wars changed the business of agriculture entirely. Food security became a matter of national security and thus justified state intervention on all levels in the production of food from farm to fork. This also helps explain why the Green Revolution was largely a public sector initiative that cared more for productivity increases on the supply side than for consumer preferences on the demand side (Aerni 2007). After the end of the Cold War, attention shifted from the supply side to the demand side and thus from food security to food safety.
Food safety concerns were largely due to distrust of industrial agriculture and this led to major policy shifts in the way agricultural subsidies and resources were allocated and how food safety was managed and monitored. While the public sector largely withdrew from investing in productivity-related agricultural research, the private sector started to invest more. This led to the growing need to engage again in public-private partnership, as had been the case in the 19th century. Despite the Agreement on Agriculture of the World Trade Organization, agricultural trade remains highly restricted and the growing vertical integration of the food supply chain tends to concentrate market power with global retailers. They have designed private standards that are meant to protect consumers from unsafe food and promote good agricultural practices abroad, as well as ethical trade. Yet, the increasing importance of south-south trade in agriculture and the global food crisis might again shift more power back to producers (Aerni 2009).
Lecture noteshttp://www.afee.ethz.ch/people/Associated/aernip/Teaching
LiteratureAerni, Philipp (2011) Food Sovereignty and its Discontents. ATDF Journal 8(1/2): 23-49.
Aerni, Philipp (2011) Do Political Attitudes Affect Consumer Choice? Evidence from a Large-Scale Field Study with Genetically Modified Bread in Switzerland. Sustainability 3: 1555-1572.
Aerni, Philipp (2009) What is sustainable agriculture? Empirical evidence of diverging views in Switzerland and New Zealand. Ecological Economics 68(6): 1872-1882.
Aerni, Philipp. 2007. Exploring the Linkages between Commerce, Higher Education and Human Development: A Historical Review. ATDF Journal 4(2): 35-47.
Anker, Peder (2001) Imperial Ecology: Environmental Order in the British Empire, 1895-1945. Harvard University Press, Cambridge, MA.
Braudel, Fernand (2002) The Wheels of Commerce. Civilization and Capitalism 15th -18th, Volume II. Phoenix Press, London.
Cook, Harold (2008) Matters of Exchange: Commerce, Medicine, and Science in the Dutch Golden Age. Yale University Press, New Haven.
Fagan, Brian (2001) The Little Ice Age: How Climate Made History. Basic Books, New York.
Morgan, Dan (1979) Merchants of Grain: The Power and Profits of the Five Giant Companies at the Center of the World's Food Supply. iUniverse, Inc: Lincoln, NE.
Diamond, Jared (1999) Guns, Germs and Steel. Norton, New York.
Freidberg, Susanne (2009) Fresh: A Perishable History. Harvard University Press, Cambridge, MA.
Freidberg, S. (2007). Supermarkets and imperial knowledge. Cultural Geographies, 14(3): 321-342.
Kingsbury, N. (2009) Hybrid: the History and Science of Plant Breeding. University of Chicago Press, Chicago.
Love, John (1986) Max Weber and the Theory of Ancient Capitalism. History and Theory 25(2): 152-172.
Stone, Linda, Lurquin, P. F. and Cavalli-Sforza (2007) Genes, Culture, and Human Evolution: A Synthesis. Blackwell, Malden, MA.
The Economist, 2008. Hunters and Gatherers: Noble or Savage, Dec. 19th.
Keeley, Lawrence, H. (1996) War Before Civilization. Oxford University Press, Oxford.
Pendergast, M. (2010) Uncommon Grounds: The History of Coffee and how it transformed our World. Basic Books, New York.
Weber, M. (1891) Die römische Agrargeschichte in ihrer Bedeutung für das Staats- und Privatrecht. Stuttgart.
Prerequisites / NoticeThe 2-hour course will be held as a series of lectures. The course materials will be available in form of an electronic Reader at the beginning of the semester.
The class will be taught in English.
Students will be asked to give a (a) presentation (15 Minutes) or write a review paper based on a article selected from the electronic script, and (b) they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final mark (a) will have a weight of 40% and (b) 60%.
751-2700-00LLand Markets and Land PolicyW2 credits2GG. M. Giuliani
AbstractIn this course the students acquire knowledge on the particularities of land markets and the effects of policy interventions such as ceiling prices and land redistributions on land markets. Special emphasis is placed on the knowledge of land market structures and on the forms of land markets.
ObjectiveIn this course the students acquire knowledge on the particularities of land markets and the effects of policy interventions such as ceiling prices and land redistributions on land markets. Special emphasis is placed on the knowledge of land market structures and on the forms of land markets.
ContentThe first part of the course deals with the following topics: historical outline of land use; historical models of individual and collective land regulations; Swiss land regulations and land policies; specific theoretical aspects of agricultural land markets; empirical investigations on land property and land markets; interconnections between land policy and agricultural policy. The second part of the course focuses on land property structures in developing countries and in transition countries. After a general systematic and theoretical introduction on land policies and land reforms in these countries, case studies and topcis of current political relevance are discussed. This course provides principles contributing to the evaluation of the sustainability of land use and to the establishment of sustainable land use systems.
Lecture notesWill be provided in the course.
LiteratureAre included in the lecture notes.
Methodology Competences
Methods in Food and Resource Use Economics
NumberTitleTypeECTSHoursLecturers
363-0588-00LComplex Networks Information W4 credits2V + 1UF. Schweitzer, I. Scholtes
AbstractThe course provides an overview of the methods and abstractions used in (i) the quantitative study of complex networks, (ii) empirical network analysis, (iii) the study of dynamical processes in networked systems, (iv) the analysis of systemic risk in networked systems, (v) the study of network evolution, and (vi) data mining techniques for networked data sets.
Objective* the network approach to complex systems, where actors are represented as nodes and interactions are represented as links
* learn about structural properties of classes of networks
* learn about feedback mechanism in the formation of networks
* understand systemic risk as emergent property in networked systems
* learn about statistical inference techniques for data on networked systems
* learn methods and abstractions used in the growing literature on complex networks
ContentNetworks matter! This holds for social and economic systems, for technical infrastructures as well as for information systems. Increasingly, these networked systems are outside the control of a centralized authority but rather evolve in a distributed and self-organized way. How can we understand their evolution and what are the local processes that shape their global features? How does their topology influence dynamical processes like diffusion? And how can we characterize the importance and/or role of specific nodes? This course provides a systematic answer to such questions, by developing methods and tools which can be applied to networks in diverse areas like infrastructure, communication, information systems or (online) social networks. In a network approach, agents in such systems (like e.g. humans, computers, documents, power plants, biological or financial entities) are represented as nodes, whereas their interactions are represented as links.

The first part of the course, "Introduction to networks: basic and advanced metrics", describes how networks can be represented mathematically and how the properties of their link structures can be quantified empirically.

In a second part "Stochastic Models of Complex Networks" we address how analytical statements about crucial properties like connectedness or robustness can be made based on simple macroscopic stochastic models without knowing the details of a topology.

In the third part we address "Dynamical processes on complex networks". We show how a simple model for a random walk in networks can give insights into the authority of nodes, the efficiency of diffusion processes as well as the existence of community structures.

A fourth part "Statistical Physics of Networks: Optimisation and Inference" introduces models for the emergence of complex topological features which are due to stochastic optimization processes, as well as algorithmic approaches to automatically infer knowledge about structures and patterns from network data sets.

In a fifth part, we address "Network Dynamics", introducing models for the emergence of complex features that are due to (i) feedback phenomena in simple network growth processes or (iii) order correlations in systems with highly dynamic links.

A final part studies "Multiple roles of nodes and links", introducing recent research on automated role discovery in networks, as well as models for networks with multiple layers.
Lecture notesThe lecture slides are provided as handouts - including notes and literature sources - to registered students only.
All material is to be found on Moodle at the following URL: https://moodle-app2.let.ethz.ch/course/view.php?id=1130
LiteratureSee handouts. Specific literature is provided for download - for registered students, only.
Prerequisites / NoticeThere are no pre-requisites for this course. Self-study tasks (to be solved analytically and by means of computer simulations) are provided as home. Weekly exercises (45 min) are used to discuss selected solutions. Active participation in the exercises is strongly suggested for a successful completion of the final exam.
Project Management and Communication of Science
NumberTitleTypeECTSHoursLecturers
751-1000-00LInterdisciplinary Project Work Information Restricted registration - show details
Prerequisite: successful completion of the bachelor programme.
O3 credits4UB. Dorn, E. Frossard, L. Meile, H. Adelmann, N. Buchmann, C. De Moraes, P. A. Fischer, M. C. Härdi-Landerer, M. Kreuzer, U. Merz, S. Peter, M. Schuppler, M. Siegrist, J. Six, S. E. Ulbrich, A. Walter
AbstractDie Studierenden der Agrar- und Lebensmittelwissenschaften erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartner im Bereich der Nahrungsmittelwertschöpfungskette gestellt werden.
ObjectiveDie Studierenden kennen
- die Grundlagen des Zeit- und Projektmanagements
- Vorgehensweisen, um Probleme, die ihnen von Projektpartnern gestellt werden, zielorientiert zu lösen.
ContentDie Studierenden der Agrar- und Lebensmittelwissenschaft erarbeiten in interdisziplinären Teams Lösungen für Probleme, welche ihnen von Projektpartnern entlang der Nahrungsmittelwertschöpfungskette gestellt werden. Die Studierenden präsentieren und diskutieren die Lösungsvorschläge an der Schlussveranstaltung mit den Projektpartnern und verfassen einen schriftlichen Projektbericht.
Prerequisites / NoticeDie Anwesenheit der Studierenden an der Startveranstaltung am 26.2.2015 gemäss speziellem Programm ist Pflicht.
751-2901-00LResearch Project in FRE Restricted registration - show details W2 credits4AM. Dumondel
AbstractThe student will work together with a PhD student on a topic with emphasis on 'Swissness of Swiss Food'.
ObjectiveThe student will work together with a PhD student on a specific research field
ContentThe student will work together with a PhD student on a specific research field
Minors
Agricultural- & Food- and Environmental Economics
NumberTitleTypeECTSHoursLecturers
752-2123-00LRisk Awareness, Risk Acceptance and TrustW3 credits2VM. Siegrist
AbstractThe course provides an overview about risk perception and acceptance of new technologies. In addition, the most important findings of the research related to decisions under uncertainty are presented.
ObjectiveStudents know the most important theoretical approaches in the domains of risk perception and acceptance of new technologies. Furthermore, students understand the paradigms and the research results in the domain of decision making under uncertainty.
751-1710-00LAgri-Food Marketing Information W2 credits2GD. Barjolle, O. Schmid
AbstractThis course explores how market research is used by the actors in the value chains for positioning and promotion of food (course held in english).
ObjectiveThe objective of the course is to highlight how research marketing techniques can be mobilized for developing supply chains, in order to create and distribute value.
Students will be invited to discover advanced tools in marketing research (retailer and consumer panel data analysis, Likert scales. conjoint analysis and contingent valuation...), illustrated by a set of up date case-studies presented by professional invited lectures. This approach will allow students to be informed about present discussions in the Swiss agri-food supply chains.
ContentSome lectures are focused on methods presentation. Students then choose a mini-case, which they will carry out in groups of 5-6 students. Various issues are the key points of the mini-cases: construction of a USP (Unique Selling Proposition) for sustainability standards, ethical claims or origin-based labels; marketing and promotion of PDO-PGI products; marketing and promotion of organic products, collective promotion on Swiss products in Switzerland and abroad; produits du terroir and gastronomy; short supply chain; public procurement.
Lecture notespaper copies of the presentations are distributed during the lecture.
752-2110-00LMultivariate Statistical Analysis Restricted registration - show details W3 credits2VC. Keller, V. Visschers
AbstractThe course starts by introducing some basic statistical concepts and methods, e.g. data exploration, the idea behind significance testing, and the use of the statistical software SPSS. Based on these fundaments, the following analyses are discussed: regression analysis, factor analysis and variance analysis.
ObjectiveStudents will learn to use multivariate analysis methods and to interpret their results, by means of theory and practice.
ContentThis course provides an introduction into the theories and practice of multivariate analysis methods that are used in the fields of food sensory science, consumer behavior and environmental sciences. The course starts by introducing some basic statistical concepts and methods, e.g. data exploration, the idea behind significance testing, and the use of the statistical software SPSS. Based on these fundaments, the following analyses are discussed: regression analysis, factor analysis and variance analysis. During the course, theoretical lectures alternate with practical sessions in which data are analyzed and their results are interpreted using SPSS.


Agenda

19.02 Introduction to the course and basic concepts of multivariate statistics (Keller and Visschers) in Room HG D5.2

26.02 Introduction into SPSS
Exercise 1a: Data description (Visschers)

05.03 Data handling and exploration,
Exercise 1b: Data exploration (Visschers)

12.03 Basic Statistical Tests (Visschers)

19.03 Exercise 2: Basic Statistical Tests (Visschers)

26.03 Regression analysis (Keller)

02.04 Exercise 3: Regression analysis (Keller)

3.4-12.4 Easter Holiday

16.04 Variance Analyis (Keller)

23.04 Exercise 4: Variance Analysis (Keller)

30. 04 Reliability Analysis (Visschers)

07.05 Principle Component Analysis (Keller)

14. 05 Ascension Day, no lecture

21.05 Exercise 5: PCA and Reliability Analysis (Visschers)

28.05 EXAM (Room will be announced)
LiteratureField, A. (2013). Discovering Statistics Using SPSS (4th Edition). Sage Publications. ISBN: 1-4462-4918-2
or
Field, A. (2009) Discovering Statistics Using SPSS (3rd Edition). Sage Publications. ISBN: 978-1-84787-907-3
or
Field, A. (2005). Discovering Statistics Using SPSS (2nd Edition). Sage Publications. ISBN: 0-7619-4452-4
Prerequisites / NoticeThis course will be given in English.
851-0594-02LInternational Environmental Politics: Part IIW4 credits2VT. Bernauer
AbstractThis course focuses on a selected set of important research topics in the area of international environmental politics.
ObjectiveBecome familiar with analytical approaches and research results in selected areas of political science and political economy research on international environmental politics.
ContentThe issues covered include, for example, the relationship between poverty, economic growth and environmental quality, the question whether environmental degradation can lead to political violence (e.g. civil war), the role of environmental regulation in international trade disputes, international negotiating processes in areas such as climate change mitigation, and the role of civil society in global environmental governance.

Prerequisites: If you did not attend the course International Environmental Politics in the autumn semester you can still attend the course International Environmental Politics: Insights from Recent Research in the spring semester. However, I suggest you do so only if you already have a fairly good knowledge of social sciences research on international environmental issues (e.g. if you have already taken one or more classes in environmental economics and/or environmental politics). Alternatively, you can watch the screencasts of the HS 2014 version of the International Environmental Politics course and complete the mandatory reading assignments for that course to acquire the necessary background for being able to keep the pace in the spring semester course: http://www.multimedia.ethz.ch/lectures/gess/2014/autumn/851-0594-00L. Login: with your nethz username and password. You should watch those podcasts and complete the reading assignments before the course starts. The slides and other teaching material for Part One are available at http://www.ib.ethz.ch/teaching (materials, login with your nethz username and password and select the appropriate items).
Lecture notesSlides and reading material will be available at www.ib.ethz.ch (teaching, materials). They are password protected. Your Nethz username and password are needed for login.
LiteratureAssigned reading materials and slides will be available at www.ib.ethz.ch (teaching, materials-login, international environmental politics, part two). Log in with your nethz name and password. Logistical questions concerning access to course materials can be addressed to Thomas Bernauer at thbe0520@ethz.ch. All assigned papers must be read ahead of the respective meeting. Each meeting consists of one part where we discuss the contents of the assigned papers, and another part where we present/discuss new/ongoing research that extends beyond the contents of the read papers. Following the course on the basis of on-line slides and papers alone is not sufficient. Physical presence in the classroom is essential. No podcasts for this course will be available. Many books and journals covering international environmental policy issues can be found at the D-GESS library at the IFW building, Haldeneggsteig 4, B-floor.
Prerequisites / NoticeIf you did not attend 'International Environmental Politics: Part One' you can still attend Part Two. However, I suggest you do so only if you already have a fairly good knowledge of social sciences research on international environmental issues (e.g. if you have already taken one or more classes in environmental economics and/or environmental politics). Alternatively, you can watch the screencasts of the HS 2014 version of Part One and complete the mandatory reading assignments for that course to acquire the necessary background for being able to keep up in Part II: http://www.multimedia.ethz.ch/lectures/gess/2014/autumn/851-0594-00L. Login: with your nethz username and password. You should watch those podcasts and complete the reading assignments before the course starts. The slides and other teaching material for Part One are available at http://www.ib.ethz.ch/teaching (materials, login with your nethz username and password and select the appropriate items).
751-1652-00LFood Security - from the Global to the Local Dimension Restricted registration - show details
Number of participants limited to 20.
W2 credits2GM. Sonnevelt, D. Barjolle
AbstractBased on the complex nature and interactions of various driving forces such as e.g. poverty, resource scarcity, globalization and climate change, global food security depends on manifold aspects. To study food security, one must understand aspects such as the availability of, the access to and the adequate use of food as well as the stability of the economic, ecologic and political system.
ObjectiveThis year, the course focus on the role of Agroecology as a concept to support food security. Agroecology, once the exclusive domain of food sovereignty and ecology movements, it has begun to be promoted enthusiastically in both developed and developing countries by non-government organizations, international development organizations and others seeking more sustainable food production and consumption systems. The course will elaborate potential and bottlenecks of the concept for global food security.

A more detailed program will be uploaded in early 2015.
ContentThe main block of the course is a three-days workshop/seminar at the FAO headquarter in Rome during the week of 06.04.-10.04.2015 (exact dates will be announced in early 2015).
In February and March 2015, two preparatory events (each lasting +/- two hours) will be held at ETH Zurich. Exact date and time will be announced in early 2015.
Lecture notesBooks and Articles.

We will compose a document of the material presented and elaborated during the workshop for distribution after the event.
Prerequisites / NoticeThe Lecture is held in English and is limited to 20 MSc-students preferably from agriculture, environment and food sciences.
751-2102-00LHistory of Food and AgricultureW3 credits2VP. Aerni
AbstractKnowledge about the history of food and agriculture is crucial to understanding the emergence of modern agriculture and public resistance to industrial farming. The lecture discusses the evolution of agriculture and its impact on social structures, human health and the environment from an anthropological, a cultural, a political and a technological point of view.
Objective- to become familiar with the milestones of the history of food and agriculture
- to understand innovation in agriculture as one of the major forces of change in the history of mankind
- to learn how perceptions, politics and policies in food and agriculture are shaped by social, technological and environmental change
- to be able to embed the current debate on the food crisis and climate change into a historical context
ContentThis lecture starts with the Neolithic revolution and its cultural and environmental impact on humankind. In this context, it will discuss the transition from hunter-and-gatherer societies to societies that rely more upon the domestication of nature (agriculture and pastoralism) (Keeley 1996, Diamond 1999).
The various forms of domestication of plants and animals and their economic, political and environmental implications for society will be discussed using examples from different parts of the world (Stone et al.2007).
The emergence of civilization based on agrarian law will be discussed by using the example of the Roman Republic and later the Roman Empire (Weber 1891, Love, 1996).
Subsequent innovations such as the three-field system in medieval times, the introduction of new plants and animals during the colonial period, and scientific and technological breakthroughs in plant breeding, agricultural practices and food preservation in the 19th century gave a major boost to agricultural productivity, food availability and agro-biodiversity. These prior developments also laid the foundation for industrial agriculture at the beginning of the 20th century (Kingsbury 2009). The global implications resulting from change in food preferences and agricultural innovation will be illustrated by using selected examples of innovations in food and agriculture (Braudel 2002, Pendergast 2010).
Public resistance to industrial agriculture manifested itself in the early 1920s with counter-movements such as biodynamic farming (Kingsbury 2009) but also with organized lobbying groups that fought against change caused by refrigeration and cheap food (Freidberg 2009). Applying science to plant and animal breeding also caused a cultural divide in biology departments at universities between those who changed nature (plant breeders) and those who wanted to preserve it (botanists, ecologists) (Anker 2001).
The period during and after the two World Wars changed the business of agriculture entirely. Food security became a matter of national security and thus justified state intervention on all levels in the production of food from farm to fork. This also helps explain why the Green Revolution was largely a public sector initiative that cared more for productivity increases on the supply side than for consumer preferences on the demand side (Aerni 2007). After the end of the Cold War, attention shifted from the supply side to the demand side and thus from food security to food safety.
Food safety concerns were largely due to distrust of industrial agriculture and this led to major policy shifts in the way agricultural subsidies and resources were allocated and how food safety was managed and monitored. While the public sector largely withdrew from investing in productivity-related agricultural research, the private sector started to invest more. This led to the growing need to engage again in public-private partnership, as had been the case in the 19th century. Despite the Agreement on Agriculture of the World Trade Organization, agricultural trade remains highly restricted and the growing vertical integration of the food supply chain tends to concentrate market power with global retailers. They have designed private standards that are meant to protect consumers from unsafe food and promote good agricultural practices abroad, as well as ethical trade. Yet, the increasing importance of south-south trade in agriculture and the global food crisis might again shift more power back to producers (Aerni 2009).
Lecture noteshttp://www.afee.ethz.ch/people/Associated/aernip/Teaching
LiteratureAerni, Philipp (2011) Food Sovereignty and its Discontents. ATDF Journal 8(1/2): 23-49.
Aerni, Philipp (2011) Do Political Attitudes Affect Consumer Choice? Evidence from a Large-Scale Field Study with Genetically Modified Bread in Switzerland. Sustainability 3: 1555-1572.
Aerni, Philipp (2009) What is sustainable agriculture? Empirical evidence of diverging views in Switzerland and New Zealand. Ecological Economics 68(6): 1872-1882.
Aerni, Philipp. 2007. Exploring the Linkages between Commerce, Higher Education and Human Development: A Historical Review. ATDF Journal 4(2): 35-47.
Anker, Peder (2001) Imperial Ecology: Environmental Order in the British Empire, 1895-1945. Harvard University Press, Cambridge, MA.
Braudel, Fernand (2002) The Wheels of Commerce. Civilization and Capitalism 15th -18th, Volume II. Phoenix Press, London.
Cook, Harold (2008) Matters of Exchange: Commerce, Medicine, and Science in the Dutch Golden Age. Yale University Press, New Haven.
Fagan, Brian (2001) The Little Ice Age: How Climate Made History. Basic Books, New York.
Morgan, Dan (1979) Merchants of Grain: The Power and Profits of the Five Giant Companies at the Center of the World's Food Supply. iUniverse, Inc: Lincoln, NE.
Diamond, Jared (1999) Guns, Germs and Steel. Norton, New York.
Freidberg, Susanne (2009) Fresh: A Perishable History. Harvard University Press, Cambridge, MA.
Freidberg, S. (2007). Supermarkets and imperial knowledge. Cultural Geographies, 14(3): 321-342.
Kingsbury, N. (2009) Hybrid: the History and Science of Plant Breeding. University of Chicago Press, Chicago.
Love, John (1986) Max Weber and the Theory of Ancient Capitalism. History and Theory 25(2): 152-172.
Stone, Linda, Lurquin, P. F. and Cavalli-Sforza (2007) Genes, Culture, and Human Evolution: A Synthesis. Blackwell, Malden, MA.
The Economist, 2008. Hunters and Gatherers: Noble or Savage, Dec. 19th.
Keeley, Lawrence, H. (1996) War Before Civilization. Oxford University Press, Oxford.
Pendergast, M. (2010) Uncommon Grounds: The History of Coffee and how it transformed our World. Basic Books, New York.
Weber, M. (1891) Die römische Agrargeschichte in ihrer Bedeutung für das Staats- und Privatrecht. Stuttgart.
Prerequisites / NoticeThe 2-hour course will be held as a series of lectures. The course materials will be available in form of an electronic Reader at the beginning of the semester.
The class will be taught in English.
Students will be asked to give a (a) presentation (15 Minutes) or write a review paper based on a article selected from the electronic script, and (b) they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final mark (a) will have a weight of 40% and (b) 60%.
Crop Health Management
NumberTitleTypeECTSHoursLecturers
751-4506-00LPlant Pathology IV Information W2 credits2GU. Merz, M. Maurhofer Bringolf
AbstractIdentification based on host, symptoms and micro-morphology, completed with life cycles and related control measures of the most important fungal diseases and their causal pathogens of annual and perennial crops with agricultural significance.
ObjectiveThe students will learn and train preparation skills for microscopy, aquire knowledge of selected diseases (identification, biology of pathogen, epidemiology) and understand the corresponding integrated control measures practiced in Swiss agriculture.
ContentThe course will partly be an e-learning excercise (with computers).
Lecture notesA script will be used on annual and perennial crops and their most important diseases. It will be updated stepwise
Prerequisites / NoticeThe course will be in German (spec. nomenclature)
751-4704-00LWeed Science IIW2 credits2GB. Streit, N. Delabays, U. J. Haas
AbstractModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops.
ObjectiveAt the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats.
ContentModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.
751-4902-00LModern Pesticides - Mode of Action, Residues and Environmental FateW2 credits2VM. Müller, I. J. Bürge, T. Poiger
AbstractThe biochemical principles of the mode of action of plant protection products (PPP) are presented. Important topics are mechanisms for selectivity, development of resistance, residue formation in crops and food safety as well as behavior in the environment.
ObjectiveThe structures and modes of action of modern pesticides (synthetical compounds, natural compounds) are presented. The structure-activity relationships lead to considerations of actual use conditions in crops such as fungicides in viticulture, residues in edible parts of treated plants, possible side effects and environmental fate.
ContentAfter a short introduction on pesticide registration (administrative process as in Switzerland and EC, food safety), the biochemical background of the mode of action of important groups of PPP active ingredients is presented. Furthermore, selectivity of pesticides, leaching of herbicides to groundwater, accumulation of pesticides in soil, development of resistance of fungicides, formation of residues in edible parts of the crops, and side-effects on non-target organisms shall be covered.
Lecture notesAn e-script (pdf-files, in German) is is provided as download at the beginning of spring term.
Literaturenone
751-4904-00LMicrobial Pest ControlW2 credits2GJ. Enkerli, G. Grabenweger, S. Kuske Pradal
AbstractThis lecture provides conceptual as well as biological and ecological background on microbial pest management. Methods and techniques applied to develop and monitor microbial control agents are elucidated.
ObjectiveTo know the most important groups of insect pathogens and their characteristics. To become familiar with the basic steps necessary for the development of microbial control agents. To understand the techniques and methods used to monitor field applications and the procedures involved in registration of products for microbial pest management.
ContentDefinitions and general terms used in microbial control are presented. Biological and ecological aspects of all arthropod-pathogenic groups (virus, bacteria, fungi, protozoa and nematodes) as well as their advantages and disadvantages in relation to biocontrol are discussed. Particular emphasis is put on hypocrealean and entomophthoralean fungi. Examples are used to demonstrate how projects in microbial control can be set up, how pathogens can be applied and how efficacy, non-target effects, persistence and dissemination are monitored. Furthermore, the necessary steps for product development, commercial aspects and registration requirements are discussed.
Lecture notesDie grundlegenden Aspekte werden als Skript (Präsentationsunterlagen) abgegeben.
LiteratureHinweise auf zusätzliche Literatur werde in der Lehrveranstaltung gegeben.
751-5110-00LInsects in AgroecosystemsW2 credits2VS. Halloran, K. Mauck
AbstractThis class will focus on insect-plant interactions in Central European agroecosystems, and on regulators of insect pest populations. Lectures will cover important crop systems in central European agriculture. Within each system, major pests and their interactions will be described in an ecological context, focusing on key concepts in pest prediction and management.
ObjectiveAt the end of this course, students will have gained in-depth knowledge of the ecology of major pest species and their impacts within specific crop systems in Central Europe. Our approach will allow students to transfer this knowledge to related questions in other systems. Additionally, students will learn about current research goals in agroecology and how these goals are being addressed by scientists engaged in agricultural research.
ContentInsect-plant interactions in middle European agroecosystems are the focus of this course. Always starting from an important perennial or annual crop, specific insect species of economic significance are presented along with the life cycles, population dynamics, and the insect-plant interactions relevant to economic impacts on the crop. Natural factors which limit such damage are introduced, e.g. parasitoids and predators. Each section of the course is complemented by a basic ecological, biological or engineering theme or approach such as host shift, physiological time, or sampling techniques. Recent advances in research will also be addressed throughout the course and reinforced with periodic readings of recent primary literature.
Lecture notesProvided to students through ILIAS
LiteratureSelected required readings (peer reviewed literature, selected book chapters).
Environmental Crop Physiology
NumberTitleTypeECTSHoursLecturers
751-3404-00LNutrient Fluxes in Soil-Plant SystemsW4 credits4GA. Oberson Dräyer, E. K. Bünemann König
AbstractThe course teaches knowledge and experimental techniques to study pools and processes underlying nutrient fluxes in soil-plant systems. Methods will be learned i) to analyze elements dynamics, ii) to determine the use efficiency by crops of nutrients added with fertilizers, iii) to study the fate of fertilizer nutrients not taken up by the crop and iv) to estimate symbiotic N2 fixation by legumes.
ObjectiveUsing the element nitrogen (N) as model case, the student gets familiarized with techniques to assess the dynamics and availability of nutrients in the soil-plant system and to determine the use efficiency by crops of nutrients added with fertilizers. He/she learns about the use of stable isotope techniques for analyzing nutrient fluxes in soil-plant systems, and about the use of biochemical methods to obtain indicators on such fluxes. He/she is able to evaluate critically the tools used in agricultural or environmental studies dealing with fluxes of elements in soil-plant systems and the interpretation made of the results. Knowledge about processes and pools underlying nutrient cycles in agro-ecosystems will be improved.
The student learns to work in the laboratory within a small team, to organize work in sub-groups, to exchange results obtained by these sub-groups, to look for information outside of the course (e.g. in the library, in the internet), to read and analyze this information critically, to synthesize both, the information from the literature and from the groups, and to present it in a written report and in an oral presentation.
ContentThis course teaches knowledge and methods to analyze the dynamics of elements in soil-plant systems and to determine the use efficiency by crops of nutrients added with mineral and organic fertilizers. It provides knowledge about various techniques (isotopic, chemical, biochemical) that can be used to evaluate
i) content of elements in fertilizers, soils and plants;
ii) availability of elements in soils and fertilizers for plants;
iii) transfer of elements from a fertilizer to a crop;
iv) symbiotic N2 fixation by legumes.
Nitrogen will be used as model case.
The course will start with the discussion of analytical results on elemental contents in an organic fertilizer (e.g. animal manure, plant material) that has previously been labeled with the isotope 15N. To test the N efficiency of this fertilizer, a pot experiment (glasshouse study) will be designed. It will include soils with different characteristics, two test plants and fertilization treatments including the 15N labeled organic fertilizer and appropriate reference treatments.
Soils will be characterized for basic chemical properties and for biochemical characteristics that are related to the N dynamics. Plants will be harvested and analyzed for their dry matter production, their N isotope composition and for elemental contents. From the direct (15N) labeling approach, the proportion of N in the plant derived from the added fertilizers and the percentage of added fertilizer recovered in plant material will be calculated. The 15N analyses in the soil and in the plant material after the crop cycle will allow drawing a balance of the added fertilizer and discussing N losses. The comparison of 15N excess in legume and non-legume test plants will demonstrate the use of the enriched dilution method to estimate symbiotic N2 fixation by the legume.

The experiments are discussed and carried out by the students supervised by group members (two senior scientists, PhDs, laboratory staff). The students carry out the data analysis and report their findings in a written report and in an oral presentation.
Lecture notesDocumentations will be made available during the course.
LiteratureIndications during the course.
Prerequisites / NoticeStudents from the D-AGRL can get travel expenses (Zurich-Eschikon) reimbursed.
751-3604-00LPlant Breeding
Does not take place this semester.
W3 credits3GA. Hund, B. Boller, C. Grieder, R. Kölliker, B. Studer
AbstractSuccessful plant breeding requires knowledge of genetics, the methods to detect genetic variation and to utilize it for selection. The course builds on the course "Pflanzengenetik" and illustrates these basics by means of exercises and practical examples. This will be complemented by lessons in molecular breeding and latest developments in genotyping and phenotyping.
ObjectiveAt the end of the course you will be able to design, assess and analyze variety test experiments. You will have basic knowledge on phenotyping and genotyping technologies, and know how to connect this information for quantitative trait loci (QTL) mapping and association analysis. Furthermore, you will be able to assess relationships among genotypes by means of multivariate statistics (e.g. cluster analysis) using genetic and phenotypic information.
ContentThe course is organized in the following three modules:
Module 1: Phenotyping of plant breeding experiments in the field phenotyping platform (FIP) at Eschikon Field Station.
Module 2: Statistical evaluation of the assessed data in R
Module 3: Molecular breeding
The course will be held at Eschikon Field Station, where 12 computers will be available for exercises with R.
We will observe the development of crops planted in the unique filed phenotyping platform. The field part includes two full days (July 02/03) during the summer semester break. The dates are chosen to allow you assessing buckwheat and wheat plants at stages of development, when meaningful measurements can be taken. In case somebody can't attend the course at these two days for justified reasons, we will seek for an alternative exercise.
During the course, we will have a closer look at wheat and buckwheat.
In wheat, we aim to teach the basic skills of phenotyping of plant development. You will assess the development using the simple scoring method, to train your breeder's eyes. Furtheremore, you will use sensors and indices used in the novel Field Phenotyping Platform (FIP), such as normalized difference vegetation index (NDVI), thermography and multispectral sensing. At the end of the course you will be able to judge the advantages of the "NDV-eye" vs. your Breeder's eye.
With Buckwheat we aim to establish a breeding program at ETH which is mainly operated by students. Here we need your enthusiasm, experience and input in order to succeed. You will score different traits of agronomic importance during the field day in summer. At the end of the course you should be able to pick the best varieties to make crosses for a planned breeding program organized by you and your fellow students of subsequent semesters.
In the statistical part of the course (module 2), you will learn how to process your data using the statistic package R and ASREML-R. For example, you will use the data assessed in module 1 to calculate heritabilities by means of analysis of variance. This part requires a basic understanding of R as taught in "Experimental Design and Applied Statistics in Agroecosystem Science" as well as of quantitative genetics as taught in "Pflanzengenetik". However these courses are not mandatory to enroll in plant breeding.
In the third module, you will learn about the genetic toolbox that is available for molecular breeding. Starting with the latest developments in DNA marker and genotyping technologies, the basic principles of genetic linkage mapping and QTL analysis will be illustrated. Novel breeding concepts such as genomic selection or breeding by design will be explained, discussed and evaluated for their potential to accelerate breeding progress in different crop species.
Prerequisites / NoticeYou need a Basic understanding of R as taught in "Experimental Design and Applied Statistics in Agroecosystem Science" as well as quantitative genetics as taught in "Pflanzengenetik". However these courses are not mandatory to enroll in plant breeding.
751-4003-02LCurrent Topics in Grassland Sciences (FS) Information W+2 credits2SN. Buchmann
AbstractResearch results in grassland will be presented by experienced researchers as well as Ph.D. students and graduate students. Citation classics as well as most recent research results from published or on-going studies will be presented and discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemical cycling to management aspects in agro- and forest ecosystems.
ObjectiveStudents will be able to understand and evaluate experimental design and data interpretation of on-going studies, be able to critically analyze published research results, practice to present and discuss results in the public, and gain a broad knowledge of recent research and current topics in agro- and forest ecosystem sciences.
ContentCitation classics as well as most recent research results from published or on-going studies will be presented and discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemical cycling to management aspects in agro- and forest ecosystems.
Lecture notesnone
Prerequisites / NoticePrerequisites: Attendance of the courses "Öko- und Ertragsphysiologie", "Futterbau", "Graslandsysteme" in the Bachelor or similar courses. Language will be English.
751-4704-00LWeed Science IIW2 credits2GB. Streit, N. Delabays, U. J. Haas
AbstractModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops.
ObjectiveAt the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats.
ContentModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.
751-5118-00LGlobal Change Biology Information W2 credits2GH. Bugmann, N. Buchmann, C. Emmel, L. Hörtnagl
AbstractThis course focuses on the effects of anthropogenic climate change as well as land use and land cover change on terrestrial systems. Our current understanding of the coupled human-environmental systems will be discussed, based on observations, experiments and modeling studies. Different management options for sustainable resource use, climate mitigation and adaptation will be studied.
ObjectiveStudents will understand consequences of global change at various spatial and temporal scales, be able to synthesize their knowledge in various disciplines in view of global change issues, know international and national treaties and negotiations concerning management and climate and land use/land cover change, and be able to evaluate different management options, including sustainable resource use and climate mitigation as well as adaptation options.

Students will learn to present scientific information to an audience of educated laymen by preparing an executive summary and an oral presentation to answer a specific scientific question. Students will get extensive feedback from teachers and peers. Thereby, students will also learn how to give constructive feedback to peers.
ContentChanges in climate and land use are major issues that students will be faced with during their working life, independently of where they will work. Thus, an advanced understanding on how global change, biogeochemistry, land use practices, politics, and society interact is critical to act responsibly and work as agricultural or environmental scientists in the future.

Thus, during this course, the effects of global change (i.e., changes in climate, atmospheric chemistry as well as land use and land cover) on forest and agro-ecosystems will be presented and discussed. Effects on ecosystem structure, composition, productivity and biogeochemical cycling, but also on stability of production systems against disturbances will be addressed. Current scenarios and models for coupled human-environmental systems will be discussed. The advantages and disadvantages of different management options will be studied, including the sustainable resource use and climate mitigation as well as adaptation.
Prerequisites / NoticeThis course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general.
751-5102-00LBiogeochemical ModelingW2 credits2GJ. Lee, J. Six, A. Hofmann, M. Necpalova
AbstractThis class provides an introduction to biogeochemical modeling in the context of agricultural systems. It covers the general background and principles of modeling agroecosystem biogeochemistry. The topical focus is on soil processes. Plant growth and development is included as a side topic. The course consists of lectures and modeling exercises.
ObjectiveThe focus during the modeling exercise sessions is on the testing and application of the biochemical model DAYCENT to agroecosystems. This includes model parameterization, sensitivity analysis, validation, and uncertainty analysis.
Content- Introduction to biogeochemical cycles
- Overview of ecosystem models
- Spatial and temporal scales in modeling
- Century and DAYCENT model
- Controls on biogeochemical processes
- Modeling plant growth and development (DAYCENT)
- Modeling soil organic matter and nutrient dynamics (DAYCENT)
- Model testing and evaluation
- Sensitivity analysis
- Uncertainty analysis
- Bio-economic modeling
- Policy and agent-based modeling
LiteratureSmith, J., Smith, P. (2007) Introduction to environmental modelling. Oxford University Press, 180 p.

Wallach, D., Makowski, D., Jones, J.W., Brun, F. (2014) Working with dynamic crop models: Methods, tools and examples for agriculture and environment. Academic Press, 2nd ed., 487 p.
Prerequisites / NoticeStudents signing up for this course should have a strong interest in modeling.
751-4106-00LCrop PhenotypingW4 credits4GA. Walter, A. Hund, J. Leipner, F. Liebisch
AbstractPhenotyping is mostly understood as a non-invasive, quantitative assessment of plant and organ morphology at different wavelengths. In this course, standard and customized phenotyping platforms and approaches are introduced and applied to characterize crop performance in the field and in the lab. The relevance of phenotyping for breeding, field management and precision agriculture is shown.
ObjectiveAt the end of the course you will know a range of different phenotyping methods and how to assess their utility for different issues. You also know the critical stages of individual crops and you can identify promising traits and phenotyping approaches that are appropriate to improve a crop or its management in the field.
ContentBasic knowledge in physiology, breeding and management of our major crops will be combined with concepts of inheritance, experimental design, crop modelling and abiotic stress. By lectures, discussions, and hands-on experiments, you will learn to use image-based phenotyping methods for a performance assessment of genotypes of a breeding population and to assess the efficiency of measures of field management.
Crops are exposed to different abiotic stress factors during their development. Adaptation of crops to extreme environmental conditions likely to be encountered in the course of the year (e.g. cold and heat stress; water-saturated or dry soils) has been achieved by plant breeding to a good extent. In many cases, however, there is enormous potential for optimization.
The most important mechanisms of plant adjustment towards stress will be explained, as well as critical stages identified in which stress affects yield most severely. You will learn methods by which the response of plants to environmental parameters is quantified non-destructively. You learn how to deal with the challenge of spatial variability in the field, when it is necessary to analyze a lot of genotypes. You will get to know different phenotyping methods in the field and under controlled conditions. An important parameter of analysis will be the measurement of the growth of roots and shoots and the response of this parameter to environmental stress. Moreover, you will apply thermography and multispectral image analysis as exemplary remote sensing methods and you will use these methods to calculate parameters such as canopy cover, water status and leaf greenness of individual plants or crop stands. Also, you will learn the use of chlorophyll fluorescence to assess the efficiency of the photosynthetic apparatus.
751-4204-01LHorticultural Science (FS)W2 credits2GL. Bertschinger, R. Baur, C. Carlen
AbstractAfter an introduction (2h), lectures address 2 horticultural cropping systems and value chains, each one in 2 2h-lecture blocks. Afterwards, students split in 2 groups for addressing a case study focusing on one of the cropping systems treated before. An excursion to a research site might be included. In a final colloquium, each group presents a report on their case study and their conclusions.
ObjectiveAchieve a deepened understanding of horticultural value chain challenges related with ecological intensification, resource efficiency, climate change and healthy, safe food production, and the problem solution strategies and scientific principles behind.
Deliver in a team effort a report and presentation with a comprehensive insight into the studied problem and its science-based solution strategy.
ContentIn the autumn semester, the two addressed cropping systems and value chains are fruit-production and viticulture.
In the spring semester, the two addressed cropping systems and value chains are vegetable-production- and berry-production or glasshouse-horticulture.
The selected topics address challenges with regard to ecological intensification, resource efficiency or climate change and branch into on-going research and development projects.
Lecture notesDocuments handed out during the case studies.
LiteratureProvided by the case study leaders.
Prerequisites / NoticeThe course builds on basic knowledge delivered by 'Horticultural Crops I & II' (BSc). If these courses have not been followed by interested participants, equivalent knowledge and experience will greatly support a successful and productive participation of the participating student.
Language: spoken E, G or F, Documents: Preferably English, G/F possible.
General Crop Science
NumberTitleTypeECTSHoursLecturers
751-4704-00LWeed Science IIW2 credits2GB. Streit, N. Delabays, U. J. Haas
AbstractModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops.
ObjectiveAt the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats.
ContentModern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.
751-5110-00LInsects in AgroecosystemsW2 credits2VS. Halloran, K. Mauck
AbstractThis class will focus on insect-plant interactions in Central European agroecosystems, and on regulators of insect pest populations. Lectures will cover important crop systems in central European agriculture. Within each system, major pests and their interactions will be described in an ecological context, focusing on key concepts in pest prediction and management.
ObjectiveAt the end of this course, students will have gained in-depth knowledge of the ecology of major pest species and their impacts within specific crop systems in Central Europe. Our approach will allow students to transfer this knowledge to related questions in other systems. Additionally, students will learn about current research goals in agroecology and how these goals are being addressed by scientists engaged in agricultural research.
ContentInsect-plant interactions in middle European agroecosystems are the focus of this course. Always starting from an important perennial or annual crop, specific insect species of economic significance are presented along with the life cycles, population dynamics, and the insect-plant interactions relevant to economic impacts on the crop. Natural factors which limit such damage are introduced, e.g. parasitoids and predators. Each section of the course is complemented by a basic ecological, biological or engineering theme or approach such as host shift, physiological time, or sampling techniques. Recent advances in research will also be addressed throughout the course and reinforced with periodic readings of recent primary literature.
Lecture notesProvided to students through ILIAS
LiteratureSelected required readings (peer reviewed literature, selected book chapters).
751-4106-00LCrop PhenotypingW4 credits4GA. Walter, A. Hund, J. Leipner, F. Liebisch
AbstractPhenotyping is mostly understood as a non-invasive, quantitative assessment of plant and organ morphology at different wavelengths. In this course, standard and customized phenotyping platforms and approaches are introduced and applied to characterize crop performance in the field and in the lab. The relevance of phenotyping for breeding, field management and precision agriculture is shown.
ObjectiveAt the end of the course you will know a range of different phenotyping methods and how to assess their utility for different issues. You also know the critical stages of individual crops and you can identify promising traits and phenotyping approaches that are appropriate to improve a crop or its management in the field.
ContentBasic knowledge in physiology, breeding and management of our major crops will be combined with concepts of inheritance, experimental design, crop modelling and abiotic stress. By lectures, discussions, and hands-on experiments, you will learn to use image-based phenotyping methods for a performance assessment of genotypes of a breeding population and to assess the efficiency of measures of field management.
Crops are exposed to different abiotic stress factors during their development. Adaptation of crops to extreme environmental conditions likely to be encountered in the course of the year (e.g. cold and heat stress; water-saturated or dry soils) has been achieved by plant breeding to a good extent. In many cases, however, there is enormous potential for optimization.
The most important mechanisms of plant adjustment towards stress will be explained, as well as critical stages identified in which stress affects yield most severely. You will learn methods by which the response of plants to environmental parameters is quantified non-destructively. You learn how to deal with the challenge of spatial variability in the field, when it is necessary to analyze a lot of genotypes. You will get to know different phenotyping methods in the field and under controlled conditions. An important parameter of analysis will be the measurement of the growth of roots and shoots and the response of this parameter to environmental stress. Moreover, you will apply thermography and multispectral image analysis as exemplary remote sensing methods and you will use these methods to calculate parameters such as canopy cover, water status and leaf greenness of individual plants or crop stands. Also, you will learn the use of chlorophyll fluorescence to assess the efficiency of the photosynthetic apparatus.
751-4204-01LHorticultural Science (FS)W2 credits2GL. Bertschinger, R. Baur, C. Carlen
AbstractAfter an introduction (2h), lectures address 2 horticultural cropping systems and value chains, each one in 2 2h-lecture blocks. Afterwards, students split in 2 groups for addressing a case study focusing on one of the cropping systems treated before. An excursion to a research site might be included. In a final colloquium, each group presents a report on their case study and their conclusions.
ObjectiveAchieve a deepened understanding of horticultural value chain challenges related with ecological intensification, resource efficiency, climate change and healthy, safe food production, and the problem solution strategies and scientific principles behind.
Deliver in a team effort a report and presentation with a comprehensive insight into the studied problem and its science-based solution strategy.
ContentIn the autumn semester, the two addressed cropping systems and value chains are fruit-production and viticulture.
In the spring semester, the two addressed cropping systems and value chains are vegetable-production- and berry-production or glasshouse-horticulture.
The selected topics address challenges with regard to ecological intensification, resource efficiency or climate change and branch into on-going research and development projects.
Lecture notesDocuments handed out during the case studies.
LiteratureProvided by the case study leaders.
Prerequisites / NoticeThe course builds on basic knowledge delivered by 'Horticultural Crops I & II' (BSc). If these courses have not been followed by interested participants, equivalent knowledge and experience will greatly support a successful and productive participation of the participating student.
Language: spoken E, G or F, Documents: Preferably English, G/F possible.
Non-Ruminant Science
NumberTitleTypeECTSHoursLecturers
751-6111-00LPhysiology and Pathophysiology in Selected Organ Systems
Does not take place this semester.
W2 credits1VS. E. Ulbrich
AbstractThe course procures detailed understanding on the development of diseases and their impact on the apparatus. The focus is on the understanding of mechanism and their variations, which compared to normality, lead to restrictions and diseases.
ObjectiveAm Ende dieser Lehrveranstaltung sind die Studierenden in der Lage, Zusammenhänge zwischen Krankheiten, ihren Uraschen, Symptomen und Auswirkungen zu erkennen und verstehen. Sie sind befähigt, dieses Wissen auf neue, ihnen unbekannte Krankheiten zu Übertragen und Folgerungen für Therapie und Prophylaxe zu ziehen.
751-6212-00LGenetic Evaluation of LifestockW1 credit1GC.  Baes
AbstractMethods for practical genetic evaluation in livestock populations are presentend and applied in assignments using small numerical examples. Applications in practical pig and cattle breeding are dealt with in guest lectures.
ObjectiveThe students know the most important methods used for genetic evaulation in livestock populations. They are able to apply these methods to simple examples.
Content- Selection index and BLUP
- The BLUP Multitrait Animal Model
- Genetic evaulation using maternal effekts
- Random Regression and the test day model
- Guest lectures on practical applications of genetic evaluation in pigs and cattle.
Lecture notesCopies of the slides are available on the net.
LiteratureTo be announced in the lectures.
751-6602-00LPig Science (FS)W3 credits2GG. Bee, E. Hillmann, S. Neuenschwander
AbstractThe overall goal of the course is to provide the essential scientific knowledge of the genetic, physiological, behavioural and special nutritional aspects of pigs metabolism, health and diseases, and of the implications for product quality and economics.
ObjectiveStudents will
- understand the complex interactions of nutrition, quality traits of products, breeding and reproduction, health management and husbandry as well as various production systems including economics.
- be able to critically analyze published research data.
- be able to present precise scientific reports in oral form.
ContentAfter the Introduction (Aims of the course, organisation, program, student contribution & evaluation), actual topics that are relevant for pig production will be presented:
Nutrition; SGD; Breeding; Slaughtering; Economic Aspects; Meat Quality; presentation of Current Dissertations.
Lecture notesHandouts/scripts are being individually distributed by the the lecturers.
LiteratureSpecific literature is being indicated individually by the lecturers.
751-6802-00LPoultry ScienceW2 credits1GR. Messikommer, R. Zweifel
AbstractThe overall goal of the course is to provide the essential scientific knowledge of the genetic, physiological and special nutritional aspects of poultry's metabolism, animal health and diseases, and of the implications for environment, product quality, housing and animal welfare, and breeding programs.
ObjectiveStudents will
- understand the complex interactions of nutrition, quality traits of products, breeding and reproduction, health management, diseases and husbandry as well as various production systems including environmental aspects and sustainable resource use.
- be trained to carry out interdisciplinary and disciplinary research at the highest level.
- be able to critically analyze published research data.
- be able to present precise scientific reports in oral and written form.
ContentAfter an introduction, the nutrition and health/diseases (2x2h each) are discussed.
In addition to the lectures held at the ETH, there are two days external courses at the Aviforum in Zollikofen (held by Aviforum and BVET). In this two days, relevant topics important for poultry science/production are discussed:

Aviforum:
- Introduction, development and impact of the poultry production (egg & meat, national & international), organization and division of work, importance of the wholesale merchants;
- Poultry: production systems, Good Manufacturing Practice
- Egg production: sorting, handling and storage, product quality, foodstuff legislation, production scheduling and economics.
- Genetics: breeds, gene reservoirs, hybrid breeding, organizations and hybrids
- Hygiene: concept and needs, assessment
- Actual experiments (hens and broiler): practical training (exterior and performance test, assessment of husbandry).

BVET:
- Origin of the chicken and its original habitat, wood hen -> requirements for livestock husbandry, anatomy and normal behavior, development of alternatives
- Animal welfare aspects of poultry production.
Lecture notesHandouts/scripts are being individually distributed by the lecturers.
LiteratureSpecific literature is being indicated individually by the lecturers.
751-7406-00LCurrent Problems of Herd Health and ManagementW1 credit1SM. C. Härdi-Landerer
AbstractCurrent problems of animal health and husbandry with a view to latest scientific findings, statutory aspects and evolutions in practice.
ObjectiveThe students are informed about current problems. They know how to acquire information independently and to discuss a predefined topic well informed
751-7512-00LPractical Course in Applied EthologyW2 credits3GE. Hillmann
AbstractThe course imparts the knowledge of conducting of scientific projects in applied ethology by performing a project in small teams. This includes planning, methods and implementation, analysis and presentation. After the end of the course, the students write a short manuscript about their project in form af a scientific paper.
ObjectiveStudents know the procedure and most important steps within a scientific project. They know important statistical methods for data analysis in ethological experiments und are able to illustrate the results and present them in a short scientific talk. This knowledge can be applied in future projects, e.g. master or PhD theses.
ContentWährend des fünftägigen Blockkurses an der Agroscope Reckenholz-Tänikon in Tänikon führen die Studierenden in Kleingruppen ein wissenschaftliches ethologisches Projekt durch. Sie erarbeiten am ersten Tag die Fragestellung und Hypothese und nehmen am zweiten und dritten Tag Daten auf, die am vierten Tag statistisch ausgewertet und graphisch dargestellt werden. Am letzen Tag werden alle Projekte präsentiert und diskutiert. Zusätzlich werden in Seminaren Grundlagen zu Hypothesenbildung und Versuchsplanung, zur Methodik ethologischer Datenaufnahme sowie zu problemorientierter Staistik vermittelt. Im Anschluss an den Kurs wird durch die Studierenden über ihr Projekt ein kurzer Bericht in Form einer wissenschaftlichen Arbeit verfasst.
Lecture notesnone
LiteratureMartin, P & Bateson, P. Measuring Behaviour. 1993, 2nd edition, Cambridge University Press
Prerequisites / NoticeThe course will take place from 24.-28.8.2015 at Agrospcope in Tänikon. Accomodation in Tänikon (ca. 280.-). Please bring with you suitable clothes and your laptop if available.
A preliminary meeting will take place during spring semester. Registration until 31.6.15, minimum number of participants: 4, maximum 15.
751-7702-00LTropical Animal Genetics and BreedingW1 credit1VM. Goe
AbstractThe course provides an overview on animal breeding and genetics in the tropics with focus on livestock production in low-input farming systems. Topics covered include elements of different types of breeding programmes and the management and conservation of animal genetic resources.
ObjectiveLectures and independent exercises allow students to gain a general understanding of animal genetics and breeding in the tropics.
Lecture notesHandouts will be provided at the beginning of the course. Selected books and other references will be communicated as needed during the course.
752-5106-00LMeat Technology Restricted registration - show details
Prerequisite: successful participation in "Quality of Products of Animal Origin" (751-7800-00L, take place in FS).
W1 credit1GD. Suter, M. Kreuzer
AbstractThe understanding of procedures and quality requirements in meat production and processing is the focus of this course. The basis for that is a modern meat technology at all steps of processing. In the form of a block course these procedures are demonstrated in practice, while the corresponding theoretical background is taught by accompanying lectures.
ObjectiveThe course in meat technology shall give in a reality-near manner an insight into meat production and processing, cover theoretical and practical aspects, and provide knowledge of the versatile aspects of meat hygiene and meat technology. The language used in this MSc course is German.
ContentBlockkurs Fleischtechnologie
- Vorlesungen: Einführung in die Fleischwirtschaft und Schlachtviehvermarktung (Landesversorgung, Marktgeschehen, Organisationen, Preis- und Qualitätsmerkmale). Technik und Hygiene des Schlachtvorganges (Geflügel, Schweine, Grossvieh). Fleischqualität und Fleischwarensorten. Fleisch- und Fleischwarentechnologien (Handwerk und Industrie). Aspekte der Fleisch- und Fleischwaren - Mikrobiologie und -Hygiene. Fleischchemie. Molekularbiologische Aspekte (Tierartbestimmung, BSE). Gesetzgebung und Produktehaftpflicht im Bereich Fleisch und Fleischwaren.
- Praktische Uebungen: Kalbs- und Schweine-Zerlegung. Stückbenennung und -verwendung. Herstellung verschiedener Fleischwaren.
- Exkursion: Besuch eines Grossbetriebs mit Schweineschlachtung und Produktion sowie eines Geflügelschlachthofes unter fachlicher Leitung.
Lecture notesVorhanden, wird stundenweise verteilt.
LiteratureFleisch, Technologie und Hygiene der Gewinnung und Verarbeitung; Verlag Eugen Ulmer 1988. ISBN 3-8001-2135-2
Fleischtechnologie; Behr's Verlag1996 ISBN 3-86022-188-4
Prerequisites / NoticeBesonderes zum Besuch der Veranstaltungsteile der Lerneinheit „Fleischtechnologie“:

Die Lehrveranstaltung „Qualität tierischer Produkte“ ist Voraussetzung für die Belegung des Blockkurses.

- Der Blockkurs Fleischtechnologie findet in Spiez (Ausbildungszenter für die Schweizer Fleischwirtschaft) und in Courtepin nach Ende des Frühjahrssemester statt.
751-6122-00LPhysiology of LactationW2 credits2GS. E. Ulbrich, R. Bruckmaier
AbstractIm Rahmen der Lehrveranstaltung Laktationsphysiologie lernen die Studierenden die detaillierten Vorgänge kennen, die zur Milchbildung und Milchabgabe im Rahmen der Laktation bei Säugetieren, insbesondere bei Nutz- und Wildtieren, führen.
ObjectiveZiel der Vorlesung ist das Verständnis der komplexen Funktion der Laktation. Mit den erworbenen Kenntnissen werden die Studierenden befähigt, das Potential und die Problematiken zu beurteilen und weiterzuentwickeln, die sich in der Tierproduktion im Rahmen der Milchproduktion ergeben.
ContentDie interaktive Vorlesung, die durch zwei Praktikumstage komplementiert wird, ermöglicht den Studierenden die detaillierten Vorgänge kennenzulernen, die zur Milchbildung und Milchabgabe bei Säugetieren führen.
Dazu gehören das grundlegende Verständnis der Entwicklung und Funktionsstadien der Milchdrüse und ihre Bedeutung für die verschiedenen Nutztierspezies und den Menschen als Nahrungsmittel. Auch werden hormonelle Veränderungen, die sich während der unterschiedlichen Phasen der Laktation einstellen, eingehend erörtert. Zudem werden Techniken des Milchentzugs in Vorlesung und Praktikum diskutiert und die mitunter herausfordernde Interaktionen zwischen Melktechnik und Tier thematisiert.
Lecture notesDen Studierenden werden die Folien der Vorlesung als pdf zeitnah bereitgestellt.
LiteratureF. Döcke, "Veterinärmedizinische Endokrinologie"
Prerequisites / NoticeVorraussetzung:
Die Vorlesung "Endokrinologie und Reproduktionsbiologie" (751-6113-00L, findet im HS statt) eignet sich als sehr gute Vorbereitung und Ergänzung zur "Laktationsphysiologie".
Termine:
Die genauen Termine insbesondere für die stattfindenden Praktika werden beim ersten Termin nach gemeinsamer Absprache festgelegt.
751-6220-00LFuntional Genomics in Livestock PhysiologyW2 credits2GS. E. Ulbrich, S. Bauersachs
AbstractFundamentals in functional genome analysis will be teached in this interactive lecture and the practical part. The topics will include the areas transcriptomics, proteomics, and epigenetics, and their impact on research in domestic animals.
ObjectiveThe conveyed knowledge shall enable the students to recognize the potential impact of omics technologies on the research in the context of animal physiology and genetics as well as on future animal production. Recently published studies in the field of reproductive biology will be discussed with regard to agricultural sciences.
ContentA main focus of this lecture and the corresponding practical course will be on next-generation sequencing technologies, e.g., RNA sequencing (RNA-Seq), small RNA-Seq, as well as methyl-Seq und ChIP-Seq. In proteomics, methodological basics will be given, such as 2D gel-based and mass spectrometry approaches. An important point of the lecture and the subsequent practical course will be the bioinformatics data analysis. Fundamental principles and strategies for the analysis of genomics data will be discussed and basic bioinformatics analyses will be performed.
LiteratureA selection of review articles will be provided at the beginning oft he lecture series.
Prerequisites / NoticeBasics in molecular biology
Ruminant Science
NumberTitleTypeECTSHoursLecturers
751-6111-00LPhysiology and Pathophysiology in Selected Organ Systems
Does not take place this semester.
W2 credits1VS. E. Ulbrich
AbstractThe course procures detailed understanding on the development of diseases and their impact on the apparatus. The focus is on the understanding of mechanism and their variations, which compared to normality, lead to restrictions and diseases.
ObjectiveAm Ende dieser Lehrveranstaltung sind die Studierenden in der Lage, Zusammenhänge zwischen Krankheiten, ihren Uraschen, Symptomen und Auswirkungen zu erkennen und verstehen. Sie sind befähigt, dieses Wissen auf neue, ihnen unbekannte Krankheiten zu Übertragen und Folgerungen für Therapie und Prophylaxe zu ziehen.
751-6212-00LGenetic Evaluation of LifestockW1 credit1GC.  Baes
AbstractMethods for practical genetic evaluation in livestock populations are presentend and applied in assignments using small numerical examples. Applications in practical pig and cattle breeding are dealt with in guest lectures.
ObjectiveThe students know the most important methods used for genetic evaulation in livestock populations. They are able to apply these methods to simple examples.
Content- Selection index and BLUP
- The BLUP Multitrait Animal Model
- Genetic evaulation using maternal effekts
- Random Regression and the test day model
- Guest lectures on practical applications of genetic evaluation in pigs and cattle.
Lecture notesCopies of the slides are available on the net.
LiteratureTo be announced in the lectures.
751-6502-00LRuminant Science (FS) Information W4 credits4GM. Kreuzer, M. C. Härdi-Landerer, S. Marquardt, S. Neuenschwander, C. Soliva
AbstractThe course provides the scientific basis of the central aspects in ruminants of cattle, sheep and goat breeding, diseases and the interrelationship of animal nutrition and environment. Aspects of organic farming and tropical livestock systems form part of the course. Means of knowledge transfer include interdisciplinary approaches, disciplinary parts, web-based learning and self-study.
ObjectiveAt the end of the course the students are able to apply, by a comprehensive understanding of the underlying mechanisms, their knowledge in various fields of ruminant science. They will be able to develop and recommend best strategies for large and small ruminant breeding, for sustained animal health and disease prophylaxis, for environmentally friendly animal nutrition etc. They will be trained to carry out interdisciplinary and disciplinary research at the highest level. The course Ruminant Science (HS) offered in autumn has a similar structure but is complementary to this course.
ContentFields (contact hours)
- Introduction
- Interdisciplinary topics: 12 h
- Organic Ruminant Systems
- Tropical Ruminant Systems
- Mastitis
- Disciplinary topics: 36 h
- Cattle, Sheep and Goat Breeding: 12 h
- Ruminant Diseases and Prophylaxis: 12 h
- Ruminant Nutrition and the Environment (incl. general introduction): 12 h
- Lectures held by the students: 4 h
In summary
- Contact hours: 52 h
- Self-study within semester: 30 h (especially preparation for the interdisciplinary courses and the own lecture)
- Self-study in semester break: 38 h
Total: 120 h
Lecture notesDocumentations, links and other materials will be provided at the start of the course.
LiteratureInformation on books and other references will be communicated during the course.
Prerequisites / NoticeThe specialty of this course is that for the first time the animal science disciplines are unified. This is realised with a particular emphasis on interdisciplinary focal areas and new forms of teaching. At the same time the essential basics in the central fields are communicated.

The field of Ruminant Science will also be a part of the spring semester (planned interdisciplinary topics: Lameness, Fertility in Cows, Food Intake; disciplinary courses: Animal Husbandry, Ruminant Reproduction, Nutrition Physiology in Ruminants). However both courses are organized independently.

Conditions for successful participation: Background on animal science from the Bachelor is desired. In order to attend the Minor in Ruminant Science without any animal science background, 2 credit units are reserved for an initial self-study of the basics necessary to successfully pass the minor. A realistic self-assessment concerning the need for additional self-study is recommended for students which focused on Agricultural and Resource Economics in the Bachelor of Agricultural Science ETH. This necessary effort depends on the extent to which animal science courses have been already attended in the BSc.

The control of performance will consist of:
- an own lecture
- an interdisciplinary final oral examination with focus on comprehension of the fundamental linkages rather than of specific details
751-7406-00LCurrent Problems of Herd Health and ManagementW1 credit1SM. C. Härdi-Landerer
AbstractCurrent problems of animal health and husbandry with a view to latest scientific findings, statutory aspects and evolutions in practice.
ObjectiveThe students are informed about current problems. They know how to acquire information independently and to discuss a predefined topic well informed
751-7512-00LPractical Course in Applied EthologyW2 credits3GE. Hillmann
AbstractThe course imparts the knowledge of conducting of scientific projects in applied ethology by performing a project in small teams. This includes planning, methods and implementation, analysis and presentation. After the end of the course, the students write a short manuscript about their project in form af a scientific paper.
ObjectiveStudents know the procedure and most important steps within a scientific project. They know important statistical methods for data analysis in ethological experiments und are able to illustrate the results and present them in a short scientific talk. This knowledge can be applied in future projects, e.g. master or PhD theses.
ContentWährend des fünftägigen Blockkurses an der Agroscope Reckenholz-Tänikon in Tänikon führen die Studierenden in Kleingruppen ein wissenschaftliches ethologisches Projekt durch. Sie erarbeiten am ersten Tag die Fragestellung und Hypothese und nehmen am zweiten und dritten Tag Daten auf, die am vierten Tag statistisch ausgewertet und graphisch dargestellt werden. Am letzen Tag werden alle Projekte präsentiert und diskutiert. Zusätzlich werden in Seminaren Grundlagen zu Hypothesenbildung und Versuchsplanung, zur Methodik ethologischer Datenaufnahme sowie zu problemorientierter Staistik vermittelt. Im Anschluss an den Kurs wird durch die Studierenden über ihr Projekt ein kurzer Bericht in Form einer wissenschaftlichen Arbeit verfasst.
Lecture notesnone
LiteratureMartin, P & Bateson, P. Measuring Behaviour. 1993, 2nd edition, Cambridge University Press
Prerequisites / NoticeThe course will take place from 24.-28.8.2015 at Agrospcope in Tänikon. Accomodation in Tänikon (ca. 280.-). Please bring with you suitable clothes and your laptop if available.
A preliminary meeting will take place during spring semester. Registration until 31.6.15, minimum number of participants: 4, maximum 15.
751-7702-00LTropical Animal Genetics and BreedingW1 credit1VM. Goe
AbstractThe course provides an overview on animal breeding and genetics in the tropics with focus on livestock production in low-input farming systems. Topics covered include elements of different types of breeding programmes and the management and conservation of animal genetic resources.
ObjectiveLectures and independent exercises allow students to gain a general understanding of animal genetics and breeding in the tropics.
Lecture notesHandouts will be provided at the beginning of the course. Selected books and other references will be communicated as needed during the course.
752-2302-00LMilk Science Information W1 credit1VJ. Berard, C. Lacroix, L. Meile
AbstractThe course provides information on synthesis and composition of milk, and the effects of various factors. Furthermore, specific hygienic and microbial problems of milk and fermented milk products, as well as basics on processing of milk into dairy products will be presented and discussed. The course is conceptually oriented towards the agri-food chain.
ObjectiveStudents attending this course get a comprehensive overview on milk and important milk products both from an agricultural and a food science perspective. In this way they earn competence at this borderline which is a pre-requisite for an efficient collaboration between milk producers, processors and consumers.
ContentTopics (contact hours)
- Milk synthesis and composition (Michael Kreuzer): 4 h
- Hygienic aspects of milk and milk products (Leo Meile): 6 h
- Milk processing (Christophe Lacroix): 4 h
Total contact hours: 14 h
Self-study within semester: 16 h (especially preparation for the examination)
Lecture notesDocumentations, links and other materials will be provided by each lecturer at the start of his part of the course. Additionally, an extensive German documentation for the part of M. Kreuzer can be downloaded via Moodle in "Kurs Nutztierwissenschaften". The access code will be communicated by e-mail.
LiteratureInformation on books and other references will be communicated during the course.
Prerequisites / NoticeA special point for this course is that it is taught by professors from food and agricultural sciences and is aimed to integrate both fields and provide a clear illustration of this important duality for the production of high quality, and safe dairy food.

This course is a core element of the Minor in Food Quality and Safety for students of the Master in Agroecosystem Science. It is optional (i) in the Major of Animal Science, (ii) for students selecting Majors in Crop Science or Food & Resource Economics. No specific qualification is demanded to attend the course.

Performance control is done by a final written examination of 60 min duration of the open-books type (all paper files can be brought and used).
752-5106-00LMeat Technology Restricted registration - show details
Prerequisite: successful participation in "Quality of Products of Animal Origin" (751-7800-00L, take place in FS).
W1 credit1GD. Suter, M. Kreuzer
AbstractThe understanding of procedures and quality requirements in meat production and processing is the focus of this course. The basis for that is a modern meat technology at all steps of processing. In the form of a block course these procedures are demonstrated in practice, while the corresponding theoretical background is taught by accompanying lectures.
ObjectiveThe course in meat technology shall give in a reality-near manner an insight into meat production and processing, cover theoretical and practical aspects, and provide knowledge of the versatile aspects of meat hygiene and meat technology. The language used in this MSc course is German.
ContentBlockkurs Fleischtechnologie
- Vorlesungen: Einführung in die Fleischwirtschaft und Schlachtviehvermarktung (Landesversorgung, Marktgeschehen, Organisationen, Preis- und Qualitätsmerkmale). Technik und Hygiene des Schlachtvorganges (Geflügel, Schweine, Grossvieh). Fleischqualität und Fleischwarensorten. Fleisch- und Fleischwarentechnologien (Handwerk und Industrie). Aspekte der Fleisch- und Fleischwaren - Mikrobiologie und -Hygiene. Fleischchemie. Molekularbiologische Aspekte (Tierartbestimmung, BSE). Gesetzgebung und Produktehaftpflicht im Bereich Fleisch und Fleischwaren.
- Praktische Uebungen: Kalbs- und Schweine-Zerlegung. Stückbenennung und -verwendung. Herstellung verschiedener Fleischwaren.
- Exkursion: Besuch eines Grossbetriebs mit Schweineschlachtung und Produktion sowie eines Geflügelschlachthofes unter fachlicher Leitung.
Lecture notesVorhanden, wird stundenweise verteilt.
LiteratureFleisch, Technologie und Hygiene der Gewinnung und Verarbeitung; Verlag Eugen Ulmer 1988. ISBN 3-8001-2135-2
Fleischtechnologie; Behr's Verlag1996 ISBN 3-86022-188-4
Prerequisites / NoticeBesonderes zum Besuch der Veranstaltungsteile der Lerneinheit „Fleischtechnologie“:

Die Lehrveranstaltung „Qualität tierischer Produkte“ ist Voraussetzung für die Belegung des Blockkurses.

- Der Blockkurs Fleischtechnologie findet in Spiez (Ausbildungszenter für die Schweizer Fleischwirtschaft) und in Courtepin nach Ende des Frühjahrssemester statt.
751-6122-00LPhysiology of LactationW2 credits2GS. E. Ulbrich, R. Bruckmaier
AbstractIm Rahmen der Lehrveranstaltung Laktationsphysiologie lernen die Studierenden die detaillierten Vorgänge kennen, die zur Milchbildung und Milchabgabe im Rahmen der Laktation bei Säugetieren, insbesondere bei Nutz- und Wildtieren, führen.
ObjectiveZiel der Vorlesung ist das Verständnis der komplexen Funktion der Laktation. Mit den erworbenen Kenntnissen werden die Studierenden befähigt, das Potential und die Problematiken zu beurteilen und weiterzuentwickeln, die sich in der Tierproduktion im Rahmen der Milchproduktion ergeben.
ContentDie interaktive Vorlesung, die durch zwei Praktikumstage komplementiert wird, ermöglicht den Studierenden die detaillierten Vorgänge kennenzulernen, die zur Milchbildung und Milchabgabe bei Säugetieren führen.
Dazu gehören das grundlegende Verständnis der Entwicklung und Funktionsstadien der Milchdrüse und ihre Bedeutung für die verschiedenen Nutztierspezies und den Menschen als Nahrungsmittel. Auch werden hormonelle Veränderungen, die sich während der unterschiedlichen Phasen der Laktation einstellen, eingehend erörtert. Zudem werden Techniken des Milchentzugs in Vorlesung und Praktikum diskutiert und die mitunter herausfordernde Interaktionen zwischen Melktechnik und Tier thematisiert.
Lecture notesDen Studierenden werden die Folien der Vorlesung als pdf zeitnah bereitgestellt.
LiteratureF. Döcke, "Veterinärmedizinische Endokrinologie"
Prerequisites / NoticeVorraussetzung:
Die Vorlesung "Endokrinologie und Reproduktionsbiologie" (751-6113-00L, findet im HS statt) eignet sich als sehr gute Vorbereitung und Ergänzung zur "Laktationsphysiologie".
Termine:
Die genauen Termine insbesondere für die stattfindenden Praktika werden beim ersten Termin nach gemeinsamer Absprache festgelegt.
751-6220-00LFuntional Genomics in Livestock PhysiologyW2 credits2GS. E. Ulbrich, S. Bauersachs
AbstractFundamentals in functional genome analysis will be teached in this interactive lecture and the practical part. The topics will include the areas transcriptomics, proteomics, and epigenetics, and their impact on research in domestic animals.
ObjectiveThe conveyed knowledge shall enable the students to recognize the potential impact of omics technologies on the research in the context of animal physiology and genetics as well as on future animal production. Recently published studies in the field of reproductive biology will be discussed with regard to agricultural sciences.
ContentA main focus of this lecture and the corresponding practical course will be on next-generation sequencing technologies, e.g., RNA sequencing (RNA-Seq), small RNA-Seq, as well as methyl-Seq und ChIP-Seq. In proteomics, methodological basics will be given, such as 2D gel-based and mass spectrometry approaches. An important point of the lecture and the subsequent practical course will be the bioinformatics data analysis. Fundamental principles and strategies for the analysis of genomics data will be discussed and basic bioinformatics analyses will be performed.
LiteratureA selection of review articles will be provided at the beginning oft he lecture series.
Prerequisites / NoticeBasics in molecular biology
Safety and Quality in Agri-Food Chain
NumberTitleTypeECTSHoursLecturers
751-1652-00LFood Security - from the Global to the Local Dimension Restricted registration - show details
Number of participants limited to 20.
W2 credits2GM. Sonnevelt, D. Barjolle
AbstractBased on the complex nature and interactions of various driving forces such as e.g. poverty, resource scarcity, globalization and climate change, global food security depends on manifold aspects. To study food security, one must understand aspects such as the availability of, the access to and the adequate use of food as well as the stability of the economic, ecologic and political system.
ObjectiveThis year, the course focus on the role of Agroecology as a concept to support food security. Agroecology, once the exclusive domain of food sovereignty and ecology movements, it has begun to be promoted enthusiastically in both developed and developing countries by non-government organizations, international development organizations and others seeking more sustainable food production and consumption systems. The course will elaborate potential and bottlenecks of the concept for global food security.

A more detailed program will be uploaded in early 2015.
ContentThe main block of the course is a three-days workshop/seminar at the FAO headquarter in Rome during the week of 06.04.-10.04.2015 (exact dates will be announced in early 2015).
In February and March 2015, two preparatory events (each lasting +/- two hours) will be held at ETH Zurich. Exact date and time will be announced in early 2015.
Lecture notesBooks and Articles.

We will compose a document of the material presented and elaborated during the workshop for distribution after the event.
Prerequisites / NoticeThe Lecture is held in English and is limited to 20 MSc-students preferably from agriculture, environment and food sciences.
751-1710-00LAgri-Food Marketing Information W2 credits2GD. Barjolle, O. Schmid
AbstractThis course explores how market research is used by the actors in the value chains for positioning and promotion of food (course held in english).
ObjectiveThe objective of the course is to highlight how research marketing techniques can be mobilized for developing supply chains, in order to create and distribute value.
Students will be invited to discover advanced tools in marketing research (retailer and consumer panel data analysis, Likert scales. conjoint analysis and contingent valuation...), illustrated by a set of up date case-studies presented by professional invited lectures. This approach will allow students to be informed about present discussions in the Swiss agri-food supply chains.
ContentSome lectures are focused on methods presentation. Students then choose a mini-case, which they will carry out in groups of 5-6 students. Various issues are the key points of the mini-cases: construction of a USP (Unique Selling Proposition) for sustainability standards, ethical claims or origin-based labels; marketing and promotion of PDO-PGI products; marketing and promotion of organic products, collective promotion on Swiss products in Switzerland and abroad; produits du terroir and gastronomy; short supply chain; public procurement.
Lecture notespaper copies of the presentations are distributed during the lecture.
751-3402-00LPlant Nutrition II - Integrated Nutrient Management Information W2 credits2VE. Frossard, A. Oberson Dräyer
AbstractTeaching knowledge on nutrient fluxes in agroecosystems so as to maximize nutrient use efficiency by crops and minimize losses to the environment while providing optimal nutrient supply to crops. Methods to establish nutrient budgets are presented. Nutrient input and output variables (e.g. losses by various pathways) are treated and their optimal management presented.
ObjectiveAt the end of the lecture the students can establish nutrient budgets, can critically evaluate agricultural systems as source of elements for the environment and can propose agricultural practices that limit these losses while maximizing nutrient use efficiency and optimizing nutrient supply to crops.
ContentThis course provides understanding of nutrient fluxes in agro-ecosystems so as to maximize nutrient use efficiency by crops while minimizing nutrient losses to the environment at optimal nutrient supply to the crop. First, different approaches to calculate nutrient budgets at various levels of the agro-ecosystem will be studied. Then the characteristics of input and output variables will be treated. These variables encompass organic (e.g. animal manure, plant residues, recycled organic wastes) and mineral fertilizers (e.g. minerals and products from recycling), symbiotic nitrogen fixation, nutrient deposition and pathways of nutrient losses. Measures to mitigate nutrient losses to the environment will be presented. Using case studies on nutrient rich and nutrient poor agro-ecosystems, strategies for an optimal nutrient management will be discussed that integrate attributes of soils, plants and fertilizers.
751-4902-00LModern Pesticides - Mode of Action, Residues and Environmental FateW2 credits2VM. Müller, I. J. Bürge, T. Poiger
AbstractThe biochemical principles of the mode of action of plant protection products (PPP) are presented. Important topics are mechanisms for selectivity, development of resistance, residue formation in crops and food safety as well as behavior in the environment.
ObjectiveThe structures and modes of action of modern pesticides (synthetical compounds, natural compounds) are presented. The structure-activity relationships lead to considerations of actual use conditions in crops such as fungicides in viticulture, residues in edible parts of treated plants, possible side effects and environmental fate.
ContentAfter a short introduction on pesticide registration (administrative process as in Switzerland and EC, food safety), the biochemical background of the mode of action of important groups of PPP active ingredients is presented. Furthermore, selectivity of pesticides, leaching of herbicides to groundwater, accumulation of pesticides in soil, development of resistance of fungicides, formation of residues in edible parts of the crops, and side-effects on non-target organisms shall be covered.
Lecture notesAn e-script (pdf-files, in German) is is provided as download at the beginning of spring term.
Literaturenone
752-2302-00LMilk Science Information W1 credit1VJ. Berard, C. Lacroix, L. Meile
AbstractThe course provides information on synthesis and composition of milk, and the effects of various factors. Furthermore, specific hygienic and microbial problems of milk and fermented milk products, as well as basics on processing of milk into dairy products will be presented and discussed. The course is conceptually oriented towards the agri-food chain.
ObjectiveStudents attending this course get a comprehensive overview on milk and important milk products both from an agricultural and a food science perspective. In this way they earn competence at this borderline which is a pre-requisite for an efficient collaboration between milk producers, processors and consumers.
ContentTopics (contact hours)
- Milk synthesis and composition (Michael Kreuzer): 4 h
- Hygienic aspects of milk and milk products (Leo Meile): 6 h
- Milk processing (Christophe Lacroix): 4 h
Total contact hours: 14 h
Self-study within semester: 16 h (especially preparation for the examination)
Lecture notesDocumentations, links and other materials will be provided by each lecturer at the start of his part of the course. Additionally, an extensive German documentation for the part of M. Kreuzer can be downloaded via Moodle in "Kurs Nutztierwissenschaften". The access code will be communicated by e-mail.
LiteratureInformation on books and other references will be communicated during the course.
Prerequisites / NoticeA special point for this course is that it is taught by professors from food and agricultural sciences and is aimed to integrate both fields and provide a clear illustration of this important duality for the production of high quality, and safe dairy food.

This course is a core element of the Minor in Food Quality and Safety for students of the Master in Agroecosystem Science. It is optional (i) in the Major of Animal Science, (ii) for students selecting Majors in Crop Science or Food & Resource Economics. No specific qualification is demanded to attend the course.

Performance control is done by a final written examination of 60 min duration of the open-books type (all paper files can be brought and used).
752-3024-00LHygienic DesignW2 credits2GJ. Hofmann, E. J. Windhab
AbstractThe lecture course Hygienic Design covers the special requirements in the design of equipment and components used in food production. Material science and surface treatments are as important as the cleaning mechanisms of these surfaces. Explanations of basic design requirements in food production areas, as well as the relevant regulations associated, are covered in this course.
ObjectiveTo identify and evaluate hazards of food safety which can come from the equipment used in the food processing. Understanding of the most important design principles for easy cleaning of machinery and equipment.
752-4010-00LProblems and Solutions in Food Microbiology Restricted registration - show details
Number of participants limited to 28.

Prerequisites: It is essential to have a basic knowledge in General Microbiology and Food Microbiology. If students have not taken appropriate courses, it is strongly recommended to consult with the lecturer before attending this seminar.
W3 credits1SM. Loessner, J. Klumpp
AbstractA journal-club style seminar, in which preselected recent scientific articles are analyzed, presented and discussed by students. The relevant topics are selected from the wider area of food microbiology, including fundamental and applied disciplines. Students learn how state-of -the-art research is designed, conducted, appropriately analyzed, and presented.
ObjectiveStudents will learn how state-of -the-art research is designed, conducted, appropriately analyzed, and presented.
ContentSeveral pre-selected, recently published papers will be up for selection by the students. All papers were selected from recent literature and reflect the wider area of food microbiology, including fundamental research (molecular biology, genetics, biochemistry) and applied disciplines (diagnostics, control, epidemiology). Groups of 2 students each will pick a paper for in-depth analysis (mostly work done at home and/or library) and presentation to the other students.
Lecture notesNo script needed. Pre-selected papers will be assigned to student groups in the kick-off meeting (first lecture); PDF copies will be available to all students.
LiteratureNo specific books needed. Access to a library and web-based literature search is required.
Prerequisites / NoticeTeamwork in small groups of 2 students
752-5106-00LMeat Technology Restricted registration - show details
Prerequisite: successful participation in "Quality of Products of Animal Origin" (751-7800-00L, take place in FS).
W1 credit1GD. Suter, M. Kreuzer
AbstractThe understanding of procedures and quality requirements in meat production and processing is the focus of this course. The basis for that is a modern meat technology at all steps of processing. In the form of a block course these procedures are demonstrated in practice, while the corresponding theoretical background is taught by accompanying lectures.
ObjectiveThe course in meat technology shall give in a reality-near manner an insight into meat production and processing, cover theoretical and practical aspects, and provide knowledge of the versatile aspects of meat hygiene and meat technology. The language used in this MSc course is German.
ContentBlockkurs Fleischtechnologie
- Vorlesungen: Einführung in die Fleischwirtschaft und Schlachtviehvermarktung (Landesversorgung, Marktgeschehen, Organisationen, Preis- und Qualitätsmerkmale). Technik und Hygiene des Schlachtvorganges (Geflügel, Schweine, Grossvieh). Fleischqualität und Fleischwarensorten. Fleisch- und Fleischwarentechnologien (Handwerk und Industrie). Aspekte der Fleisch- und Fleischwaren - Mikrobiologie und -Hygiene. Fleischchemie. Molekularbiologische Aspekte (Tierartbestimmung, BSE). Gesetzgebung und Produktehaftpflicht im Bereich Fleisch und Fleischwaren.
- Praktische Uebungen: Kalbs- und Schweine-Zerlegung. Stückbenennung und -verwendung. Herstellung verschiedener Fleischwaren.
- Exkursion: Besuch eines Grossbetriebs mit Schweineschlachtung und Produktion sowie eines Geflügelschlachthofes unter fachlicher Leitung.
Lecture notesVorhanden, wird stundenweise verteilt.
LiteratureFleisch, Technologie und Hygiene der Gewinnung und Verarbeitung; Verlag Eugen Ulmer 1988. ISBN 3-8001-2135-2
Fleischtechnologie; Behr's Verlag1996 ISBN 3-86022-188-4
Prerequisites / NoticeBesonderes zum Besuch der Veranstaltungsteile der Lerneinheit „Fleischtechnologie“:

Die Lehrveranstaltung „Qualität tierischer Produkte“ ist Voraussetzung für die Belegung des Blockkurses.

- Der Blockkurs Fleischtechnologie findet in Spiez (Ausbildungszenter für die Schweizer Fleischwirtschaft) und in Courtepin nach Ende des Frühjahrssemester statt.
752-1202-00LFood Safety and Quality ManagementW3 credits2GT. Gude
AbstractThe course procures the general rules of a quality management system and its application in the food chain to guarantee food safety. Therefore the HACCP concept will be touched in relation to risk management and risk assessment. Furthermore the origin of limits as well as the analytical proof will be highlighted. Finally general principles of laboratory testing will be discussed.
ObjectiveComprehensive knowledge to take over the responsibility for and organisation of quality assurance in a food processing environment.
ContentThe following lists in note form the relevant topics:
Definition of (Food) Quality
TQM/quality management
Q.A in the food chain (manufacturer/retail)
Food Quality, -Safety (also give by examples)
Food Limits - origin of and how to get them
HACCP introduction, risk management, -assessment
Self control concepts
GFSI/Standards BRC, IFS, ISO
Statistical Process Control
Raw material/product control: sampling plans
Q.A. in laboratories, sampling
Sampling plans, Qs in an analytical lab
Lecture notesn/a
Literaturen/a
Prerequisites / Noticen/a
751-0021-01LWorld Food System Summer School Restricted registration - show details
Number of participants limited to 20.
W Dr4 credits6PM. Grant, N. Buchmann
AbstractHosted on one of the largest organic farms in Switzerland, this course provides the opportunity for young scientists and practitioners to understand the challenges and opportunities of the world food system, in particular regarding organic production systems. During the two week summer school participants will engage in lectures, workshops, group work, case studies, field trips and farm work.
ObjectiveUnderstand: the science, relationships, interactions and trade-offs in food systems; the role and potential of organic production systems; potential interventions; the cultural, socio-political, economic and environmental factors to be incorporated into solutions. Build skills in systems thinking, multi-cultural and multi-disciplinary collaboration, participatory processes. Connect to a network of expert faculty/ scientists/ practitioners.
ContentThe content framework includes the following modules: world food system overview; agricultural production; Global change drivers; smallholder livelihoods and rural development; Agroforest systems; labelling; International policy and trade; Processing, distribution, and retail; Nutrition and health; National policy and state interventions. The course will conclude with a group work.
LiteratureParticipants will receive pre-reading material before the course commences.
Prerequisites / NoticeNo prerequisites. Program is open to Masters and PhD students and in special cases upper level Bachelor students. All students (including those from ETH Zurich) must apply through a competitive application process that will open in March 2015 at www.worldfoodsystem.ethz.ch. Participation is subject to successful selection through this competitive process.
751-4204-01LHorticultural Science (FS)W2 credits2GL. Bertschinger, R. Baur, C. Carlen
AbstractAfter an introduction (2h), lectures address 2 horticultural cropping systems and value chains, each one in 2 2h-lecture blocks. Afterwards, students split in 2 groups for addressing a case study focusing on one of the cropping systems treated before. An excursion to a research site might be included. In a final colloquium, each group presents a report on their case study and their conclusions.
ObjectiveAchieve a deepened understanding of horticultural value chain challenges related with ecological intensification, resource efficiency, climate change and healthy, safe food production, and the problem solution strategies and scientific principles behind.
Deliver in a team effort a report and presentation with a comprehensive insight into the studied problem and its science-based solution strategy.
ContentIn the autumn semester, the two addressed cropping systems and value chains are fruit-production and viticulture.
In the spring semester, the two addressed cropping systems and value chains are vegetable-production- and berry-production or glasshouse-horticulture.
The selected topics address challenges with regard to ecological intensification, resource efficiency or climate change and branch into on-going research and development projects.
Lecture notesDocuments handed out during the case studies.
LiteratureProvided by the case study leaders.
Prerequisites / NoticeThe course builds on basic knowledge delivered by 'Horticultural Crops I & II' (BSc). If these courses have not been followed by interested participants, equivalent knowledge and experience will greatly support a successful and productive participation of the participating student.
Language: spoken E, G or F, Documents: Preferably English, G/F possible.
Functioning of Soil Systems
NumberTitleTypeECTSHoursLecturers
751-3404-00LNutrient Fluxes in Soil-Plant SystemsW4 credits4GA. Oberson Dräyer, E. K. Bünemann König
AbstractThe course teaches knowledge and experimental techniques to study pools and processes underlying nutrient fluxes in soil-plant systems. Methods will be learned i) to analyze elements dynamics, ii) to determine the use efficiency by crops of nutrients added with fertilizers, iii) to study the fate of fertilizer nutrients not taken up by the crop and iv) to estimate symbiotic N2 fixation by legumes.
ObjectiveUsing the element nitrogen (N) as model case, the student gets familiarized with techniques to assess the dynamics and availability of nutrients in the soil-plant system and to determine the use efficiency by crops of nutrients added with fertilizers. He/she learns about the use of stable isotope techniques for analyzing nutrient fluxes in soil-plant systems, and about the use of biochemical methods to obtain indicators on such fluxes. He/she is able to evaluate critically the tools used in agricultural or environmental studies dealing with fluxes of elements in soil-plant systems and the interpretation made of the results. Knowledge about processes and pools underlying nutrient cycles in agro-ecosystems will be improved.
The student learns to work in the laboratory within a small team, to organize work in sub-groups, to exchange results obtained by these sub-groups, to look for information outside of the course (e.g. in the library, in the internet), to read and analyze this information critically, to synthesize both, the information from the literature and from the groups, and to present it in a written report and in an oral presentation.
ContentThis course teaches knowledge and methods to analyze the dynamics of elements in soil-plant systems and to determine the use efficiency by crops of nutrients added with mineral and organic fertilizers. It provides knowledge about various techniques (isotopic, chemical, biochemical) that can be used to evaluate
i) content of elements in fertilizers, soils and plants;
ii) availability of elements in soils and fertilizers for plants;
iii) transfer of elements from a fertilizer to a crop;
iv) symbiotic N2 fixation by legumes.
Nitrogen will be used as model case.
The course will start with the discussion of analytical results on elemental contents in an organic fertilizer (e.g. animal manure, plant material) that has previously been labeled with the isotope 15N. To test the N efficiency of this fertilizer, a pot experiment (glasshouse study) will be designed. It will include soils with different characteristics, two test plants and fertilization treatments including the 15N labeled organic fertilizer and appropriate reference treatments.
Soils will be characterized for basic chemical properties and for biochemical characteristics that are related to the N dynamics. Plants will be harvested and analyzed for their dry matter production, their N isotope composition and for elemental contents. From the direct (15N) labeling approach, the proportion of N in the plant derived from the added fertilizers and the percentage of added fertilizer recovered in plant material will be calculated. The 15N analyses in the soil and in the plant material after the crop cycle will allow drawing a balance of the added fertilizer and discussing N losses. The comparison of 15N excess in legume and non-legume test plants will demonstrate the use of the enriched dilution method to estimate symbiotic N2 fixation by the legume.

The experiments are discussed and carried out by the students supervised by group members (two senior scientists, PhDs, laboratory staff). The students carry out the data analysis and report their findings in a written report and in an oral presentation.
Lecture notesDocumentations will be made available during the course.
LiteratureIndications during the course.
Prerequisites / NoticeStudents from the D-AGRL can get travel expenses (Zurich-Eschikon) reimbursed.
701-1342-00LAgriculture and Water QualityW3 credits3GC. H. Stamm, E. Frossard, W. Richner, H. Singer
AbstractLinking scientific basics of different disciplines with practical question in the context of real-world problems of diffuse pollution due to agriculture.
ObjectiveThis course discusses the application of scientific understanding in the context of real-world situations of diffuse pollution caused by agriculture. It aims at understanding the relevant processes, analysing diffuse pollution and developing mitigation strategies starting from legal requirements regarding water quality.
Content- Diversity of diffuse agrochemical pollution
- Transport of agrochemicals from soils to water bodies
- Development of legal requirements for water quality
- Monitoring strategies
- Mitigation strategies

- Exercises including all major topics
- 1 field excursion
Lecture notesHandouts will be provided including reference list for each topic.
Prerequisites / NoticeSome exercises require R (http://www.r-project.org/) and Hydrus-1D (http://www.pc-progress.com/en/Default.aspx?hydrus-1d). Both softwares are free public domain tools. Hydrus-1D runs on PCs but runs also on emulated PC environments on Mac.
701-0524-00LSoil BiologyW3 credits2VO. Daniel, B. W. Frey
AbstractBasic knowledge on biological structures and functions in soil. Knowledge on biological interactions, nutrient cycles and energy fluxes.
ObjectiveBasic knowledge on biological structures and functions in soil. Discussion of biological interactions, nutrient cycles and energy fluxes in the subsurface.
ContentStruktur des Biotops Boden: Chemische, physikalische und biologische Faktoren Kopplung Boden-Wasser-Luft. Struktur der Biozönosen im Boden. Interaktionen Bodenfauna-Umwelt und Bodenmikroorganismen-Umwelt. Stoffkreisläufe und biologisch katalysierte Prozesse im Boden. Evaluation von bodenbiologischen Methoden.
Lecture notesHandouts and student assignments will be distributed during the course.
LiteratureNo specific books required. Some recommendations will be given in the course
Prerequisites / NoticeVoraussetzungen: Grundlagen der Bodenphysik, Bodenchemie, Zoologie und Mikrobiologie.
701-0518-00LSoil Protection and Land UseW3 credits2GR. Schulin
AbstractSoil protection and land use
ObjectiveTo know and understand the goals, problems, boundary conditions, concepts and practical approaches of soil protection as part of sustainable land use
ContentIntroduction into problems, philosophy and action fields of soil protection as part of sustainable land use; soil functions, soil quality and forms of impacts on soil; soil erosion; impacts on organic soils due to changes in soil water regime and aeration; soil compaction; soil salinization; soil contamination by toxic substances; remediation of polluted soil; soil protection by planning and legislation
Lecture notesHandouts will be distributed.
Master Thesis
NumberTitleTypeECTSHoursLecturers
751-1030-00LMaster's Thesis Information Restricted registration - show details
Only students who fulfill the following criteria are allowed to begin with their master thesis:
a. successful completion of the bachelor programme;
b. fulfilling of any additional requirements necessary to gain admission to the master programme.

THE ENROLLMENT IS DONE BY THE STUDY ADMINISTRATION OFFICE.
O30 credits128DLecturers
AbstractThe Master thesis is an independent scientific work. Normally the subject is selected among the topics of the core subect. It is written under the guidance of a agricultural science professor.
ObjectiveThe independent writing of a scientific paper/thesis
Complemantary Courses
NumberTitleTypeECTSHoursLecturers
760-0001-00LDepartment Colloquium Restricted registration - show details E-0 credits2KLecturers
Abstract
Objective
701-0972-00LIntroduction in Organic Farming SystemsW3 credits2VO. Schmid, D. M. Dubois, P. J. Mäder, U. Niggli
AbstractAim:
The students shall:
- be familiar with the basic elements of ecological farming systems,
- be able to make comparisons between farming systems (organic, integrated, conventional)
Objectivesee Introduction text
ContentPART I: Introduction in Organic Farming Systems

Introduction

1. Historical Development of farming systems and agropolicies in Switzerland
Lecturers: O. Schmid, D. Dubois

2. Basic princples and requirements organic farming and critrical analyis of roots of organic farming and other farming systems.
Lecturers: U. Niggli, O. Schmid

PLANT PRODUCTION

3. Sustainable rotations, fertilisation concepts and plant nutrition
Lecturers: D. Dubois, P. Mäder, O. Schmid

4. Careful soil tillage and non-chemical weed control
Lecturer: H.U. Dierauer

5. Soil fertility - Results from long-term trials
Lecturer: P. Mäder

6.Plant protection in arable crops and in horticulture
Lecturers: D. Dubois, C. Daniel

7. Biodiversity Promotion / Strategies for breeding and choice of varieties without Genetic Engineering
Lecturers: S. Stöckli, Monika Messmer

ANIMAL PRODUCTION

8. Animal friendly animal husbandry, breeding and feeding in the practise
Lecturer: E. Meili

9. Animal health and complementary veterinary medicine
Lecturer: M. Walkenhorst

MARKET

10. Economic aspects of the conversion to organic farming: micro and macro-economic aspects
Lecturers: U. Niggli, O. Schmid

11. Marketdevelopment of label production IP and Organic
Lecturers:
Date: P. Althaus (IP Suisse) / T. Richter, O. Schmid

12. Excursion Organic farm Dietikon
Farm manager: Samuel Spahn

13. Sustainability assessment
Lecturers: Ch. Schader, Otto Schmid

14. Examination (multiple choice written test, case study)
Lecture notesWritten manuskcripts from lecturers

Scripts can be downloaded from the web with an access code through MOODLE System: https://moodle-app2.let.ethz.ch/course/view.php?id=496
LiteratureRecommended:
Otto Schmid Otto and Robert Obrist Robert (2001): Biologischer Landbau. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, 267 pp (in German)

Nic Lampkin Nic, Measures Mark and Padel Susanne (2006): Organic Farm Management Handbook. University of Wales, Aberystwyth. 240pp
Prerequisites / NoticeThis course is a precondition for the participation in the Part II en bloc "Comparison of ecological farming systems"

The course can be taken alone without the Part II

Conditions for the credit points is a test.

Structure:
Part I: 14 times 2 weekly lectures
Part II: one study week with excursions, exercices and workshops (end of spring semester).
751-1040-00LResponsible Conduct in Research Information W1 credit1UM. Paschke, N. Buchmann
AbstractWhen studying at a University, but especially when carrying out a Master’s thesis, students are joining the scientific community and, therefore, have to learn about the codes of professional and responsible conduct in research.
Objective(1) Students know the questions, conflicts and ethically ambiguous situations that may arise in research.
(2) Students can apply codes of responsible conduct in research, i.e., they understand and can apply the professional values and ethical norms of their profession.
(3) Students know how to deal with and communicate in ambiguous situations.
(4) Students will develop a professional attitude towards responsible conduct in research.
ContentWhen studying at a University, but especially when carrying out a Master's thesis, students are joining the scientific community and, therefore, have to learn about the codes of professional and responsible conduct in research. In this course, we want to increase the knowledge of our Master's students about the specific rules, regulations and guidelines of responsible conduct in their research fields but also rise awareness for potential conflicts of interest and give practical suggestions on how to react in cases of uncertainty on e.g. questions of authorship and giving credits, data treatment and interpretation, communication and responsibility in the public or on the role of graduate students in the research community. Students will discuss case studies with a conflict potential or a dilemma. They will work together in teams, discuss the codes of conduct and values established in the scientists’ community, and apply them to the case studies. The teams have to agree on actions to be taken for each case.

Students will deal with case studies on the following topics:

(1) Scientific Integrity, Error and Negligence in Science
(2) Conflicts in Authorship Practices
(3) Questions of Data Treatment
(4) Influence of Values on Data Interpretation
(5) Social Responsibility of Scientists (e.g. Communication with the public)

Student teams will discuss the case studies in role-play scenarios and present their consensus of responsible conduct in research.
Prerequisites / Notice'Responsible Conduct in Research for Plant Scientists' is part of the Master's Courses and Master's Studies in Plant Sciences and of the PS Ph.D. Program in Plant Sciences. It is organized by the Zurich-Basel Plant Science Center. Please find details on the course at:
http://www.plantsciences.uzh.ch/teaching/masters/responsibleconduct.html
751-9100-00LLERNfeldW Dr1 credit2GN. Buchmann
AbstractIm Dialog mit Schülern, Lehrpersonen und Bauern kennenlernen von praktischen Aspekten von Biodiversität und Klimawandel. Unterstützung von Schülerinnen und Schülern bei Fragen rund um die Lernaktivitäten von LERNfeld, Beratung von Lehrpersonen, Betreuung des LERNfeld-Blogs.
LERNfeld ist ein GLOBE Projekt (www.globe-swiss.ch/de/Angebote/LERNfeld)
ObjectiveIm Dialog mit Schülern, Lehrpersonen und Bauern kennenlernen von praktischen Aspekten von Biodiversität und Klimawandel. Unterstützung von Schülerinnen und Schülern bei Fragen rund um die Lernaktivitäten von LERNfeld, Beratung von Lehrpersonen, Betreuung des LERNfeld-Blogs.
Prerequisites / NoticeVoraussetzung für die Teilnahme sind sehr gute Deutschkenntnisse.
Anmeldung auf lernfeld@usys.ethz.ch
Projektstart: 15.2.2015