Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Autumn Semester 2016

Environmental Sciences Bachelor Information
Bachelor Studies (Programme Regulations 2016)
Basic Courses I
First Year Examinations
NumberTitleTypeECTSHoursLecturers
529-2001-02LChemistry I Information O4 credits2V + 2UW. Uhlig, J. E. E. Buschmann, S. Canonica, P. Funck, E. C. Meister, R. Verel
AbstractGeneral Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.
ObjectiveIntroduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content1. Stoichiometry

2. Atoms and Elements (Quantenmechanical Model of the Atom)

3. Chemical Bonding

4. Thermodynamics

5. Chemical Kinetics

6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria)
Lecture notesOnline-Skript mit durchgerechneten Beispielen.
Literature- Charles E. Mortimer, Chemie - Das Basiswissen der Chemie. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015.

Weiterführende Literatur:
Brown, LeMay, Bursten CHEMIE (deutsch)
Housecroft and Constable, CHEMISTRY (englisch)
Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY (englisch)
401-0251-00LMathematics I Information O6 credits4V + 2UA. Cannas da Silva
AbstractThis course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
ObjectiveMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content1. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

2. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.
Literature- Thomas, G. B.: Thomas' Calculus, Part 1 (Pearson Addison-Wesley).
- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
Prerequisites / NoticePrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Mathe-Lab (Assistance):
Mondays 12-14, Tuesdays 17-19, Wednesdays 17-19, in Room HG E 41.
701-0007-00LTackling Environmental Problems I Restricted registration - show details
Only for Environmental Sciences BSc.
O5 credits4GC. E. Pohl, P. Krütli, B. B. Pearce
AbstractEach year in the case study we analyse a different problem from the field of sustainable development and develop solutions to it.
ObjectiveStudents are able:
- to compile a case study dossier for a given topic. The dossier presents (a) the state of knowledge and (b) the need for further knowledge and action.
- to integrate knowledge of diverse perspectives in a qualitative systems model, to identify problems within the system and to suggest possible solutions from a specific stakeholder's perspective.
- to make an inquiry on a given subject, structure the results, interpret the results in relation to the research question, write a report and present the results.
- name the different roles within a group, explain the role(s) they are suited for, self-organise in groups, identify problems of collaboration and constructively address the problems.
ContentIn the first semester the students compile what is known about the problem, its causes and possible solutions. Each group of students makes an inquiry to a given part of the overall problem. The inquiry includes a thematic as well as stakeholder analysis.

During synthesis week, which takes place during semester break, the results of the different part inquiries are integrated in a qualitative system model. The students identify specific problems within the system and develop solutions.

Most of the time students work independently in groups. Tutors support the students in key steps. Introductions are given for:
- The overall topic of the case study,
- Inquiry, scientific writing and managing references (by experts of ETH library),
- Role behaviour and collaboration in groups,
- Preparing reports, posters and presentations,
- Qualitative system modelling (Systaim),
- Developing solutions (design thinking, Checklands' soft systems methodology).
Lecture notesStudents will compile the case study dossier.
LiteratureLiterature on methods will be provided during the case study course.
551-0001-00LGeneral Biology I Restricted registration - show details O3 credits3VU. Sauer, O. Y. Martin, A. Widmer
AbstractOrganismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.
First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences.
ObjectiveThe understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.
ContentThe first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogentic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introdution to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates
Lecture notesno script
LiteratureCampbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition
Prerequisites / NoticeThe lecture is the first in a series of two lectures given over two semesters for students with biology as as a basic subject.
701-0243-01LBiology III: Essentials of EcologyO3 credits2VS. Güsewell, C. Vorburger
AbstractThis lecture presents an introduction to ecology. It includes basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. In a more applied part of the lecture threats to biodiversity and the appropriate management are discussed.
ObjectiveThe objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research: the individual, the population, the community and the ecosystem level.
The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented.
A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.
Content- Übersicht der aquatischen und terrestrischen Lebensräume mit ihren Bewohnern
- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energieflusse
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution
Lecture notesUnterlagen, Vorlesungsfolien und relevante Literatur sind in der Lehrdokumentenablage abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.
LiteratureGenerelle Ökologie:
Townsend, Harper, Begon 2009. Ökologie. Springer, ca. Fr. 70.-

Aquatische Ökologie:
Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-;
Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Naturschutzbiologie:
Baur B. et al. 2004. Biodiversität in der Schweiz. Haupt, Bern, 237 S.
Primack R.B. 2004. A primer of conservation biology. 3rd ed. Sinauer, Mass. USA, 320 pp.
701-0027-00LEnvironmental Systems IO2 credits2VC. Schär, S. Bonhoeffer, N. Dubois
AbstractThe lecture provides a science-based exploration of environmental aspects from three research fields: earth, climate, and health sciences.
ObjectiveThe students are able to explain important properties of the three environmental systems, to discuss critical drivers, trends and conflicts of their use, and to compare potential solutions.
ContentThe lecture discusses the role of the environmental systems based on selected environmental problems, among these the exploration of raw materials and fossil fuels, climate change and its impacts on man and environment, and the spread and control of infectious diseases in the human population and agricultural systems.
Lecture notesSlides are provided by instructors and are accessible via moodle.
701-0029-00LEnvironmental Systems IIO3 credits2VB. Wehrli, C. Garcia, M. Sonnevelt
AbstractThe lecture provides a science-based exploration of three important environmental systems: Inland waters, forest, and of food systems.
ObjectiveThe students are able to explain important functions of the three environmental systems, to discuss critical drivers, trends and conflicts of their use and to compare potential solutions.
ContentAquatic ecosystems and their function, water use and its impact, water pollution and water treatment, coping with floods and water scarcity.

Forests and agroforest systems, trends and drivers of land use changes, sustainable forest management.

The main functions, trends and challenges of agricultural and food systems are discussed based on the four dimensions of food security (availability, access, utilization of food and stability of the food systems).
Lecture notesLecture notes or other documentation are provided by instructors and accessible via moodle.
Additional First Year Compulsory Courses
NumberTitleTypeECTSHoursLecturers
252-0839-00LInformatics Information O2 credits2GL. E. Fässler, M. Dahinden
AbstractStudents learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, visualizing multi-dimensional data, managing data with lists and tables and with relational databases, introduction to programming, universal methods for algorithm design.
ObjectiveThe students learn to

- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data,
- know universal methods for algorithm design.
Content1. Modeling and simulations
2. Visualizing multidimensional data
3. Data management with lists and tables
4. Data management with a relational database
5. Introduction to macro programming
6. Introduction to programming with Python
Lecture notesAll materials for the lecture are available at www.evim.ethz.ch
Prerequisites / NoticeThis course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.
529-0030-00LLaboratory Course: Elementary Chemical TechniquesO3 credits6PN. Kobert, M. Morbidelli, M. H. Schroth, B. Wehrli
AbstractThis practical course provides an introduction to elementary laboratory techniques.
The experiments cover a wide range of techniques, including analytical and synthetic techniques (e. g. investigation of soil and water samples or the preparation of simple compunds). Furthermore, the handling of gaseous substances is practised.
ObjectiveThis course is intended to provide an overview of experimental chemical methods.
The handling of chemicals and proper laboratory techniques represent the main
learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course.
ContentThe classification and analysis of natural and artificial compounds is a key subject of this
course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks:
Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations,
spectroscopy or ion chromatography. The chemistry of aqeous solutions (acid-base equilibria and solvatation or precipitation processes) is studied.
The synthesis of simple inorganic complexes or organic molecules is practised.
Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum.
Lecture notesThe script will be published on the web.
Details will be provided on the first day of the semester.
LiteratureA thorough study of all script materials is requested before the course starts.
751-0801-00LBiology I: Laboratory Exercises Information O1 credit2UE. B. Truernit
AbstractPrinciples and methods of light microscopy. Preparation of specimen for microscopy; documentation. Anatomy of seed plants: From cells to organs. Special features of plant cells. Anatomy and function of plant organs. Anatomical adaptations to different environments.
ObjectiveCapability of preparing biological specimen, microscopy and documentation. Understanding the correlation between plant structure and function at the level of organs, tissues and cells.
Awareness of the link between plant anatomy, systematics, physiology, ecology, and development.
ContentBasics of optics. Principles of light microscopy. Microscope parts and their function. Köhler illumination. Optical contrasting methods. Measuring object sizes with the microscope. Preparation of specimen for light microscopy. Plant tissue staining techniques.
Special features of plant cells: Plastids, vacuole, cell wall. Anatomy of seed plants: From cells to organs. Anatomy and function of various plant tissues (epidermis, vascular tissue, wood, etc.). Anatomy and function of different plant organs (root, stem, leaf, flower, fruit, seed). Anatomical adaptations to different environments.
Lecture notesHandouts
LiteratureFor further reading (not obligatory):
Gerhard Wanner: Mikroskopisch-Botanisches Praktikum, Georg Thieme Verlag, Stuttgart.
Prerequisites / NoticeGroups of a maximum of 30 students.
Social Sciences and Humanities
Pflichtteil
NumberTitleTypeECTSHoursLecturers
701-0757-00LPrinciples of Economics Information O3 credits2GR. Schubert
AbstractThis course covers the bases for understanding micro- and macroeconomic issues and theories. Participants are given the tools to argue in economic and political terms and to evaluate the corresponding measures. Group and individual exercises deepen the knowledge gained.
ObjectiveStudents are able to
- describe fundamental micro- and macroeconomic issues and theories.
- apply suitable economic arguments to a given theme.
- evaluate economic measures.
ContentSupply and demand behaviour of firm and households; market equilibrium and taxation; national income and indicators; inflation ; unemployment; growth; macroeconomics policies
Lecture notesavailable on electronic platform
LiteratureMankiw, N.G.: “Principles of Economics”, fourth edition, South-Western College/West, Mason 2006.

German translation: Mankiw, N.G. : Grundzüge der Volkswirtschaftslehre, 3rd. edition, Stuttgart 2004.
Prerequisites / Noticeelectronic plattform
Bachelor Studies (Programme Regulations 2011)
Basic Courses II
Examination Blocks
Examination Block 1
NumberTitleTypeECTSHoursLecturers
402-0063-00LPhysics IIO5 credits3V + 1UA. Vaterlaus
AbstractIntroduction to the "way of thinking" and the methodology in Physics, with the help of demonstration experiments. The Chapters treated are Electromagnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena. Whenever possible, examples relevant to the students' main field of study are given.
ObjectiveIntroduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.
ContentElektromagnetismus, Elektromagnetische Wellen, Wellenoptik, Strahlenoptik, Quantenoptik, Quantenmechanik, Thermische Eigenschaften, Transportphänomene, Wärmestrahlung
Lecture notesSkript wird verteilt.
LiteratureFriedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 2 Elektrizität, Optik, Wellen
Wiley-VCH, 2012
ISBN 3527411445, 9783527411443

Douglas C. Giancoli
Physik
3. erweiterte Auflage
Pearson Studium

Hans J. Paus
Physik in Experimenten und Beispielen
Carl Hanser Verlag, München, 2002, 1068 S.

Paul A. Tipler
Physik
Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.-

David Halliday Robert Resnick Jearl Walker
Physik
Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03)

dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de
701-0245-00LIntroduction to Evolutionary BiologyO2 credits2VG. Velicer, S. Wielgoss
AbstractThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
ObjectiveThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
ContentTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteratureTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Prerequisites / NoticeThe exam is based on lecture and textbook.
701-0255-00LBiochemistryO2 credits2VH.‑P. Kohler
AbstractBuilding on the biology courses in the 1st and 2nd semesters, this course covers basic biochemical knowledge in the areas of enzymology and metabolism. Those completing the course are able to describe and understand fundamental cellular metabolic processes.
ObjectiveStudents are able to understand
- the structure and function of biological macromolecules
- the kinetic bases of enzyme reactions
- thermodynamic and mechanistic basics of relevant metabolic processes
Students are able to describe the relevant metabolic reactions in detail
ContentProgram

Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates
Lipids an biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis, fermentation
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism
Lecture notesHorton et al. (Pearson) serves as lecture notes.
Prerequisites / NoticeBasic knowledge in biology and chemistry is a precondition.
752-4001-00LMicrobiology Information O2 credits2VM. Schuppler, S. Schlegel, J. Vorholt-Zambelli
AbstractTeaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.
ObjectiveTeaching of basic knowledge in microbiology.
ContentDer Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
Lecture notesWird von den jeweiligen Dozenten ausgegeben.
LiteratureDie Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms
Examination Block 2
NumberTitleTypeECTSHoursLecturers
701-0023-00LAtmosphere Information O3 credits2VH. Wernli, E. M. Fischer, T. Peter
AbstractBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
ObjectiveUnderstanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposhere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmospehre.
ContentBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
Lecture notesWritten information will be supplied.
Literature- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
701-0071-00LMathematics III: Systems AnalysisO4 credits2V + 1UN. Gruber, D. Byrne
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
ObjectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
Contenthttp://www.up.ethz.ch/education/systems-analysis.html
Lecture notesOverhead slides will be made available through Ilias.
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
701-0401-00LHydrosphereO3 credits2VR. Kipfer, C. Roques
AbstractQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ObjectiveQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ContentTopics of the course.
Physical properties of water (i.e. density and equation of state)
- global water resources
Exchange at boundaries
- energy (thermal & kinetic), gas exchange
Mixing and transport processes in open waters
- vertical stratification, large scale transport
- turbulence and mixing
- mixing and exchange processes in rivers
Groundwater and its dynamics
- ground water as part of the terrestrial water cycle
- ground water hydraulics, Darcy's law
- aquifers and their properties
- hydrochemistry and tracer
- ground water use
Case studies
- 1. Water as resource, 2. Water and climate
Lecture notesIn addition to the suggested literature handouts are distributed.
LiteratureSuggested literature.
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a.
Prerequisites / NoticeThe case studies and the analysis of the questions and problems are integral part of the course.
701-0501-00LPedosphere Information O3 credits2VR. Kretzschmar
AbstractIntroduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.
ObjectiveIntroduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.
ContentDefinition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, physical soil properties and functions, chemical soil properties and functions, soil formation, principles of soil classification, global soil regions, soil fertility, land use and soil degradation.
Lecture notesLecture notes can be purchased during the first lecture (15.- SFr)
Literature- Scheffer/Schachtschabel - Soil Science, Springer, Heidelberg, 2016.

- Brady N.C. and Weil, R.R. The Nature and Properties of Soils. 14th ed. Prentice Hall, 2007.
Prerequisites / NoticePrerequisites: Basic knowledge in chemistry, biology and geology.
Additional Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-0033-00LLaboratory Course in Physics for Students of Environmental Sciences Information O2 credits4PM. Münnich, A. Biland, N. Gruber
AbstractThe course provides an individual experience of physical phenomena and the basic principles of experiments. By carrying out simple physical experiments the students learn the proper use measuring instruments, the correct evaluation of report of the measured data and how to interpret the final results.
ObjectiveThis laboratory course aims to provide basic knowledge of
- the setup of a physics experiment,
- the use of measurement instruments,
- various measuring techniques,
- the analysis or measurement errors,
- and the interpretations of the measured quantities.
ContentThe students select 8 out of 20 experiments which they like to conduct. For each of these experiments the students will analyze the data they measure estimate the error of there measurements and compare these with the physical theory. Additionally each student will present one of their experiments in a seminar.
Lecture notesManuals for the experiments are provided online.
701-0035-00LIntegrated Practical Observation Networks Information O1.5 credits4PJ. Henneberger, T. Tormann
AbstractObservation networks - the combination of individual instruments - are the starting point of quantitative environmental studies. The structure and idiosyncrasies of existing observation networks are shown. When working in individual experiments on practical problems, various types of observation networks are dealt with; questions related to data quality and data availability are discussed.
ObjectiveGetting acquainted with existing networks. Insight into problems related to measuring and interpreting multi-dimensional fields of atmospheric physical, atmospheric chemical, and geophysical parameters.
ContentObservation networks for atmospheric physical, atmospheric chemical, geophysical, hydrological and climatological parameters on different scales (synoptic: 1000 km; mesoscale: 100 km, and microscale: 100 m). Combination of surface observation with remotely sensed data (satellite, radar). Solving interpolation problems in multi-dimensional fields of the observed variables. Assessing the representativity of local values, i.e., the directly observed variable in an observation network.
Lecture notesThe script is published anew every year. Apart from the description of the scientific problems to be worked on in individual experiments, it contains some theoretical chapters on observation networks, as well as guidelines for writing and publishing scientific papers. The script can be downloaded as pdf from the course webpage.
LiteratureLiterature is listed in the script.
Social Sciences and Humanities Module
Module Economics
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
363-0387-00LCorporate SustainabilityO3 credits2GV. Hoffmann
AbstractThe lectures addresses the assessment of corporate sustainability and its links to strategy, technology, and finance. Students learn why sustainability matters for managers and how businesses can act towards it. E-modules allow students to train critical thinking skills. In the 2nd half of the semester, sustainability challenges on water, energy, mobility, and food are explored in group projects.
ObjectiveUnderstand the limits and the potential of corporate sustainability for sustainable development

Develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.

Be able to recognize and realize opportunities for corporate sustainability in a business environment
ContentOverview of the key concepts of corporate sustainability and topics related to Water, Energy, Mobility, and Food

Business implications of sustainable development, in particular for the assessment of sustainability performance, strategic change towards sustainability, technological innovations and sustainability, and finance and corporate sustainability.
Critical thinking skills for corporate sustainability.
In-depth case studies of corporate sustainability challenges in the track phase: How to deal with environmental pressure groups? How to use the strengths of business to solve pressing sustainability problems? How to catalyze technological innovations for sustainability? How to invest money in a sustainable way?
Lecture notesPresentation slides will be made available on moodle prior to lectures.
LiteratureLiterature recommendations will be distributed during the lecture
751-1551-00LRessourcen- und Umweltökonomie Information O3 credits2VL. Bretschger, A. Müller
AbstractRelationship between economy and environment, market failure, external effects and public goods, contingent valuation, internalisation of externalities; economics of non-renewable resources, economics of renewable resources, cost-benefit analysis, sustainability, and international aspects of resource and environmental economics.
ObjectiveUnderstanding of the basic issues and methods in resource and environmental economics; ability to solve typical problems in the field using the appropriate tools, which are concise verbal explanations, diagrams or mathematical expressions.

Topics are:
Introduction to resource and environmental economics
Importance of resource and environmental economics
Main issues of resource and environmental economics
Normative basis
Utilitarianism
Fairness according to Rawls
Economic growth and environment
Externalities in the environmental sphere
Governmental internalisation of externalities
Private internalisation of externalities: the Coase theorem
Free rider problem and public goods
Types of public policy
Efficient level of pollution
Tax vs. permits
Command and Control Instruments
Empirical data on non-renewable natural resources
Optimal price development: the Hotelling-rule
Effects of exploration and Backstop-technology
Effects of different types of markets.
Biological growth function
Optimal depletion of renewable resources
Social inefficiency as result of over-use of open-access resources
Cost-benefit analysis and the environment
Measuring environmental benefit
Measuring costs
Concept of sustainability
Technological feasibility
Conflicts sustainability / optimality
Indicators of sustainability
Problem of climate change
Cost and benefit of climate change
Climate change as international ecological externality
International climate policy: Kyoto protocol
Implementation of the Kyoto protocol in Switzerland
ContentEconomy and natural environment, welfare concepts and market failure, external effects and public goods, measuring externalities and contingent valuation, internalising external effects and environmental policy, economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability issues, international aspects of resource and environmental problems, selected examples and case studies.
Lecture notesThe script and lecture material are provided at:
https://moodle-app2.let.ethz.ch/course/view.php?id=140
LiteraturePerman, R., Ma, Y., McGilvray, J, Common, M.: "Natural Resource & Environmental Economics", 3d edition, Longman, Essex 2003.
Core Courses
NumberTitleTypeECTSHoursLecturers
701-0763-00LBasic Concepts of ManagementW2 credits2VR. Schwarzenbach
AbstractThis course deals with fundamental and proven management concepts. The lecturers emphasize the pracitcal applicability of concepts. The course was designed in close cooperation with practitioneers; e.g. will Mr. S. Baldenweg, mechanical engineer ETH, MBA Insead, share his experience in several guest lectures.
ObjectiveStudents:
• will be familiar with basic general management concepts.
• learn about the fundamental concepts of strategy development with practical examples.
• will get to know the basic organisational issues and the essential types of organisations.
• get a rough overview on the concepts of financial management.
• will learn about the strategic positionining of small departments within larger organisations.
• will learn about the fundamental mechanisms for handling change, and will be able to recognise these situations.
• will learn the basic principles of project management and of successful self-management.
• will reflect on customer oriented information representation.
ContentManagement ist ein Massenberuf der durch klare Aufgaben und entsprechenden Werkzuge beschrieben werden kann. Die Positionierung einer Firma, oder eines Bereiches bedingt die Analyse des Umfeldes und die Befassung mit den zukünftigen Herausforderungen. Dazu werden verschiedene Ansätze gezeigt und die grundlegenden Denkmuster vermittelt. Für die Umsetzung einer Strategie muss die Zusammenarbeit von Menschen entsprechend organisiert werden. Dazu werden die wesentlichen Organisationsmodelle und die Dynamik von Organisationen vermittelt.
Die finanzielle Abbildung von Organisationen und Projekten wird übersichtsweise dargestellt und die stufengerechte Darstellung von Informationen anhand von realen Beispielen besprochen.
Die Inhalte werden durchgängig mit Praxisbeispielen illustriert.
Lecture notesSkripten werden elektronisch zur Verfügung gestellt.
https://ilias-app2.let.ethz.ch/goto.php?target=crs_51073&client_id=ilias_lda
LiteratureEmpfohlen werden folgende Titel für die Vertiefung einzelner Themen:

Drucker P. 1964: „Managing for Results”, Harper Collins Publishers“, 240 p.

Malik F. 2005: "Führen, Leisten, Leben. Wirksames Management für eine neue Zeit. ", Heyne, 408p.

Mintzberg H. et al. 2001: “Strategy Safari. The Complete guide through the wilds of strategic management: A Guided Tour Through the Wilds of Strategic Management”, Finanical Times, 416 p.

Osterwalder A., Pigneur Y. 2010: Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, wiley, 278 p
Prerequisites / NoticeDeutsch
151-0757-00LEnvironmental ManagementW2 credits2GR. Züst
AbstractAn environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.
ObjectiveOverview on environmental management and environmental management systems, general methods and principles.
ContentIntroduction to environmental mangement / environmental
management systems, energy and material flows; economical and
ecological problems in industry; charakterisation of an
enterprise (incl. management handbook); structur and contents of an
environmental management system; overview on the ISO 14001 ff. series; methodes for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design
design; planning exampl
Lecture notesInformation about environmental management and environmental
management systems will be provided by a CD or mail.
Literaturea list with literatures and links will be provided
Prerequisites / NoticeDelivery of a case study, worked out in groups. Language: Teaching in English on request.
351-0778-00LDiscovering Management
Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Excercises) 351-0778-01.
W3 credits3GB. Clarysse, M. Ambühl, S. Brusoni, E. Fleisch, G. Grote, V. Hoffmann, P. Schönsleben, G. von Krogh, F. von Wangenheim
AbstractDiscovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. The module provides an overview of the principles of management, teaches knowledge about management that is highly complementary to the students' technical knowledge, and provides a basis for advancing the knowledge of the various subjects offered at D-MTEC.
ObjectiveDiscovering Management combines in an innovate format a set of lectures and an advanced business game. The learning model for Discovering Management involves 'learning by doing'. The objective is to introduce the students to the relevant topics of the management literature and give them a good introduction in entrepreneurship topics too. The course is a series of lectures on the topics of strategy, innovation, corporate finance, leadership, design thinking and corporate social responsibility. While the 14 different lectures provide the theoretical and conceptual foundations, the experiential learning outcomes result from the interactive business game. The purpose of the business game is to analyse the innovative needs of a large multinational company and develop a business case for the company to grow. This business case is as relevant to someone exploring innovation within an organisation as it is if you are planning to start your own business. By discovering the key aspects of entrepreneurial management, the purpose of the course is to advance students' understanding of factors driving innovation, entrepreneurship, and company success.
ContentDiscovering Management aims to broaden the students' understanding of the principles of business management, emphasizing the interdependence of various topics in the development and management of a firm. The lectures introduce students not only to topics relevant for managing large corporations, but also touch upon the different aspects of starting up your own venture. The lectures will be presented by the respective area specialists at D-MTEC.
The course broadens the view and understanding of technology by linking it with its commercial applications and with society. The lectures are designed to introduce students to topics related to strategy, corporate innovation, leadership, corporate and entrepreneurial finance, value chain analysis, corporate social responsibility, and business model innovation. Practical examples from industry experts will stimulate the students to critically assess these issues. Creative skills will be trained by the business game exercise, a participant-centered learning activity, which provides students with the opportunity to place themselves in the role of Chief Innovation Officer of a large multinational company. As they learn more about the specific case and identify the challenge they are faced with, the students will have to develop an innovative business case for this multinational corporation. Doing so, this exercise will provide an insight into the context of managerial problem-solving and corporate innovation, and enhance the students' appreciation for the complex tasks companies and managers deal with. The business game presents a realistic model of a company and provides a valuable learning platform to integrate the increasingly important development of the skills and competences required to identify entrepreneurial opportunities, analyse the future business environment and successfully respond to it by taking systematic decisions, e.g. critical assessment of technological possibilities.
Prerequisites / NoticeDiscovering Management is designed to suit the needs and expectations of Bachelor students at all levels as well as Master and PhD students not belonging to D-MTEC. By providing an overview of Business Management, this course is an ideal enrichment of the standard curriculum at ETH Zurich.
No prior knowledge of business or economics is required to successfully complete this course.
351-0778-01LDiscovering Management (Exercises)
Complementary exercises for the module Discovering Managment.

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.
W1 credit1UB. Clarysse, L. De Cuyper
AbstractThis course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers additional exercises and case studies.
ObjectiveThis course is offered to complement the course 351-0778-00L. The course offers additional exercises and case studies.
ContentThe course offers additional exercises and case studies concering:
Strategic Management; Technology and Innovation Management; Operations and Supply Chain Management; Finance and Accounting; Marketing and Sales.

Please refer to the course website for further information on the content, credit conditions and schedule of the module: www.dm.ethz.ch
363-0503-00LPrinciples of MicroeconomicsW3 credits2GM. Filippini
AbstractThe course introduces basic principles, problems and approaches of microeconomics.
ObjectiveThe learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can apply simple mathematical treatment of some basic concepts and can solve utility maximization and cost minimization problems.
Lecture notesLecture notes, exercises and reference material can be downloaded from Moodle.
LiteratureN. Gregory Mankiw and Mark P. Taylor (2014), "Economics", 3rd edition, South-Western Cengage Learning.
The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
N. Gregory Mankiw and Mark P. Taylor (2014), "Microeconomics", 3rd edition, South-Western Cengage Learning.

Complementary:
1. R. Pindyck and D. Rubinfeld (2012), "Microeconomics", 8th edition, Pearson Education.
2. Varian, H.R. (2014), "Intermediate Microeconomics", 9th edition, Norton & Company
751-1101-00LFinances and Accounting SystemW2 credits2GM. Dumondel
AbstractTo understand accounting as a component of the complex system of the enterprise
ObjectiveTo understand accounting not as an isolated discipline, but as a part of the complex system of the enterprise
ContentAccounting system as a part of management economics.
The different steps for scheduling and evaluation of the accountancy will be studied. The main part of the lecture is dedicated to the financial accounting – nevertheless the fundamentals of the internal cost-accounting will also be presented. The lecture will also include the clarification of concrete cases and the calculation of practical exercises.
Lecture notesCourse documentation and specified educational books
LiteratureIn the lecture one indicates
851-0626-01LInternational Aid and Development
Does not take place this semester.
Prerequisites: Basic knowledge of economics
W2 credits2VI. Günther
AbstractThe course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.
ObjectiveStudents have a theoretically and empirically sound understanding of the prospects and limitations of international development aid. Students are able to critically discuss the various aid instruments of bi-and multilateral donors and NGOs.
ContentIntroduction to the Determinants of Underdevelopment; History of Aid; Aid and Development: Theories and Empirics; Political Economy of Aid; Experience and Impact of Aid; New Instruments of Aid: e.g. Micro-Finance, Budget-Support; Fair-Trade.
LiteratureArticles and book abstracts will be uploaded to a course website.
Module Political and Social Sciences
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-0747-00LEnvironmental Policy of Switzerland IO3 credits2VE. Lieberherr
AbstractThis course presents the basics of policy analysis and the specific characteristics of Swiss environmental policy. Policy instruments, actors and processes are addressed both theoretically as well as by means of current Swiss environmental policy examples.
ObjectiveBeyond acquiring basic knowledge about policy analysis, this course teaches students how to analytically address current and concrete questions of environmental policy. Through exercises the students learn about political science concepts and frameworks as well as real-life political decision-making processes. The well-grounded examination of complex political conflict situations is an important precondition for the entry into the (environmental policy) workforce or a future research career.
ContentThe processes of change, overuse or destruction of the natural environment through humans have historically placed high demands on social and political institutions. In the interplay between the environment, society and economy, the environmental policy field encompasses the sum of public measures that have the goal to eliminate, reduce or avoid environmental degradation. The course systematically presents the basics of environmental policy instruments, actors, programs and processes as well as their change over time. A key aspect is the distinction between politics and political science and specifically environmental policy.
Lecture notesInstead of lecture notes different texts on policy analysis and Swiss environmental policy are made available to the students.
LiteratureThe lecture is based on the following book to be published in the summer of 2016:
Ingold, K., Lieberherr, E., Schläpfer, I., Steinmann, K. und Zimmermann, W. Umweltpolitik der Schweiz: ein Lehrbuch. Zürich: Dike Verlag.
Prerequisites / NoticeThe detailed semester program (syllabus) is made available to the students at the beginning of the semester.
851-0577-00LPrinciples of Political ScienceO4 credits2V + 1US. Mohrenberg, Q. Nguyen
AbstractThis course covers the basic questions, concepts, theories, methods, and empirical findings of political science.
ObjectiveThis course covers the basic questions, concepts, theories, methods, and empirical findings of political science.
ContentDer Kurs ist in zwei Teile gegliedert. Im ersten Teil erhalten die Teilnehmenden eine Einführung in die Wissenschaftstheorie, den Ablauf politikwissenschaftlicher Forschung, den Aufbau eines Forschungsdesigns und die Methodik der empirischen Sozialwissenschaften. Hier geht es primär darum zu zeigen wie PolitikwissenschaftlerInnen denken und arbeiten. Der zweite Teil des Kurses widmet sich zwei zentralen Teilbereichen der Politikwissenschaft: der Analyse politischer Systeme und den internationalen Beziehungen. Der Schwerpunkt dieses zweiten Teils liegt auf der Analyse politischer Systeme sowie den wichtigsten politischen Akteuren und der Beschaffenheit und Wirkung politischer Institutionen. Zur Veranschaulichung der behandelten Konzepte und Theorien gehen wir schwergewichtig und vergleichend auf die politischen Systeme Deutschlands, Österreichs und der Schweiz ein. Der Teilbereich der internationalen Beziehungen wird nur kursorisch behandelt, da dieser Teilbereich Inhalt einer Folgeveranstaltung im Frühlingssemester (Internationale Politik, Prof. Schimmelfennig) ist.

Zur Vorlesung wird ein Tutorat (Uebung) angeboten. Darin werden die zentralen Konzepte, Methoden und Themen der Vorlesung geübt und vertieft. Die Teilnahme am Tutorat ist integraler Bestandteil des Kurses. Der im Tutorat behandelte Stoff ist Bestandteil der Prüfungen.
Lecture notesThis course is based on the following textbook:
"Politikwissenschaft: Grundlagen" by Thomas Bernauer, Patrick Kuhn, Stefanie Walter and Detlef Jahn (Nomos, 2015, 3nd Edition).
LiteratureThis course is based on the following textbook:
"Politikwissenschaft: Grundlagen" by Thomas Bernauer, Patrick Kuhn, Stefanie Walter and Detlef Jahn (Nomos, 2015, 3nd Edition).
Prerequisites / NoticeStudents attending this course and passing the required tests (one in the middle, the other at the end of the semester) will obtain 4 ECTS credit points.
Core Courses
NumberTitleTypeECTSHoursLecturers
701-0727-00LPolitics of Environmental Problem Solving in Developing CountriesW2 credits2GU. Scheidegger
AbstractThe course focuses on processes and drivers of decision-making on natural resources management issues in developing countries. It gives insights into the relevance of ecological aspects in developing countries. It covers concepts, instruments, processes and actors in environmental politics at the example of specific environmental challenges of global importance.
ObjectiveAfter completion of the module, students will be able to:
- Identify and appraise ecological aspects in development cooperation, development policies and developing countries' realities
- Analyze the forces, components and processes, which influence the design, the implementation and the outcome of ecological measures
- Characterize concepts, instruments and drivers of environmental politics and understand, how policies are shaped, both at national level and in multilateral negotiations
- Study changes (improvements) in environmental politics over time as the result of the interaction of processes and actors, including international development organizations
- Analyze politics and design approaches to influence them, looking among others at governance, social organization, legal issues and institutions
ContentKey issues and basic concepts related to environmental politics are introduced. Then the course predominantly builds on case studies, providing information on the context, specifying problems and potentials, describing processes, illustrating the change management, discussing experiences and outcomes, successes and failures. The analysis of the cases elucidates factors for success and pitfalls in terms of processes, key elements and intervention strategies.

Different cases not only deal with different environmental problems, but also focus on different levels and degrees of formality. This ranges from local interventions with resource user groups as key stakeholders, to country level policies, to multi- and international initiatives and conventions. Linkages and interaction of the different system levels are highlighted. Special emphasis is given to natural resources management.

The cases address the following issues:
- Land use and soil fertility enhancement: From degradation to sustainable use
- Common property resource management (forest and pasture): Collective action and property rights, community-based management
- Ecosystem health (integrated pest management, soil and water conservation)
- Payment for environmental services: Successes in natural resources management
- Climate change and agriculture: Adaptation and mitigation possibilities
- Biodiversity Convention: Implications for conservations and access to genetic resources
- Biodiversity as a means for more secure livelihoods: Agroforestry and intercropping
- The Millennium Development Goals: Interactions between poverty and the environment
- Poverty and natural resources management: Poverty reduction strategies, the view of the poor themselves
- Food security: Policies, causes for insecurity, the role of land grabbing
- Biofuels and food security: Did politics misfire?
- Strategy development at global level: IAASTD and World Development Report 2008
Lecture notesInformation concerning the case studies and specific issues illustrated therein will be provided during the course (uploaded on Moodle)
LiteratureRobbins P, 2004. Political ecology: a critical introduction. Blackwell Publishing, Oxford, UK, 242 p.

Peet R, Robbins P, Watts M, 2011. Global political ecology. Routledge, New York, 450 p.

Keeley J, Scoones I, 2000. Knowledge, power and politics: the environmental policy-making process in Ethiopia. The Journal of Modern African Studies, 38(1), 89-120.
Prerequisites / NoticeThe performance assessment will consist of an individual essay to be written by each student based on at least five references in addition to the sources provided in the course. Students can choose from a list of topics. Criteria for assessment will be communicated at the beginning of the course.
701-0731-00LEnvironmental Behavior in Social ContextW2 credits2SH. Bruderer Enzler
AbstractThis introductory class in the environmental social sciences covers topics such as environmental behavior, environmental concern, social dilemmas and social norms.
ObjectiveBasic knowledge of the environmental social sciences
Overview on current fields of research and their relevance for practical application
ContentUmweltverhalten ist stets in einen gesellschaftlichen Kontext eingebettet und wird durch verschiedenste soziale, psychologische und situationale Faktoren beeinflusst. In diesem Kurs wird Umweltverhalten daher unter anderem im Zusammenhang mit Umweltbewusstsein, sozialen Dilemmata und sozialen Normen diskutiert. Alle Themen werden zunächst eingeführt und anschliessend durch Studierende vertieft. Die Studierenden gestalten voraussichtlich in Zweiergruppen eine Unterrichtsstunde und verfassen eine kurze schriftliche Arbeit.

Fragen, die uns während des Semesters beschäftigen:
- Wie kommt es zu Umweltschädigungen, obwohl niemand diese beabsichtigt?
- Wer verhält sich besonders umweltschonend? Wie wird dies gemessen?
- Welche Rolle spielt das Umweltbewusstsein?
- Welche Rolle spielen äussere Faktoren (Möglichkeiten, Kosten etc.)?
- Wie sehr lassen wir uns dadurch beeinflussen, was andere machen?
- Kooperieren wir nur, wenn auch andere dies tun?
LiteratureDiekmann, A., & Preisendörfer, P. (2001). Umweltsoziologie. Eine Einführung. Reinbek: Rowohlt.
Steg, L., van den Berg, A., & de Groot, J. (2013). Environmental Psychology. An Introduction. Chichester: BPS Blackwell.
701-0985-00LSocial Intercourse with Current Environmental RisksW1 credit1VB. Nowack, C. M. Som-Koller
AbstractThe lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods are presented that can be applied to deal with environmental risks and how they can be used for sustainable innovation.
Objective- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)
Knowledge about possibilities for sustainable innovation
Content- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)
- The role of the media
- prospects for future developments
Lecture notesCopies of slides and selected documents will be distributed
Prerequisites / NoticeThe lecture is held biweekly (for 2 hours). The dates are 26.9., 3.10. (out of schedule), 24.10, 7.11, 21.11, 5.12, 19.12
227-0802-02LSociologyW2 credits2VA. Diekmann
AbstractVarious studies are used to introduce basic sociological concepts, theories and empirical research methods, along with selected sociological topics. The goal of the course is to provide participants with an understanding of working practice in empirical sociology and the central findings of sociological studies.
ObjectiveTo learn about methods of empirical social research and key results of classic and modern sociological studies.
ContentSoziologie befasst sich mit den Regelmässigkeiten sozialer Handlungen und ihrer gesellschaftlichen Folgen. Sie richtet ihren Blick auf die Beschreibung und Erklärung neuer gesellschaftlicher Entwicklungen und erfasst diese mit emprischen Forschungsmethoden. Die Vorlesung wird u.a. anhand von Beispielstudien - klassische Untersuchungen ebenso wie moderne Forschungsarbeiten - in die Grundbegriffe, Theorien, Forschungsmethoden und Themenbereiche der Soziologie einführen.

Folgende Themen werden behandelt:

1. Einführung in die Arbeitsweise der Soziologie anhand verschiedener Beispielstudien. Darstellung von Forschungsmethoden und ihrer Probleme. Etappen des Forschungsprozesses: Hypothese, Messung, Stichproben, Erhebungsmethoden, Datenanalyse.

2. Darstellung und Diskussion soziologischer Befunde aus der Umwelt- und Techniksoziologie. (1) Modernisierung und Technikrisiken, (2) Umweltbewegung, Umweltbewusstsein und Umweltverhalten, (3) Umweltprobleme als "soziale Dilemmata", (4) Modelle der Diffusion technischer Innovationen.

3. Der Beitrag der Sozialtheorie. Vorstellung und Diskussion ausgewählter Studien zu einzelnen Themenbereichen, z.B.: (1) Die Entstehung sozialer Kooperation, (2) Reputation und Märkte, (3) Soziale Netzwerke u.a.m.

Ergänzende Gruppenarbeiten (nicht verpflichtend). Im Rahmen des MTU-Programms des ITET und Programmen anderer Departemente können Semesterarbeiten in Soziologie (Durchführung einer kleinen empirischen Studie, Konstruktion eines Simulationsmodels sozialer Prozesse oder Diskussion einer vorliegenden soziologischen Untersuchung) angefertigt werden. Kreditpunkte (in der Regel 6 bis 12) für "kleine" oder "grosse" Semesterarbeiten werden nach den Regeln des Departements, das Semestergruppenarbeiten ermöglicht, vergeben.
Lecture notesFolien der Vorlesung und weitere Materialien (Fachartikel, Kopien aus Büchern) werden auf der Webseite der Vorlesung zum Download zur Verfügung gestellt.
LiteratureFolien der Vorlesung und weitere Materialien (Fachartikel, Kopien aus Büchern) werden auf der Webseite der Vorlesung zum Download zur Verfügung gestellt.
Prerequisites / NoticeInteresse am Thema und Bereitschaft zum Mitdenken.
851-0591-00LDigital Sustainability in the Knowledge Society
Particularly suitable for students of D-INFK, D-ITET, D-MATL, D-MAVT, D-MTEC, D-USYS.
W2 credits2VM. M. Dapp
AbstractHow do various interest groups influence the methods of production, distribution, and use of digital resources? Current models focusing on strong intellectual property rights are contrasted with open models like, e.g. Open Source/Content/Access. The course discusses consequences from different models and introduces »digital sustainability« as an alternative vision for society.
ObjectiveAt the heart of the discourse is the handling of digital goods and intellectual property in society. Digitization and the Internet allow handling knowledge in a way, which directly contrasts with the traditional understanding of "intellectual property" and the industries based on it. Starting from economic and legal basics, we compare proprietary and open/"free" models. Sustainable development as a concept is transferred to digital goods, taking into account the particular nature of digital stuff.
After the lecture, you should (hopefully) be able to
- characterize the nature of digital goods vs. physical goods
- critique the basic concepts of copyright and patent rights
- explain the political/legal and economic differences between proprietary and open approaches to the production and use of digital goods
- using an example, explain the meaning of digital sustainability and argue why it is relevant for a knowledge society
- transfer the ideas of the free/open source software model to other digital goods (e.g., open content, open access)
ContentTechnical reality: Within minutes you can make perfect copies of high-value digital goods of knowledge or culture (as text, audio, video, image or software) and distribute them around the globe -- for free. «Digitization plus Internet» allows for the first time in humankind's history the (theoretically) free access and global exchange of knowledge at minimal cost. A tremendous opportunity for societal development, in north and south. «Cool, so what's the problem?»
The problem is, that this reality poses a fundamental threat to today's business model of the knowledge and culture industries (starting from the music label and Hollywood, via publishers, up to software vendors). Powerful commercial interests are at stake as «knowledge» (the fourth factor of production) will become ever more important in the 21st century. Accordingly, «piracy» and «file-sharing» are attacked with all means. At the core lies the question about the design of property in digital assets. For that, we apply a concept of «intellectual property», which is several hundred years old and does not address digtal reality in an adequate manner, sometimes leading to absurd situations. Its original goal seems to get forgotten: to help society develop by spreading knowledge as much as possible.
Using the PC becomes the new cultural technique of the 21st century. In contrast to «reading, writing and arithmetics», this new cultural technique cannot exist in isolation, but depends on a hard- and software infrastructure. This dependency extends to the provider of the infrastructure, who can define technical rules, which can take away or restrict the user's freedom. Even advanced users may have difficulties in recognizing these, often hidden, restrictions and in evaluating their societal relevance. But exactly these invisible consequences we need to understand and investigate, because they decide about access, distribution and usage of digital knowledge.
Comparable to the environmentalist movement of the 60s and 70s, a growing political movement for «Free Software» exists today, with «GNU/Linux» as its most popular symbol. The movement fights against treating software code as private property but as a central cultural good available to all without private interests. Based on the success of the Free Software movement, new initiatives extend the concepts to other domains (e.g. scientific knowledge, music)...
As a «teaser» to the lecture, you are invited to read the essay «ETH Zurich - A Pioneer in Digital Sustainability!». It can be downloaded from www.essays2030.ethz.ch.
More on teach.digisus.info starting from September. Stay tuned.
Lecture notesSlides and other material (both usually in English) will be made available on a weekly basis as the lecture proceeds.
LiteratureContent of the following books is covered (PDFs freely available online):
1 Volker Grassmuck, Freie Software - Zwischen Privat- und Gemeineigentum, Bundeszentrale für Politische Bildung, 2. Aufl. Bonn 2004.
2 François Lévêque & Yann Ménière, The Economics of Patents and Copyright, Berkeley Electronic Press, 2004.
3 Yochai Benkler, The Wealth of Networks, Yale University Press. New Haven 2006.
Other recommended books are:
1 (general) Chris DiBona et al., Open Sources – Voices from the Open Source Revolution, O'Reilly, 1999.
2 (pol. sc.) Steven Weber, The Success of Open Source, Harvard UP, 2004.
3 (law) James Boyle, Shamans, Software, & Spleens - Law and The Construction of the Information Society, Harvard UP, 1996.
4 (law) Lawrence Lessig, Code and Other Laws of Cyberspace, Basic Books, New York 1999.
Prerequisites / NoticeFor administrative and didactic reasons (high level of interaction and credit group assignments on current hot topics), the number of participants is limited to 45.
Of course, any interested person is invited to attend the lecture without doing the group assignment. The website is actively used for the lecture.
851-0594-00LInternational Environmental Politics
Particularly suitable for students of D-ITET, D-USYS
W3 credits2VT. Bernauer
AbstractThis course focuses on the conditions under which cooperation in international environmental politics emerges and the conditions under which such cooperation and the respective public policies are effective and/or efficient.
ObjectiveThe objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems.
ContentThis course deals with how and why international cooperation in environmental politics emerges, and under what circumstances such cooperation is effective and efficient. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, the problem of unsafe nuclear power plants in eastern Europe, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution in Europe, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.
Lecture notesAssigned reading materials and slides will be available at http://www.ib.ethz.ch/teaching.html (select link 'Registered students, please click here for course materials' at top of that page). Log in with your nethz name and password. Questions concerning access to course materials can be addressed to Mike Hudecheck (Mike Hudecheck <michaehu@student.ethz.ch>). All assigned papers must be read ahead of the respective meeting. Following the course on the basis of on-line slides and papers alone is not sufficient. Physical presence in the classroom is essential. Many books and journals covering international environmental policy issues can be found at the D-GESS library at the IFW building, Haldeneggsteig 4, B-floor, or in the library of D-USYS.
LiteratureAssigned reading materials and slides will be available at http://www.ib.ethz.ch/teaching.html (select link 'Registered students, please click here for course materials' at top of that page). Log in with your nethz name and password. Questions concerning access to course materials can be addressed to Mike Hudecheck (Mike Hudecheck <michaehu@student.ethz.ch>).
Prerequisites / NoticeNone
Module Individual Sciences
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-0721-00LPsychologyO3 credits2VR. Hansmann, C. Keller, M. Siegrist
AbstractThis course provides an introduction to psychological research and modelling, focusing on cognitive psychology and the psychological experiment. Participants learn to formulate problems for psychological investigation and apply basic forms of psychological experiment.
ObjectiveStudents are able to
- describe the areas, concepts, theories, methods and findings of psychology.
- differentate scientific psychology from "everyday" psychology.
- structure the conclusions and significance of an experiment. according to a theory of psychology.
- formulate a problem for psychological investigation.
- apply basic forms of psychological experiment.
ContentEinführung in die psychologische Forschung und Modellbildung unter besonderer Berücksichtigung der kognitiven Psychologie und des psychologischen Experiments. Themen sind u.a.: Wahrnehmung; Lernen und Entwicklung; Denken und Problemlösen; Kognitive Sozialpsychologie; Risiko und Entscheidung.
752-2120-00LConsumer Behaviour IO2 credits2VM. Siegrist, C. Keller, B. S. Sütterlin
AbstractIntroduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, indiviudal determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior
ObjectiveIntroduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, indiviudal determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior
Core Courses
NumberTitleTypeECTSHoursLecturers
701-0771-00LEnvironmental Conciousness and Public Relations Information Restricted registration - show details
Number of participants limited to 60.

Sign in until 29.09.2016.

Please describe your expectations. Why do want to attend this special topic? Do you have any pre-information about the integral model? Do you have any practical experience in environmental communication?
W2 credits2GR. Locher
Abstract"Environmental Conciousness and Public Relations" shows how to communicate about environment and sustainability successfully. We look at campaigns, exhibitions and other public relations measures to learn, how to design and realize good communication.
ObjectiveYou learn how to handle tools and concepts in environmental communication. And you can evaluate communication projects. We also discuss the evolution of consciousness.
Content- Methods and tools in environmental communication.
- Marketing mix
- Examples of campaigns, events, print products, media relations.
- Integral sustainability
Lecture notesHandouts
Literature- Integral Vision; Ken Wilber, 2005
Prerequisites / NoticeWe will discuss new trends in environmental communication with the focus on integral solutions.
701-0785-00LEnvironmental and Science Communication Information Restricted registration - show details
Number of participants limited to 120.
60 ETH students and 60 UZH students. The time (date and exact time) of enrolment is decisive.
If there are less than 60 enrolments of one group either ETH or UZH students then the available spaces will be given to the other group.
ATTENTION: Enrolment of this course unit is only possible from August 31 until September 14, 2016.

Information for UZH students:
Enrolment to this course unit is only possible at ETH. No enrolment to module 251359 at UZH.
Please mind the ETH enrolment deadlines for UZH students: Link
W4 credits2VM. Schäfer
AbstractThe course gives an introductionary overview in research questions, theoretical perspectives and empirical results of science communication and environmental communication. They will be illustrated by concrete examples and via lectures from external guests. .
ObjectiveGoals: Learning to understand structures and processes of environmental and science communication, becoming more sensitive for problems of science public relations, getting an insight into public debates about environmental issues.
Methods: invitation of media practitioners and experts, discussions, lectures on key theoretical concepts of communication.
Topics: Concrete communication instruments like media conferences, theoretical perspectives of public relations, basic principles and examples of information campaigns, environment and science as media topics, functions and structures of science communication, relations between science, media and politics.
ContentI. Introduction
- Topics: Environment, Science, Risks, Media
- Forms, Functions, Effects of Public and Mass Communication

II. Stakeholders and their Public Relations Efforts
- Public Relations and Science PR: Theoretical Perspectives, Instruments

III. Science and Environmental Issues in the Media
- Forms and Functions of Science Journalism
- Problems of Selection, Interpretation, Quality
- Media Content Analysis
- Online Communication

IV. Uses and Effects of Science and Environmental Communication
- Extent of Media Use
- Effects on Knowledge, Risk Perceptions, Environmental Attitudes
- Effects on Science itself
Lecture notesLiterature and powerpoint presentations will be provided on the OLAT platform.
LiteratureBoykoff, Maxwell T. (2011): Who Speaks for the Climate? Making Sense of Media Reporting on Climate Change. Cambridge, New York.

Brossard, Dominique / Scheufele, Dietram A. (2013): Science, New Media, and the Public. In: Science 339, H. 6115, S. 40-41.

Bubela, Tania / Nisbet, Matthew C. / Borchelt, Rick / Brunger, Fern / Critchley, Cristine / Einsiedel, Edna et al. (2009): Science Communication Reconsidered. In: Nature Biotechnology 27, H. 6, S. 514-518.

Göpfert, Winfried (2007): The Strength of PR and the Weakness of Science Journalism. In: Bauer, Martin / Bucchi, Massimiano (Hg.): Journalism, Science and Society. Science Communication Between News and Public Relations. New York, S. 215-226.

Gregory, Jane / Miller, Steve (1998): Science in Public. Communication, Culture, and Credibility. New York.

Hansen, Anders (2011): Communication, Media and Environment: Towards Reconnecting Research on the Production, Content and Social Implications of Environmental Communication. In: International Communication Gazette 73, H. 1-2, S. 7-25.

Renn, Ortwin (2008): Concepts of Risk: An Interdisciplinary Review. In: GAIA 17, H. 1 & 2, S. 50-66 / 196-204.

Rödder, Simone / Franzen, Martina / Weingart, Peter (Hg.): The Sciences' Media Connection - Public Communication and its Repercussions. Dordrecht, S. 59-85.

Schäfer, Mike S. (2011): Sources, Characteristics and Effects of Mass Media Communication on Science: A Review of the Literature, Current Trends and Areas for Future Research. In: Sociology Compass 5, H. 6, S. 399-412.

Sjöberg, Lennart (2000): Factors in Risk Perception. In: Risk Analysis 20, H. 1, S. 1-11.

Slovic, Paul (1987): Perception of Risk. In: Science 236, H. 4799, S. 280-285.
Prerequisites / NoticeDie Vorlesung wendet sich auch an Studierende der Publizistikwissenschaft der Universität Zürich

Voraussetzungen: Die Vorlesung hat einführenden Charakter.
Module Humanities
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-0701-00LPhilosophy of ScienceO3 credits2VG. Hirsch Hadorn, C. J. Baumberger
AbstractThe lecture explores various strands in philosophy of science in a critical way, focusing on the notion of rationality in science, especially with regards to environmental research. It addresses the significance and limits of empirical, mathematical and logical methods, as well as problems and ethical issues raised by the use of science in society.
ObjectiveStudents learn to engage with problems in the philosophy of science and to relate them to natural and environmental sciences, thus developing their skills in critical thinking about science and its use. They know the most important positions in philosophy of science and the objections they face. They can identify, structure and discuss issues raised by the use of science in society.
Content1. Core differences between classical Greek and modern conceptions of science.
2. Classic positions in the philosophy of science in the 20th century: logical empiricism and critical rationalism (Popper); the analysis of scientific concepts and explanations.
3. Objections to logical empiricism and critical rationalism, and further developments: What is the difference between the natural sciences, the social sciences and the arts and humanities? What is progress in science (Kuhn, Fleck, Feyerabend)? Is scientific knowledge relativistic? What is the role of experiments and computer simulations?
4. Issues raised by the use of science in society: The relation between basic and applied research; inter- and transdisciplinarity; ethics and accountability of science.
Lecture notesA reader will be available for students.
LiteratureA list of introductory literature and handbooks will be distributed to the students.
Prerequisites / NoticeOral examination during the session examination.
Further optional exercises accompany the lecture and offer the opportunity for an in-depth discussion of selected texts from the reader. Students receive an additional credit point. They have to sign up separately for the exercises for the course 701-0701-01 U.
701-0703-00LEnvironmental Ethics Information O2 credits2VM. Huppenbauer
AbstractThe lecture beginns with an introduction to applied ethics in general. The main focus is on environmental ethics. Students learn to handle important concepts and positions of environmental ethics. They achieve a deeper understanding of these concepts and positions in applying them to ecological problems and discussing them in case studies.
ObjectiveOn completion of this lecture course you will have acquired the ability to identify and process general and environmental ethical problems. You will be capable of recognising and analysing environmental ethical problems and of working towards a solution. You will have acquired a fundamental knowledge of standpoints and argumentations to be found within the field of environmental ethics and will have practised these in small case studies.
Content- Introduction to general and applied ethics.
- Overview and discussion of ethical theories relevant to the environment.
- Familiarisation with various basic standpoints within environmental ethics.
- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practising of newly acquired knowledge in case studies (protection of species, climate change, etc.)
Lecture notesSummaries of the individual sessions will be distributed, including the most important theories and keywords; reading list.
In the part of the course serving as an introduction to general and applied ethics, we shall be using the following textbook: Barbara Bleisch/Markus Huppenbauer: Ethische Entscheidungsfindung. Ein Handbuch für die Praxis, 2nd Edition Zürich 2014
Literature- Angelika Krebs (Hrg.) Naturethik. Grundtexte der gegenwärtigen tier- und ökoethischen Diskussion 1997
- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- John O'Neill et al., Environmental Values, 2008
- Klaus Peter Rippe, Ethik im ausserhumanen Bereich, Paderborn (mentis) 2008

Generel introductions:
- Barbara Bleisch/Markus Huppenbauer: Ethische Entscheidungsfindung. Ein Handbuch für die Praxis, Zürich 2014, 2. Auflage
- Marcus Düwell et. al (Hrg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Ach et. al (Hrg.), Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008
Prerequisites / NoticeThe procedure for accumulating CP will be explained at the start of term.
I expect participants to be motivated and contribute to discussions, keeping the course interesting and lively.
Core Courses
NumberTitleTypeECTSHoursLecturers
701-0701-01LPhilosophy of Science: ExercisesW1 credit1UG. Hirsch Hadorn, C. J. Baumberger
AbstractThe exercises in philosophy of science serve to develop skills in critical thinking by discussing seminal texts about the rationality of science. Topics discussed include the significance and limits of empirical, mathematical and logical methods, as well as problems and ethical issues raised by the use of science in society.
ObjectiveStudents can engage with problems in the philosophy of science and to relate them to natural and environmental sciences. They learn to analyze and summarize philosophical texts. In this way, they develop their skills in critical thinking with a focus on the rationality of science.
ContentThe optional exercises accompany the lecture and serve to develop skills in critical thinking with a focus on the rationality of science, based on discussing seminal texts. The texts cover important positions in the philosophy of science and their critics. Topics discussed include the significance and limits of empirical, mathematical and logical methods, as well as problems and ethical issues raised by the use of science in society.
Lecture notesA reader will be available for students.
LiteratureA list of literature will be distributed to the students together with the reader.
Prerequisites / NoticeStudents that want to subscribe for this course also have to subscribe for the lecture 701-0701-00 V "Wissenschaftsphilosophie". Credit points are given for preparing a structure and a summary of one of the texts.
701-0791-00LEnvironmental History - Introduction and Overview Restricted registration - show details
Number of participants limited to 100.
W2 credits2VD. Speich Chassé
AbstractOur society faces a serious ecological crisis. Of what historical dimension is this crisis? How have human societies already in earlier times changed their environment, and, consequently, perhaps also ours? What were the main ecological challenges for societies and how did they change over time? And how did societies adapt to changing environmental conditions?
ObjectiveIntroduction into environmental history; survey of long-term development of human-nature-interrelations; discussion of selected problems. Improved ability to assess current problems from a historical perspective and to critically interrogate one's own standpoint.
Lecture notesCourse material is provided on OLAT.
LiteratureMcNeill, John R. 2000. Something new under the sun: An environmental history of the twentieth-century world, New York: Norton.

Uekötter, Frank (Ed.) 2010. The turning points of environmental history, Pittsburgh: University of Pittsburgh Press.

Winiwarter, Verena und Martin Knoll 2007. Umweltgeschichte: Eine Einführung, Köln: Böhlau.
Prerequisites / NoticeStudents are asked to write an exam during the second last session (11.12.2015).
Compulsory Electives D-GESS SiP (For All Modules Eligible)
» Political Science
» Law
» Sociology
» Economy
» Psychology, Pedagogics
» History
» Philosophy
» Science Research
Natural Science and Technical Electives
Natural Science Modules
Biomedicine
NumberTitleTypeECTSHoursLecturers
227-0399-10LPhysiology and Anatomy for Biomedical Engineers I Information W3 credits2GH. Niemann
AbstractThis course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.
ObjectiveTo understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.
Content- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis
Lecture notesLecture notes and handouts
LiteratureSilbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014
551-0317-00LImmunology I Information W3 credits2VA. Oxenius, M. Kopf
AbstractIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
ObjectiveIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
Content- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions
Lecture notesElectronic access to the documentation will be provided. The link can be found at "Lernmaterialien"
Literature- Kuby, Immunology, 7th edition, Freemen + Co., New York, 2009
Prerequisites / NoticeImmunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung".
752-6001-00LIntroduction to Nutritional Science Information W3 credits2VM. B. Zimmermann, C. Wolfrum
AbstractThis course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.
ObjectiveTo introduce the students to the both macro- and micronutrients in relation to food and metabolism.
ContentThe course is devided into two parts. The lectutres on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism. The nutrients are described in relation to digestion, absorption and metabolism. Special aspects of homeostasis and homeorhesis are emphasized.
Lecture notesThere is no script. Powerpoint presentations will be made available.
LiteratureElmadfa I & Leitzmann C: Ernährung des Menschen
UTB Ulmer, Stuttgart, 4. überarb. Ausgabe 2004
ISBN-10: 3825280365; ISBN-13: 978-3825280369

Garrow JS and James WPT: Human Nutrition and Dietetics
Churchill Livingstone, Edinburgh, 11th rev. ed. 2005
ISBN-10: 0443056277; ISBN-13: 978-0443056277
Soil Sciences
NumberTitleTypeECTSHoursLecturers
701-0533-00LSoil ChemistryW3 credits2GR. Kretzschmar, D. I. Christl
AbstractThis course discusses chemical and biogeochemical processes in soils and their influence on the behavior and cycling of nutrients and pollutants in terrestrial systems. Approaches for quantitative modeling of the processes are introduced.
ObjectiveUnderstanding of important chemical soil properties and processes and their influence on the behavior (e.g., speciation, bioavailability, mobility) of nutrients and pollutants.
ContentImportant topics include the structure and properties of clays and oxides, the chemistry of the soil solution, gas equilibria, dissolution and precipitation of mineral phases, cation exchange, surface complexation, chemistry of soil organic matter, redox reactions in flooded soils, soil acidification and soil salinization.
Lecture notesHandouts in lectures.
Literature- Selected chapters in: Encyclopedia of Soils in the Environment, 2005.
- Chapters 2 and 5 in Scheffer/Schachtschabel - Soil Science, 1st English edition, Springer, 2016.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 credits2G + 2UD. Or
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
ObjectiveStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
ContentWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
Lecture notesClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
http://www.step.ethz.ch/education/active-courses/vadose-zone-hydrology
LiteratureSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
651-3525-00LIntroduction to Engineering GeologyW3 credits3GS. Löw
AbstractThis introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.
ObjectiveUnderstanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.
ContentRock, soil and rock mass: scale effects and fundamental geotechnical properties. Soil mechanical properties and their determination. Rock mechanical properties and their determination. Fractures: geotechnical properties and their determination. Geotechnical classification of intact rock, soils and rock masses. Natural and induced stresses in rock and soil. Interaction of soil masses with surface loads, water and excavations. Slope instability mechanisms and stability analyses. Underground excavation instability mechanisms and rock deformation. Geological mass wasting processes.
Lecture notesWritten course documentation available under "Kursunterlagen".
LiteraturePRINZ, H. & R. Strauss (2006): Abriss der Ingenieurgeologie. - 671 S., 4. Aufl., Elsevier GmbH (Spektrum Verlag).

CADUTO, D.C. (1999): Geotechnical Engineering, Principles and Practices. 759 S., 1. Aufl., (Prentice Hall)

LANG, H.-J., HUDER, J. & AMMAN, P. (1996): Bodenmechanik und Grundbau. Das Verhalten von Böden und die wichtigsten grundbaulichen Konzepte. - 320 S., 5.Aufl., Berlin, Heidelberg etc. (Springer).

HOEK, E. (2007): Practical Rock Engineering - Course Notes. http://www.rocscience.com/hoek/PracticalRockEngineering.asp

HUDSON, J.A. & HARRISON, J.P. (1997): Engineering Rock Mechanics. An Introduction to the Principles. - 444 S. (Pergamon).
Methodes of Statistical Data Analysis
NumberTitleTypeECTSHoursLecturers
701-0105-00LApplied Statistics for Environmental SciencesW3 credits2GC. Bigler, U. Brändle, M. Kalisch, L. Meier
AbstractStatistical methods from current publications in environmental sciences are presented and applied. Students are enabled to understand the methods, clean datasets, analyse them using the software package R and present the results in a suitable form. They will be able to describe strengths and weaknesses of the methods for given fields of application.
ObjectiveStudents are able to
- use suitable statistical methods for data analysis in their subject area.
- characterize data sets using explorative methods
- check the suitability of data sets to answer a given question, prepare data sets for import to a statistics program and conduct the analysis.
- interpret statistical analyses and process them graphically for use in presentations and publications.
- describe the basics of statistical methods used in current publications.
- use the software package R for statistical analysis
ContentStatistische Methoden: Regression (lineare Modelle; generalisierte lineare Modelle; GLMs); Varianzanalyse; gemischte Modelle für gruppierte Daten (mixed-effects models); Fragebogenstatistik; Tests (t Test; Chiquadrat Test; Fisher Test); Power-Analyse

Werkzeuge: Explorative Datenanalyse für Hypothesenbildung; Auswahlverfahren für geeignete statistische Verfahren; Datenaufbereitung (Excel -> R; Datenbereinigung); graphische Darstellung von Resultaten; statistische Verfahren in Publikationen erkennen
Wir arbeiten mit dem Softwarepaket R.

Form: Im Wochenrhythmus finden alternierend Einführungen in eine neue Methode und Übungsstunden zum Thema statt.
Prerequisites / NoticeBesuch von "Mathematik IV: Statistik" oder vergleichbare Lehrveranstaltung
701-1671-00LSampling Techniques for Forest InventoriesW3 credits2VD. Mandallaz
AbstractIntroduction to design and model assisted sampling theory for finite populations as well as to the infinite population model for forest inventory. Two-phase two-stage forest inventories with simple or cluster sampling. Small area estimation. Presentation of the Swiss National Inventory.
Short introduction to Kriging techniques.
ObjectiveStudents should have a good understanding of the concepts of general sampling theory in a modern framework. They should also master the specific problems arising in forest inventory and be able, if necessary, to read more specialized books or research papers.
ContentInclusion probabilities. Horwitz-Thompson estimates. Simple random sampling. Stratified sampling. PPS sampling and multi-stage sampling. Model assisted procedures. Formalism of sampling theory in forest inventory. One-phase simple and cluster sampling schemes. Two-phase two-sampling schemes. Model-dependent and model assisted procedures. Small area estimation. Kriging techniques. The Swiss National Forest Inventory.
Lecture notesSampling techniques for forest inventories. Daniel Mandallaz, Chapman and Hall. A free electronic copy of the book is also available. A PDF file containing parts of the book will be mailed to the participants
LiteratureSampling methods for multiresource forest inventory. H.T. Schreuder, T.G. Gregoire, G.B. Wood, 1993, Wiley.
Model assisted survey sampling, C.E. Särndal, B. Swenson, J. Wretman, 2003, Springer.
Sampling methods, remote sensing and GIS multisource forest inventory
M. Köhl, S. Magnussen, M. Marchetti, 2006, Springer.
Sampling techniques for forest inventories, Daniel Mandallaz, 2007, Chapman and Hall.
T.G. Gregoire, H.T. Valentine. Sampling strategies for natural resources and the environment, Chapman and Hall.
Prerequisites / NoticeA simulation software will be used throughtout the lectures to illustrate the theoretical developments. Upon request a half day field demonstration can be organized at the WSL outside the lecture time. A repetitorium for the exam is also offered.
401-0625-01LApplied Analysis of Variance and Experimental Design Information W5 credits2V + 1UL. Meier
AbstractPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
ObjectiveParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
ContentPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
LiteratureG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
401-0649-00LApplied Statistical Regression Information W5 credits2V + 1UM. Dettling
AbstractThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
ObjectiveThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
ContentThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
Lecture notesA script will be available.
LiteratureFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
401-6215-00LUsing R for Data Analysis and Graphics (Part I) Information W1 credit1GA. Drewek, A. J. Papritz
AbstractThe course provides the first part an introduction to the statistical software R for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.
ObjectiveThe students will be able to use the software R for simple data analysis.
ContentThe course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.
Lecture notesAn Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf
Prerequisites / NoticeThe course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
https://moodle-app2.let.ethz.ch/enrol/users.php?id=1145
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
401-6217-00LUsing R for Data Analysis and Graphics (Part II) Information W1 credit1GA. Drewek, A. J. Papritz
AbstractThe course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.
Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.
ObjectiveThe students will be able to use the software R efficiently for data analysis.
ContentThe course provides the second part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org
Lecture notesAn Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf
Prerequisites / NoticeBasic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
https://moodle-app2.let.ethz.ch/enrol/users.php?id=1145
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
Ecology and Conservation Biology
NumberTitleTypeECTSHoursLecturers
701-0305-00LVertebrate EcologyW2 credits2GW. Suter, J. Senn
AbstractThe course offers an overview on the ecology and conservation biology of birds and mammals. Important concepts from physiology, behavioural ecology, population biology, biogeography and community ecology will be linked to applications in conservation and management. A worldwide perspective will be complemented by a focus on the Central European fauna and its dynamics.
ObjectiveThe students are familiar with important topics in animal ecology, with an emphasis on birds and mammals. They are able to link theoretical concepts with visible ecological phenomena, and view them against an evolutionary backdrop. They can thus appraise applied aspects of the conservation and the use of animal populations, such as the influence of larger predators on prey populations or of herbivores on vegetation, the effects of hunting, landscape change, or of other human influences on animal populations. They understand the biogeographical characteristics of the Central European vertebrate fauna and its temporal and spatial dynamics.
ContentThe course deals with a number of main topics that include feeding and resource use, spatial behaviour and migrations, reproduction, population dynamics, competition and predation, biodiversity and distributions, and dynamics of the Central European fauna. There is an emphasis on linking theory with management issues in conservation and management of wildlife populations. During the first half of the course, examples will be drawn worldwide whereas during the second half, the course will focus more strongly on the European fauna, particularly of the Alpine region. Although the course is not designed to teach natural history of the native species, examples will cover much of the taxonomic breadth of the European fauna. Students are expected to read one paper and to present it to the audience. In addition, two optional field trips will be offered on weekends during the semester (2 days in the Swiss National Park: probably 10-11 October, one day in an important wetland for waterbirds: a Saturday in Nov./Dec., by arrangement).
For the detailed program, see the German text.
Lecture notesLecture notes will be available.
LiteratureLiterature will be listed in the lecture notes, and papers to be presented will be distributed if needed. Some books relevant to the course are (optional reading):

- Fryxell, J.M., Sinclair, A.R.E., & Caughley, G. 2014. Wildlife Ecology, Conservation, and Management. 3rd ed. Wiley Blackwell, Chichester, UK.
- Boitani, L. & Fuller, T. editors. 2000. Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press.
Prerequisites / Notice- Everybody will be expected to present a scientific paper in class, to be chosen from a list given.
701-0405-00LFresh Water: Concepts and Methods for Sustainable Management Information W3 credits2GC. Scheidegger, C. Weber, V. Weitbrecht
AbstractIn this course the important freshwater ecosystems, on a global perspective, will be presented. The foci of the lectures are basic ecological properties of those aquatic systems, their anthropogenic influences and subsequent modifications. The learning is organized along case studies, for which conflicting interests, as well as concepts and methods for sustainable management will be discussed.
Objective• basics concerning the functioning of the most important freshwater ecosystems
• basics of the sustainable management of aquatic ecosystems
• application of these principles with case studies
• critical analyses, organization of discussion groups
Content1) Einführung, Gewässerschutzgesetz
2) Biodiversität
3) Sedimenthaushalt
4) Moore - Verbreitung, Schutz und Regeneration
5) Flussrevitalisierung
6) Flussaufweitungen und Blockrampen
7) Auenschutz und Revitalisierung
8) Schutz von Fliessgewässern
9) Pumpspeicherwerke
10) Sedimentdynamik
11) Fischwanderung und Kraftwerke
12) Wasser und Gesundheit, Auswirkungen des Klimawandels
13) Schlussdiskussion
Lecture notesthemenspezifische Unterlagen werden verteilt und auf
http://www.wsl.ch/info/mitarbeitende/scheideg/vorlesung_binnengewaesser_DE
zugänglich gemacht.
LiteratureLiteraturlisten zu den Fallbeispielen werden abgegeben und auf
http://www.wsl.ch/info/mitarbeitende/scheideg/vorlesung_binnengewaesser_DE
zugänglich gemacht.
Prerequisites / NoticeBasic ecology lectures of the first four semesters. Students will organize discussion groups.
701-1663-00LExploring Resilience of Tropical Forest Landscapes
This course will run in complement to 701-1661-00 Conservation and Development in Complex Landscapes.
W4 credits9GC. Kettle, C. D. Philipson
AbstractA highly interactive learning experience with real world exposure to the challenges associated with conservation and management of tropical forest systems. Designed as a complementary course to Rain Forest Ecology 701-0324-00L. Students will gain first-hand experience of tropical forest landscapes and the challenges associated with conducting ecological research in this fascinating environment.
ObjectiveThe course will have four core learning objectives: 1) provide students with an understanding and experience of a range of tropical rainforest systems, and an appreciation of the challenges of managing these landscapes to provide multiple ecosystem services. 2) To develop their creative and critical scientific thinking and experimental design in the context of tropical field ecology. Specifically through design and implementation an Adaptive Management approach to tropical forest landscapes. 3) Students will develop their understanding of multiple stakeholders perspectives in the context of landscape management in SE Asian develop the knowledge to discuss this issues with experts in the field. Students will present their Adaptive Management Plans to senior Forest Researchers in the forest department at the FRC Sabah and engage in dialogue regarding diverse perspectives in forest and landscape management. 4) To develop their team building skills to work in culturally diverse groups and under sometimes challenging conditions to work toward a common research goal.
ContentProposed topics to be covered within the scope of the projects and based upon the expertise of the course lecturers: Tropical Ecology, Forest Ecology and Forest Botany. Tropical Forest management and restoration. Conservation biology, Animal behaviour, tropical entomology. Biodiversity and ecosystem function. Resilience and Adaptive Management.
LiteratureLiterature presented in Tropical Rainforest Ecology
Prerequisites / Notice701-0324-00 G Rain Forest Ecology
Environmental Chemistry/Ecotocxicology
NumberTitleTypeECTSHoursLecturers
701-0201-00LIntroduction to Environmental Organic ChemistryW5 credits4GM. Sander, K. McNeill
AbstractThis course presents significant organic environmental pollutants and the physical-chemical bases required to understand their environmental behavior, and deepens this knowledge through exercises. The most important analytical methods for the qualitative and quantitative determination of organic pollutants in environmental samples are discussed.
ObjectiveThe students are able to
- name and recognise the most important classes of environmentally-relevant anthropogenic chemicals.
- explain, on the basis of physical-chemical foundations, the most important processes which determine the environmental behavior of organic pollutants.
- name fundamental methods of trace analysis of organic pollutants in environmental sampling.
- propose experimental methods for determining substance-specific properties.
- identify, on the basis of chemical structure, the processes relevant for the environmental behavior of a compound.
- critically evaluate published work and data.
Content- Overview of the most important classes of environmental organic pollutants
- Molecular interactions that determine the partitioning behavior (adsorption and absorption processes) of organic compounds between different environmental compartments (gas,liquid,solid)
- Physical-chemical properties (vapor pressure, aqueous solubility, air-water partition constant, organic solvent-water partition constants, etc) and partitioning behavior of organic compounds between environmentally relevant phases (air, aerosols, soil, water, biota)
- Basics of trace analytical methods to determine organic componds (enrichment techniques, separation (chromatography), detection)
- Chemical transformation reactions of organic pollutants in aquatic and in terrestrial systems (reactions with nucleophiles incl. hydrolysis, elimination, addition)
Lecture notesScript will be distributed
LiteratureSchwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden.
Environmental Organic Chemistry. 2nd Ed. Wiley, New York, 1313 p.(2003)

Goss, K.U. and Schwarzenbach, R.P. (2003). "Rules of thumb for assessing equilibrium partitioning of organic compounds-success and pitfalls", Journal of Chemical Education, 80, 4, 450-455.
Prerequisites / NoticeDie Lehrveranstaltung richtet sich nicht nur an jene Studierenden, welche sich später chemisch vertiefen wollen, sondern ausdrücklich auch an alle jene, welche sich mit der Problematik von organischen Schadstoffen in der Umwelt vertraut machen wollen, um dieses Wissen in anderen Vertiefungen anzuwenden
701-0225-00LOrganic ChemistryW2 credits2VK. McNeill
AbstractIntroduction to Isomerism.
Reaction mechanisms in organic chemistry (substitutions, additions, eliminations condensations)
Biosynthesis of Terpenes.
ObjectiveThe students are able to differentiate between structural and stereoisomers.
The students know the basic reaction mechanisms in organic chemistry. They are able to understand and formulate simple biochemical rections.
They know the basics of the biosynthesis of terpenes.
ContentIsomerism (structural isomers, stereoisomers).
Descriptive chemistry of natural products (glycerides, peptides, saccharides).
Reaction mechanisms (substitutions, additions, eliminations, condensations).
The citric acid cycle, the gloxylate cycle.
Biosynthesis of terpenes.
LiteratureCarsten Schmuck, Basisbuch Organische Chemie, Pearson
Prerequisites / NoticeDer Stoff der Basischemie wird vorausgesetzt.
701-0297-00LApplied EcotoxicologyW2 credits2VK. Fent
AbstractBesides regarding basic concepts, this lecture focus on applied aspects of ecotoxicology. Case studies and effects of environmental chemicals on cells, organisms up to ecosystems are regarded. In a multidisciplinary approach based on toxicological concepts, pollutants are analysed, in particular hormonally active compounds and their effects on reproduction.
ObjectiveThis lecture focusses on basic concepts of ecotoxicology and their application to enviromental chemicals and environmental pollution problems. Basic concepts are regarded with respect to their consequences for the environment. Toxicological effects on organisms are analysed at different levels of organisation, from the molecular to the ecosystem level. Case studies are regarded in order to understand chemical's actions and their effects. In addition bioaccumulation and their consequences, the methods in ecotoxicology and environmental effects of various compounds will be regarded. Emphasis will be placed on hormonally active compounds and their effects to aquatic organisms. Furthermore, methods of enviornmental risk assessment of environmental pollutants will be discussed.
ContentBasic concepts of ecotoxicology. Bioavailability, uptake and metabolism. Bioacculation of environmental chemicals. Methods of ectotoxicology. Effects on moleculse, cells, organisms, populations and ecosystems. Mode of actions of environmental chemicals. Effect assessment in model ecosystems. Environmental hazard and risk assessment. Case studies on environmental pollutants. Endocrine disrupters and their ecological consequences.
Lecture notesHochschullehrbuch von K. Fent "Ökotoxikologie. Umweltchemie-Toxikologie-Ökologie" (Georg Thieme Verlag, Stuttgart, 2013, 4. Auflage).
LiteratureFent K. Ökotoxikologie. Georg Thieme Verlag, Stuttgart, 2013. (4. Auflage)
529-0051-00LAnalytical Chemistry IW3 credits3GD. Günther, M.‑O. Ebert, R. Zenobi
AbstractIntroduction into the most important spectroscopical methods and their applications to gain structural information.
ObjectiveKnowledge about the necessary theoretical background of spectroscopical methods and their practical applications
ContentApplication oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD).
Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation.
Lecture notesScript will be for the production price
Literature- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Prerequisites / NoticeExcercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended.
Environmental Physics
NumberTitleTypeECTSHoursLecturers
701-0479-00LEnvironmental Fluid Dynamics Information W3 credits2GH. Wernli, M. Croci-Maspoli
AbstractThis course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.
ObjectiveStudents are able
- to name the bases, concepts and methods of environmental fluid dynamics.
- to understand and discuss the components of the basic physical equations in fluid dynamics
- to apply basic mathematical equations to simple problems of environmental fluid dynamics
ContentBasic physial terminology and mathematical laws:
Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
Concepts and illustrative flow sytems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
Scale analysis: dimensionles variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
Waves in environmental fluid systems.
Lecture notesIn english language
LiteratureWill be presnted in class.
See also: web-site.
101-0203-01LHydraulics IW5 credits3V + 1UR. Stocker
AbstractThe course teaches the basics of hydromechanics, relevant for civil and environemental engineers.
ObjectiveFamiliarization with the basics of hydromechanics of steady state flows
ContentProperties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
Lecture notesScript and collection of previous problems
LiteratureBollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin
102-0455-01LGroundwater IW3 credits2GM. Willmann
AbstractThe course provides an introduction into quantitavie analysis of groundwater flow and transport. It is focussed on formulating flow and transport problems in groundwater, which are to be solved analytically or numerically.
Objectivea) Students understand the basic concepts of flow and contaminant transport processes and boundary conditions in groundwater.

b) Students are able to formulate simple practical flow and transport problems.

c) Students are able to understand and apply simple analytical solutions to simple flow and transport problems.

d) Students are able to use simple numerical codes to adequately solve simple flow (and transport) problems.
ContentIntrodiction, aquifers, groundwater use, sustainability, porosity.

Properties of porous media.
Exercises: Groundwater use, porosity, grain size analysis.

Flow properties, Darcy's law, filter.

Flow equations, stream function.
Exercises: Darcy's law.

Analytical solutions, confined aquifers, steady-state flow.
Exercises: Head isolines.

Use of superposition principles, transient flow, freee surface flow.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems I.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems II.
Exercises: Finite differece formulations to flow problems.

Transport processes.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems I.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems II.
Exercises: Analytical solutions to transport problems.

Path lines, groundwater protection.
Exercises: Analytical solutions to transport problems.

Groundwater remediation, groundwater management.
Exercises: Groundwater remediation.
Lecture notesFolien auf Internet unter www.ihw.ethz.ch/GWH/education/index

Altes Skript auf Internet www.ihw.ethz.ch/GWH/education/index

Weitere Texte auf Internet www.ihw.ethz.ch/GWH/education/index

Didaktische Software auf Internet unter www.ihw.ethz.ch/GWH/education/index
LiteratureJ. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979

P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

Krusemann, de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970

G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986
651-3561-00LCryosphere Information W3 credits2VM. Funk, M. Huss, K. Steffen
AbstractThis course introduces the different parts of the cryosphere - snow, glaciers, sea ice, permafrost - and their role in the climate system. A significant physical aspect is the focus in each part. Those completing the course are able to describe the dynamics of cryosphere components both formally and using examples.
ObjectiveStudents are able
- to qualitatively describe the main components of the cryosphere and their role in the climate system
- to formally describe the relevant physical processes which determine the state of cryosphere components
ContentIntroduction into the different components of the Cryosphere: Snow, glaciers, sea ice and permafrost, and their roles in the climate system. Each part is use to emphasized on one specific physical aspect: material qualities of ice, mass balance and dynamics of glaciers and energy balance of sea ice.
Lecture noteshandouts will be distributed during the teaching semester
Module Engineering and Planning
Spacial and Transport Planning
NumberTitleTypeECTSHoursLecturers
701-0951-00LGIS - Introduction into Geoinformation Science and Technology Restricted registration - show details
Number of participants limited to 60.
W5 credits2V + 3PM. A. M. Niederhuber, S. Salvini
AbstractTheoretical basics and fundamental concepts of Geographic Information Science (GIS) are imparted and subsequently further elaborated with the software ArcGIS.
At the end, the students will be able to independently solve basic realistic GIS problems.
ObjectiveStudents are able to
- elucidate the theoretical and conceptional foundations of geographic information systems (GIS)
- independently perform normal GIS work using commercial software and practical examples
ContentThe course covers the following topics:
- What is GIS? What are spatial data?
- The representation of reality by means of spatial data models: vector, raster, TIN
- The four phases of data modelling: Spatial, conceptual, logical and physical model
- Basic concepts of database management systems and spatial databases
- Possibilities of data collection
- Transition of reference frame
- Spatial Analysis I: query and manipulation of vector data
- Spatial Analysis II: operators and functions with raster data
- Digital elevation models and derived products
- Process modelling with vector and raster data
- Presentation possibilities of spatial data

One Friday is reserved for a field trip or guest speaker;
LiteraturePaul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind (2010): Geographic Information Systems and Science. John Wiley & Son, Ltd. Chichester.

Norbert Bartelme (2005): Geoinformatik - Modelle, Strukturen, Funktionen. Springer Verlag. Heidelberg.

Ralf Bill (2010): Grundlagen der Geo-Informationssysteme. 5., völlig neu bearbeitete Auflage. Wichmann Verlag. Heidelberg.

GI GEOINFORMATIG GmbH (Hrsg.) (2011): ArcGIS 10 - das deutschsprachige Handbuch für ArcView und ArcEditor. Wichmann Verlag. Heidelberg.
Prerequisites / NoticeAufgrund der Grösse des verfügbaren EDV-Schulungsraumes ist die Teilnehmerzahl auf 60 Studierende beschränkt! Für die Übungen werden die Studierenden auf verschiedene Zeitfenster aufgeteilt. Pro Zeitfenster können maximal 20 Studierende betreut werden.
101-0415-01LRailway Infrastructures (Transportation II)W3 credits2GU. A. Weidmann
AbstractFundamentals of railroad technology and interactions between track and vehicles, network development and infrastructure planning, planning of rail infrastructure, planning and design of railway stations, construction and dimensioning of tracks, approval and beginning service on complex infrastructure facilities, special issues of maintenance.
ObjectiveTeaches the basic principles of public transport network and topology design, geometrical design, dimensioning and construction as well as the maintenance of rail infrastructures. Teaches students to recognize the interactions between the infrastructure design and the production processes. Provides the background for Masters degree study.
Content(1) Fundamentals: Infrastructures of public transport systems; interaction between track and vehicles; passengers and goods as infrastructure users; management and financing of networks; railway standards and normes. (2) Infrastructure planning: Planning processes and decision levels in network development and infrastructure planning, planning of railway tracks and rail topologies; planning of the passenger parts of stations. (3) Infrastructure design: Fundamentals of the layout of a line; track geometry; switchs and crossings; design of station platforms. (4) Construction of railway infrastructures: Assembly and evolution of the railway track; elements of the railway track; dimensioning of the track; track stability. (5) Approval and beginning service on complex infrastructure facilities: Definitions and limitations; fundamentals of the legal situation; test and approval processes; processes of putting railway systems into operation. (6) Maintenance of railway infrastructures: Fundamentals of infrastructure maintenance; kinds of depreviations; supervision methods; steps of infrastructure maintenance; estimation of maintenance need; methods to minimize maintenance costs.
Lecture notesCourse notes will be provided in German. Slides are made available some days before each lecture.
LiteratureReferences to technical literature will be included in the course script. An additional list of literature will be given during the course.
Prerequisites / NoticeNo remarks.
Renewable Energy
NumberTitleTypeECTSHoursLecturers
701-0967-00LProject Development in Renewable Energies Information Restricted registration - show details
Number of participants limited to 30.
W2 credits2GR. Rechsteiner, A. Appenzeller, A. Wanner
AbstractProject development in renewable Energies
Realization of projects in the field of renewable energies, analysis of legal frame conditions and risks.
The students learn basics of renewable energy project realization from acknowledged experts active in the field.
They identify different tasks of various investor types.
They develop sample projects in practice within groups
ObjectiveYou become acquainted with the regulative, juridical and economic requirements of project development in renewable energies in the fireld of wind power, solar power and hydro power.
You learn to launch and judge projects by exercises in groups
You recognize chances and risks of renewable energy projects
ContentBusiness models for renewable energy projects
Introduction of market trends, market structure, technical trends and regulation in Switzerland and in the EU internal energy market
Necessary frame conditions for profitable projects
Project development samples and exercises in
wind power
hydro power
photovoltaics
due diligence and country assessment.
Exact Program in German below
http://www.rechsteiner-basel.ch/index.php?id=27
Lecture notesPPT presentation will be distributed (in German)
special frames:
http://www.rechsteiner-basel.ch/Lehrmittel.27.0.html
LiteratureLonglist: http://www.rechsteiner-basel.ch/uploads/media/edoc_literaturliste_1404.pdf
REN21 Renewables GLOBAL STATUS REPORT http://www.ren21.net
Mit einer grünen Anlage schwarze Zahlen schreiben Link
UNEP: Global Trends in Renewable Energy Investments http://fs-unep-centre.org
Renewable Energy World: Market Status http://www.renewableenergyworld.com/rea/magazine/renewable-energy-world
Ryan Wiser, Mark Bolinger: Wind Technologies Market Report, Lawrence Berkeley National Laboratory https://emp.lbl.gov/publications/2014-wind-technologies-market-report
IEA PVPS: TRENDS 2014 IN PHOTOVOLTAIC APPLICATIONS http://www.iea-pvps.org/index.php?id=92&eID=dam_frontend_push&docID=2795
Bundesamt für Energie: Perspektiven für die Grosswasserkraft in der Schweiz http://www.news.admin.ch/NSBSubscriber/message/attachments/33285.pdf
Windenergie-Report Deutschland Link
Prerequisites / NoticeFor group exercise and presentation reasons the number of participants is limited at 35 students. For exercices students build learning and presentational groups.
529-0193-00LRenewable Energy Technologies I
The lectures Renewable Energy Technologies I (529-0193-00L) and Renewable Energy Technologies II (529-0191-01L) can be taken independently from one another.
W4 credits3GA. Wokaun, A. Steinfeld
AbstractScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
ObjectiveScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
ContentScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
Lecture notesLecture notes will be distributed electronically during the course.
Literature- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Prerequisites / NoticeFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
Individual Subjects
NumberTitleTypeECTSHoursLecturers
701-0317-00LIdentification of Woody Plants in WinterW1 credit1GA. Rudow
AbstractWoody plants are important elements of forest ecosystems and landscapes. The practical characterization of forest stands often requires the identification of woody plants in winter. The course focuses on the practical identification of native tree and shrub species to be used for the characterization of forest stands.
ObjectiveKnowledge of selected native tree and shrub species in winter. Understanding relationships of trees and forest ecosytems by in situ observation of woody plants and forest stands. Introduction into the characterization of forest stands.
ContentFour half-day excursions in the surroundings of Zurich and Baden the identification of native tree and shrub species is treated. The course aims at broadening and application of species knowledge towards the identification of woody plants during the leafless phase and their identification from distance (selected native species). Besides that the relationships of trees and forest ecosytems as well as forestry aspects are elucidated. In the context of an individual work the students will practically train and deepen their acquired knowledge.
Lecture notesRudow, A., 2013: Dendrologie Grundlagen - Bestimmungshilfe (in German, will be provided for registered students on an online-platform)
LiteratureRudow 2011 (betaversion): EBot Dendrologie.E-learning-Tool for the support of dendrology courses at ETHZ, integrated into online-application eBot.
An overview of the most adequate literature will be given at the introdcution (sept 28).
Prerequisites / NoticeHalf-day excursions into forests. Weatherproof clothes are presupposed.
The course is based on the Introduction into Dendrology (spring sem, 2nd sem).
701-0901-00LETH Week 2016: Challenging Water Restricted registration - show details
All ETH Bachelor`s, Master`s students and exchange students can take part in the ETH week 2016.
Tuition, food and accommodation are free of charge.
W1 creditR. Knutti, C. Bratrich, S. Brusoni, P. Burlando, A. Cabello Llamas, G. Folkers, D. Molnar, A. Vaterlaus, B. Wehrli
AbstractThe ETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2016, ETH Week will focus on the topic of water.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives. The focus in 2016 is on challenging water systems.

- Analytical skills The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyze the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper,...) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organizations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of water. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyze both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about how the food system works, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.
Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.

A panel of experts will judge your presentations at the end of the week. The winning teams will receive attractive prizes.
Prerequisites / NoticeNo prerequisites. Program is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process that will open in March 2016 at www.ethz.ch/ETHWeek. Participation is subject to successful selection through this competitive process.
051-0159-00LUrban Design I Information W1 credit2VH. Klumpner, A. Brillembourg
AbstractThe lecture series will introduce tools for reading contemporary urban conditions, urban models and operational modes. Urban development will be deciphered, presented as operational tools, extracted from cities where they have been tested and became exemplary samples, most relevant for providing the understanding of how urban landscape has taken shape as well as inspiration for future practice.
ObjectiveHow can a glossary of tools be used as a basis for reading cities and recognizing in them current trends and urban phenomena? The lectures series will produce a glossary of operational urban tools with collected urban knowledge that provides students with an 'improvised' manual to navigate theories. Urban Stories is a lecture series that aims to amplify your repertoire of urban instruments and empowers you to read cities and to critically reflect on the urban environment. The course will approach a series of case studies, employing an analytical, research-based model for crosscutting scale, political, economical and social components. Through this lens, and with our toolbox, we aim to tell the fundamental story of our cities from today and provide information, analysis and knowledge to help students prepare for justifiable own contributions and interventions in the future. Also the aspect of knowledge transfer will be considered in order to sensibilize the students to understand how to operate in an international context.
ContentHow did cities develop into the cities we live in now? Which urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs and social organization have been used to operate in urban settlements in specific moments of change? Which cities are exemplary in illustrating how these instruments have been implemented and how they have shaped urban environments? Can these instruments be transcripted into urban operational tools that we recognize within existing tested cases in contemporary cities across the globe? Urban form cannot be reduced to the physical space. Cities are the result of social construction, under the influence of technologies, ecology, culture, the impact of experts and accidents. Urban unconcluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and planers and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of an urban evolution. The facts stored in urban environments include contributions from its entire lifecycle. That is true for the physical environment, but also for non-physical aspects, the imaginary city that exists along with its potentials and problems and with the conflicts that have evolved over time. Knowledge and understanding along with a critical observation of the actions and policies are necessary to understand the diversity and instability present in the contemporary city and to understand how urban form evolved to its current state. This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. Urban knowledge will be translated into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for providing the understanding of how urban landscape has taken shape. Case studies will be identified to compile documents and an archive, that we use as templates to read the city and to critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life as well as to provide instruments for valuable contributions and interventions.
Lecture notesThe skript can be downloaded from the student-server.
LiteratureThe learning material can be downloaded from the student-server: afp://brillembourg-klumpner-server.ethz.ch

Please check also the Chair website: http://u-tt.arch.ethz.ch
Prerequisites / NoticeEXERCISE
After each lecture, students are asked to produce an exercise based on the presented tools. The format of the exercise is an A3 or an A4, according to the given template. Each student has one week to prepare each exercise, and it should be delivered, in form of a physical copy, in the next lecture. (Language: preferably English, German).
The Exercise tasks are a valuable preparation for the Exam (Exam only relevant for the "Jahreskurs" students) therefore it is highly recommendable to finalize all weekly Exercise tasks, as an individually conducted piece of work.


"Semesterkurs" (semester course) students from other departments or students taking this lecture as GESS / Studium Generale course as well as exchange students must submit a research paper, which will be subject to the performance assessment: "Bestanden" (pass) or "Nicht bestanden" (failed) as the performance assessment type, for "Urban Design I: Urban Stories" taken as a semester course, is categorized as "unbenotete Semesterleistung" (ungraded semester performance).
751-3401-00LPlant Nutrition IW2 credits2VE. Frossard
AbstractThe aim of these lecture is to present the processes controlling the uptake and transport of nutrients and water by the plant, the assimilation of nutrients in the plant, the effect of nutrients on crop yield and quality, the role of the soil as a source of nutrients for crops, and the basic principles of fertilization of different crop types using mineral and organic fertilizers.
ObjectiveAt the end of the lecture, students know how mineral nutrients and water are taken up through roots and circulate in the plants and what their roles in plants are. They understand the importance of nutrients for yield formation and for crop product quality. They are able to propose fertilization plans adapted for field crops growing under Swiss conditions.
ContentA general introduction explains the needs of appropriately managing nutrients in plant production. Afterwards, we will study the physiology of plant nutrition (nutrient uptake by roots; water and nutrient transports in the plant; physiological roles of nutrients in the plant). Then the role of nutrients for yield formation and their effects on crop quality is dealt with. Finally, the bases of crop fertilization are taught (availability of nutrient in soil; N, P and K fertilization; different types of fertilizers).
Lecture notesWe will distribute a script for the part dealing with the physiology of plant nutrition. For the part on fertilization we will use the booklet of ACW and ART presenting the recommendations for the fertilization of crops and grassland in Switzerland (GRUDAF/DBF).
LiteraturePhysiology of plant nutrition:
Epstein and Bloom 2004. Mineral nutrition of plants: Principles and perspectives
Taiz and Zeiger 2002. Plant physiology.
Marschner 1995. Mineral Nutrition of higher plants.
Schilling 2000. Pflanzenernährung und Düngung.
Schubert S 2006 Pflanzenernährung Grundwissen Bachelor Ulmer UTB
Pictures of nutrients deficiency symptoms:
Bergmann, W. 1988. Ernährungsstörungen bei Kulturpflanzen.
http://www.tll.de/visuplant/vp_idx.htm
Water balance:
Kramer, P.J., Boyer, J.S. 1995. Water relations of plants and soils.
Lösch, R. 2001. Wasserhaushalt der Pflanzen.
Ehlers, W. 1996. Wasser in Boden und Pflanze.
751-4801-00LSystem-Oriented Management of Herbivore Insects IW2 credits2GD. Mazzi
AbstractThe focus is on the potential to assess strategies and tactics of pest management, taking into account the demands from the economy, the environment and the society. Significant agricultural approaches will be explained using practical examples, including prevention using natural resources, surveillance and forecasting, resistance management, as well as product registration, incl. ecotoxicology.
ObjectiveThe students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will have the ability to assess options for action in view of requirements from the economy, the ecology and the society. Further, they will learn to perform searches on relevant issues in pest management, and to critically evaluate case studies.
» Courses of the Specialisation in an Environmental System
Specialization in an Environmental System
Biogeochemistry
NumberTitleTypeECTSHoursLecturers
701-0216-00LBiogeochemical CyclesW3 credits2GB. Wehrli
AbstractBiogeochemical cycles are discussed from global or regional perspectives, important methods to determine reaction rates and pathways are introduced and typical reaction mechansims are discussed at a molecular level.
ObjectiveThe students will be able to
* explain how molecular processes govern global biogeochemical cycles;
* apply simple numerical models of biogeochemical processes (equilibrium-, mass-balance, transport-reaction models);
* interpret concentration changes in time and space and deduce rates of biogeochemical processes.
ContentBiogeochemical cycles in aquatic systems will be discussed from three perspectives: 1) Case studies with a gloabal or regional point of view will document the relevant background information on rates, time-scales and reservoirs of selected element cycles such as C, N, P, S, Fe, Mn Cd, Cu, Mo and As. 2) From a practical perspective we will compare the potential and limits of different methods to quantify biogeochemical processes in aquatic systems. 3) On a molecular level we will discuss mechanisms and pathways of relevant reactions.
Lecture notesLecture notes and assignments will be available in German
LiteratureSimilar coverage of some topics: Steven R. Emerson, John I. Hedges: Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press 2008.
Prerequisites / NoticeBasic knowledge in chemistry and systems analysis
701-0419-01LSeminar for Bachelor Students: BiogeochemistryO2 credits2SG. Furrer, R. Kretzschmar, B. Wehrli
AbstractThe seminar provides an introduction to the literature in biogeochemistry of aquatic and terrestrial systems. The students present their summary and review of recent or classical papers. Therefore they get familiar with online-access tools and improve their communication and presentation skills.
ObjectiveGetting to know relevant journals in the field of biogeochemistry. Reading, assessing and discussing scientific publications. Improving of presentation skills. Exercising and Improving of moderation skills.
ContentPart 1: Literature search. Presentation and moderation techniques.
Part 2: Common literature study; online-exchange of information. Presentation and discussion moderated by the students.
Lecture notesSelected handouts will be distributed in class.
https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php
Prerequisites / NoticeDeadline for enrollment is the FIRST day of the semester. Later enrollment can only be accepted in exceptional cases and under certain conditions (e.g., restricted choice of topics and dates).
701-0423-00LChemistry of Aquatic SystemsW3 credits2GL. Winkel
AbstractThis course gives an introduction to chemical processes in aquatic systems and shows applications to various systems. The following topics are treated: acid-base reactions and carbonate system, solubility of solids and weathering, redox reactions, complexation of metals, reactions at the solid/water interface, applications to lakes, rivers and groundwater.
ObjectiveUnderstanding of chemical processes in aquatic systems. Quantitative application of chemical equilibria to processes in natural waters. Evaluation of analytical data from aquatic systems.
ContentIntroduction to the chemistry of aquatic systems. Regulation of the composition of natural waters by chemical, geochemical and biological processes. Quantitative application of chemical equilibria to processes in natural waters. The following topics are treated: acid-base reactions, carbonate system; solubility of solid phases and weathering; complexation of metals and metal cycling in natural waters; redox reactions; reactions at the interface solid phase-water; applications to lakes, rivers, groundwater.
Lecture notesScript is distributed.
LiteratureSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
701-0533-00LSoil ChemistryW3 credits2GR. Kretzschmar, D. I. Christl
AbstractThis course discusses chemical and biogeochemical processes in soils and their influence on the behavior and cycling of nutrients and pollutants in terrestrial systems. Approaches for quantitative modeling of the processes are introduced.
ObjectiveUnderstanding of important chemical soil properties and processes and their influence on the behavior (e.g., speciation, bioavailability, mobility) of nutrients and pollutants.
ContentImportant topics include the structure and properties of clays and oxides, the chemistry of the soil solution, gas equilibria, dissolution and precipitation of mineral phases, cation exchange, surface complexation, chemistry of soil organic matter, redox reactions in flooded soils, soil acidification and soil salinization.
Lecture notesHandouts in lectures.
Literature- Selected chapters in: Encyclopedia of Soils in the Environment, 2005.
- Chapters 2 and 5 in Scheffer/Schachtschabel - Soil Science, 1st English edition, Springer, 2016.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 credits2G + 2UD. Or
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
ObjectiveStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
ContentWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
Lecture notesClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
http://www.step.ethz.ch/education/active-courses/vadose-zone-hydrology
LiteratureSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
Atmosphere and Climate
NumberTitleTypeECTSHoursLecturers
701-0459-00LSeminar for Bachelor Students: Atmosphere and Climate Information W2 credits2SR. Knutti, H. Joos, O. Stebler
AbstractIn this seminar all students in the realm of atmospheric and climate science convene to train presentation techniques (talks, posters) by means of classic and modern scientific articles.
ObjectiveIn this seminar all students in the realm of atmospheric and climate science convene to train presentation techniques (talks, posters) by means of classic and modern scientific articles.
Content1st week: course organisation and presentation of the institute
2nd and 3rd week: introduction to oral presentation technique
week 4 to 10: students talks
11th week: introduction to poster presentation technique
12th and 13th week: poster design
14th week: concluding poster presentation
Lecture notesDocuments are offered via the course's web page.
LiteratureDocuments are offered via the course's web page.
Prerequisites / NoticeThis course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.
701-0461-00LNumerical Methods in Environmental Sciences Information W3 credits2GC. Schär, O. Fuhrer
AbstractThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ObjectiveThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ContentClassification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Matlab (previous experience not necessary: a Matlab introduction is given). Example programs and graphics tools are supplied.
Lecture notesIs provided (CHF 10.- per copy).
LiteratureList of literature is provided.
701-0471-01LAtmospheric Chemistry Information W3 credits2GM. Ammann, D. W. Brunner
AbstractThe lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the kinetics of gas phase and heterogeneous reactions on aerosols and in clouds and explains the chemical and physical mechanisms responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.
ObjectiveThe students will understand the basics of gas phase and heterogeneous reactions and will know the most relevant atmospheric chemical processes taking place in the gas phase as well as between different phases including aerosols and clouds.
The students will also acquire a good understanding of atmospheric environmental problems including air pollution, stratospheric ozone destruction and changes in the oxidative capacity of the global atmosphere.
Content- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources
- Multiphase chemistry: heterogeneous kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Lecture notesVorlesungsunterlagen (Folien) werden laufend während des Semesters jeweils mind. 2 Tage vor der Vorlesung zur Verfügung gestellt.
Prerequisites / NoticeAttendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent is a pre-requisite.
701-0473-00LWeather Systems Information W3 credits2GM. A. Sprenger, C. Grams
AbstractThis lecture introduces the theoretical principles and the observational and analytical methods of atmospheric dynamics. Based on these principles, the following aspects are discussed: the energetics of the global circulation, the basic synoptic- and meso-scale flow phenomena, in particular the dynamics of exrtatropical cyclones, and the influence of mountains on the atmospheric flow.
ObjectiveThe students are able to
- explain up-to-date meteorological observation techniques and the basic methods of theoretical atmospheric dynamics
- to discuss the mathematical basis of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0475-00LAtmospheric Physics Information W3 credits2GU. Lohmann, A. A. Mensah
AbstractThis course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, thermodynamics, aerosol physics, radiation as well as the impact of aerosols and clouds on climate and artificial weather modification.
ObjectiveStudents are able
- to explain the mechanisms of cloud and precipitation formation using knowledge of humidity processes and thermodynamics.
- to evaluate the significance of clouds and aerosol particles for climate and artificial weather modification.
ContentMoist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, storms; importance of aerosols and clouds for climate and weather modification, clouds and precipitation
Lecture notesPowerpoint slides and script will be made available
LiteratureLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.
Prerequisites / Notice50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate with some instruments how some of the processes, that are discussed in the lectures, are measured.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.
Environmental Biology
NumberTitleTypeECTSHoursLecturers
701-0301-00LApplied Systems EcologyW3 credits2VD. Schröter, A. Gessler
AbstractThis course provides the ecological systems` knowledge needed to question applied solutions to current environmental issues. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.
ObjectiveAt the end of the course...
...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.
...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).
...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.
...you understand the importance of ecosystem services for society.
...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.
...you have reflected on ecology as a young discipline at the heart of significant applied questions.
ContentThis course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.
Lecture notesCase descriptions, commented glossary and a list of literature and further resources per case.
LiteratureIt is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Agren GI and Andersson FO (2012) Principles of Terrestrial Ecosystem Ecology, Cambridge University Press.

Chapin et al. (2011), Principles of Terrestrial Ecosystem Ecology, Springer.

Schulze et al. (2005) Plant Ecology; Springer.
Prerequisites / NoticeThe course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).
701-0320-00LSeminar for Bachelor Students: Environmental Biology Restricted registration - show details O2 credits2SD. Ramseier
AbstractIn the seminar, students explore a specific topic in environmental biology (ecology, evolution, health). They find and read scientific articles, structure contents around core questions, talk to specialists about them, prepare a scientific presentation and lead a discussion. They are introduced to literature search and scientific presentations.
ObjectiveStudents will acquire skills in:
- finding literature in scientific databases
- structuring a scientific topic through research questions
- giving a clear scientific presentation
- contributing constructively to a scientific discussion
ContentWeek 1: Choice of topics and tutors
Week 2 & 3: Literature search
Week 4: course for presentation techniques
Weeks 1 - 7: Meetings with tutors, preparation of presentations
Weeks 8 - 14: Presentations and discussions
Lecture notesWill be handed out during classes
701-0323-00LPlant EcologyW3 credits2VS. Güsewell, J. Levine
AbstractThis class focuses on ecological processes involved with plant life, mechanisms of plant adaptation, plant-animal and plant-soil interactions, plant strategies and implications for the structure and function of plant communities. The discussion of original research examples familiarises students with research questions and methods; they learn to evaluate results and interpretations.
ObjectiveStudents will be able to:
- propose methods to study ecological processes involved with plant life, and how these processes depend on internal and external factors;
- analyse benefits and costs of plant adaptations;
- explain plant strategies with relevant traits and trade-offs;
- explain and predict the assembly of plant communities;
- explain implications of plant strategies for animals, microbes and ecosystem functions;
- evaluate studies in plant ecology regarding research questions, assumptions, methods, as well as the reliability and relevance of results.
ContentPlants represent the matrix of natural communities. The structure and dynamics of plant populations drives the function of ecosystems. This course presents essential processes and plant traits involved with plant life. We focus on research questions that have been of special interest to plant ecologists as well as current topical questions. We use original research examples to discuss how ecological questions are studied and how results are interpreted.
- Growth: what determines the production of a plant?
- Nutrients: consumption or recycling: opposite strategies and feedbacks on soils;
- Clonality: collaboration and division of labour in plants;
- Plasticity: benefits and costs of plant intelligence;
- Flowering and pollination: how expensive is sex?
- Seed types, dispersal, seed banks and germination: strategies and trade-offs in the persistence of plant populations;
- Development and structure of plant populations;
- Stress, disturbance and competition as drivers of different plant strategies;
- Herbivory: plant-animal feedbacks and functioning of grazing ecosystems
- Fire: impacts on plants, vegetation and ecosystems.
- Plant functional types and rules in the assembly of plant communities.
Lecture notesHandouts and further reading will be available electronically at the beginning of the semester.
Prerequisites / NoticePrerequisites
- General knowledge of plant biology
- Basic knowledge of plant sytematics
- General ecological concepts
701-1413-00LPopulation and Quantitative GeneticsW3 credits2VT. Städler, P. C. Brunner
AbstractThis course is an introduction to the rapidly developing fields of population and quantitative genetics, emphasizing the major concepts and ideas over mathematical formalism. An overview is given of how mutation, genetic drift, gene flow, mating systems, and selection affect the genetic structure of populations. Evolutionary processes affecting quantitative and Mendelian characters are discussed.
ObjectiveStudents are able to
- describe types and sources of genetic variation.
- describe fundamental concepts and methods of quantitative genetics.
- use basic mathematical formalism to describe major population genetic concepts.
- discuss the main topics and developments in population and quantitative genetics.
- model population genetic processes using specific computer programs.
ContentPopulation Genetics:
Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory.

Quantitative Genetics:
Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem.
Lecture notesHandouts
LiteratureHamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K.
Prerequisites / NoticeThere will be 5 optional extra sessions for the population genetics part (following lectures 2-6) for computer simulations, designed to help understand the course material.
701-1413-01LEcological GeneticsW3 credits2VA. Widmer, M. C. Fischer
AbstractThis course focuses on fundamental concepts and methods in ecological genetics. Topics covered include genetic diversity, natural selection, adaptation, reproductive isolation, hybridization and speciation.
ObjectiveStudents will be able
- to assess and propose methods to study pertinent questions in ecological genetics
- to combine knowledge from different disciplines, including population and quantitative genetics, ecology and evolution
- to analyse evolutionary processes in natural populations
ContentConcepts and methods for the study of genetic diversity, natural selection, adaptation, reproductive isolation, hybridization and speciation.
Lecture notesHandouts will be provided electronically.
Prerequisites / NoticeRecommendation:
We recommend that you also follow the course 701-1413-00L - Population and Quantitative Genetics either in advance or in parallel.
Human-Environment Systems
NumberTitleTypeECTSHoursLecturers
701-0301-00LApplied Systems EcologyW3 credits2VD. Schröter, A. Gessler
AbstractThis course provides the ecological systems` knowledge needed to question applied solutions to current environmental issues. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.
ObjectiveAt the end of the course...
...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.
...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).
...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.
...you understand the importance of ecosystem services for society.
...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.
...you have reflected on ecology as a young discipline at the heart of significant applied questions.
ContentThis course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.
Lecture notesCase descriptions, commented glossary and a list of literature and further resources per case.
LiteratureIt is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Agren GI and Andersson FO (2012) Principles of Terrestrial Ecosystem Ecology, Cambridge University Press.

Chapin et al. (2011), Principles of Terrestrial Ecosystem Ecology, Springer.

Schulze et al. (2005) Plant Ecology; Springer.
Prerequisites / NoticeThe course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).
701-0651-00LCoevolution between Society and Environment: Analysis and InfluenceW3 credits2VJ. Minsch
AbstractAnalysis of central mechanisms of the anthroposphere: ecological economics, theory of institutions and innovation, development economics.
ObjectiveIntroduction to the theoretical foundations of the analysis of central mechanisms of the anthroposphere – in a sustainable development perspective.

Knowledge of the different scientific and political discussions on sustainable development.

Knowledge of selected analytical tools (Ecological Economics, economic analysis of institutions, innovation theory, “Ordnungstheorie”, Theory of liberal economic policy).

Ability to identify central non sustainable mechanisms and policies, to formulate adequate research questions, to choose and to use adequate analytical tools, and to elaborate solutions.
ContentSustainable development-update: origins, conceptions, state of the discussion. What's left after 25 years of discussion?

Development as Freedom: Foundations of a human-rights-based Society and Economy (Amartya Sen, Daron Acemoglu / James A. Robinson, Ralf Dahrendorf, Friedrich. A. von Hayek, Karl. R. Popper. Walter Eucken).

Market Economy:
Its Critics, Reforms and new Developments.

An Inquiry into the Nature and Causes of ...Non-Sustainability:
Selected mechanisms and trends. The “neo-mercantilism-syndrom”

New Trends in the Growth Debate:
The Growth-spiral” (Hans Chr. Binswanger), Prosperity without growth? (T. Jackson), Intelligent Growth (R. Fücks)

The Internet of Things and Collaborative Commons - on the road to "The Zero Marginal Cost Society"?

Sufficiency: Perspectives of a resource-light society

Corporation 2020 - Transforming Business for Tomorrow's World (Remarks on Pavan Sukhdev's bestseller)

Finance Crash and Debt Crisis - new challenges for Democracy & Market Economy

Resourcecurse: Resources, democracy, and economic development

Globalization: Facts and elements of a fair globalization

It`s the software! Institutional Innovations for Sustainable Development. Let's continue writing The Federalist Papers!

On the way to the second "Great Transformation"

Perspectives for further, deeper analysis
Lecture notesskript and additional texts are distributed in the cource
LiteratureA first selection:
- Daron Acemoglu / James A. Robinson (2012): Why Nations Fail. The Origins of Power, Prosperity, and Poverty, New York
- Hans Christoph Binswanger (2006): Die Wachstumsspirale. Geld, Energie und Imagination in der Dynamik des Marksprozesses, Marburg
- Ralf Dahrendorf ( 2003): Auf der Suche nach einer neuen Ordnung, München
- Jared Diamond (2005): Collapse: How Societies Choose to Fail or Succeed, New York
- Ralf Fücks (2013): Intelligent wachsten, Die grüne Revolution, München
- Friedrich A. von Hayek (1991): Die Verfassung der Freiheit, 3. Auflage, Tübingen
- Friedrich A. von Hayek (1972): Theorie komplexer Phänomene, Tübingen
- Tim Jackson (2009): Prosperity without Growth. Economics for a Finite Planet, London
- Jürg Minsch / Peter H. Feindt / Hans. P. Meister / Uwe Schneidewind / Tobias Schulz (1998): Institutionelle Reformen für eine Politik der Nachhaltigkeit, Berlin / Heidelberg / New York
- J. Minsch / A. Eberle / B. Meier / U. Schneidewind (1996). Mut zum ökologischen Umbau. Innovationsstrategien für Unternehmen, Politik und Akteurnetze, Birkhäuser, Basel / Boston / Berlin
- Elinor Ostrom (1990): Governing the Commons, Cambridge University Press, Cambridge / New York / Melbourne
- oekom e.V., Hrsg. (2013): Baustelle Zukunft. die Grosse Trasformation von Wirtschaft und Gesellschaft, oekom Verlag, München
- Karl Polanyi (1944): The Great Transformation
- Karl. R. Popper (1980): Die offene Gesellschaft und ihre Feinde, Bde. I und II, 6. Auflage, Tübingen
Jeremy Rifkin (2014): The Zero Mrginal Cost Society: The Internet of things, the Collaborative Commons, and the Eclipse of Capitalism, palgrave macmillan
- Uwe Schneidewind / Angelika Zahrnt (2013): Damit gutes Leben einfacher wird. Perspektiven einer Suffizienzpolitik, München
- Pavan Sukhdev (2012): Corporation 2020. Transforming Business for Tomorrow's World, Washington D.C.
- Tomas Sedlacek (2012): Die Ökonomie von Gut und Böse, München
- Amartya Sen (1999): Development as Freedom, New York 1999)
- Daniel Spreng /Thomas Flüeler /David Goldblatt /Jürg Minsch (2012): Tackling Long Term Global Energy Problems: The Contribution of Social Science, Dortrecht / Heidelberg / New York
- Joseph Stiglitz (2006): Making Globalization Work, New York 2006)
- Peter Ulrich (2005): Zivilisierte Marktwirtschaft, 2. Aufl., Freiburg
- WBGU Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2011): Welt im Wandel. Gesellschaftsvertrag für eine Grosse Transformation, Zusammenfassung für Entscheidungsträger, WBGU, Berlin, http://www.wbgu.de

Further reading and citations are listed in the skript and mentioned in the course.
Prerequisites / NoticeWillingness to prepare intensively the topics and to participate actively in the course
701-0659-00LTropical Forests, Agroforestry and Complex Socio-Ecological SystemsW3 credits2GC. Garcia, A. Giger Dray
AbstractThe course will focus on integrated landscape approaches for the management of tropical forest landscapes, by addressing the complex interactions between ecological processes, stakeholders´ strategies and public policies. Dedicated tools such as games and simulation models to improve knowledge and foster collective decision-making processes will be explored.
ObjectiveThrough the course the students will learn:
Section 1: Concepts and Methods
1. To master definitions and concepts: SES; Vulnerability; Resilience, Environmentalist Paradox.
2. To gain exposure to methods for assessing stakeholders perceptions/practices/knowledge.

Section 2: Recognising diversity & Interdisciplinarity
1. To understand points of views/normative views and how these shape management objectives and practices.
2. Gain familiarity with major schools of thought on Natural Resources Management - Theory of the commons, Political Ecology, Vulnerability, Resilience.
3. To explore interdisciplinary approaches to natural resources management.

Section 3: Topics and Arenas
1. To understand links between Forest, Trees and Livelihoods - poverty, food security & well-being.
2. Gain familiarity with drivers of deforestation; degradation; reforestation.
3. Knowledge of global arenas affecting the international forest regime, and their impact at the local level.
4. To recognise and understand trade-offs between conservation and development in a forest/agroforest context;

A major objective of the course is to encourage students to develop a critical analysis of existing conservation and development narratives within the frame of agroforestry and forested agricultural landscapes. The course will also provide students with methods and tools to assess stakeholders perceptions/practices and knowledge, that will be of use in their professional life.
ContentThe course will address:

1- Definitions of forests and agroforests, deconstructing the rigid historical divisions between these two, and showing the complexities and implications legal definitions will have on the management systems. We will also address the definitions of Social and Ecological System (SES) and Resilience, useful for the entire course. We will provide insights on how to describe the SES using the ARDI methodology (Actors, Resources, Dynamics and Interactions)
2- Methodological frameworks to understand drivers and coping strategies of stakeholders (Sustainable livelihood framework & Vulnerability; Ecosystem Services & trade-offs; Companion Modelling and Adaptive Management; Surveys and Participatory Appraisals)

Building upon this, and introducing the Forest Transition curve as guiding framework for the course, a series of case studies will be presented, highlighting the different drivers and issues at each stage of the transition curve (Kanninen et al. 2007).

1- Tropical Forestry - including Reduced Impact Logging, Forest Certification, and International Timber Market.
2- Secondary forests and Agroforests - landscape mosaics, forest fragments, non timber forest products, slash and burn systems, small holder production systems.
3- Conversions and Deforestation: Global trends, Biofuel extensions .
4- Reforestation and Agroforestry : Plantations.
5- Conclusion - Future trends; Global Arenas and Local Governance.

The course will tackle new and emerging topics such as the role of forests and trees in adaptation to climate change, the links between forest, poverty and food security, and the need to mainstream conservation of biodiversity outside protected areas. The course will draw from diverse disciplines, from ecology, economy, sociology, political sciences and legal studies as the most preeminent ones.
The course will enlarge the scope of the students from the ecological process to the social and political components of tropical social and ecological systems. It will address topics and case studies that the students will have little opportunity to address elsewhere, linking them to issues of global relevance in environmental sciences.
LiteratureAssunçao, J., C. C. e Gandour, and R. Rocha. 2012. Deforestation Slowdown in the Legal Amazon: Prices or Policies? Climate Policy Initiative Rio de Janeiro, Rio de Janeiro.
CGIAR Research Program 6. 2011. Forest, Trees and Agroforestry: Livelihoods, Landscapes and Governance. Page 338. CGIAR Research Program 6. CIFOR, ICRAF, CIAT, Bioversity, Bogor.
Costanza, R., R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, and J. Paruelo. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253-260.
FAO. 2010. Global Forest Resource Assessment 2010. Page 342. FAO, Rome.
Kanninen, M., D. Murdiyarso, F. Seymour, A. Angelsen, S. Wunder, and L. German. 2007. Do trees grow on money: The implications of deforestation research for policies to promote REDD. Forest Perspectives. Forest Perspectives. CIFOR, Bogor.
Lescuyer, G., P. O. Cerutti, E. E. Mendoula, R. Ebaa-Atyi, and R. Nasi. 2010. Chainsaw milling in the Congo Basin. ETFRN News 52:121-128.
Torquebiau, E. F. 2000. A renewed perspective on agroforestry concepts and classification. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 323:1009-1017.
World Bank. 2004. Sustaining Forests: a development strategy. Page 81, Washington, DC.
701-0791-00LEnvironmental History - Introduction and Overview Restricted registration - show details
Number of participants limited to 100.
W2 credits2VD. Speich Chassé
AbstractOur society faces a serious ecological crisis. Of what historical dimension is this crisis? How have human societies already in earlier times changed their environment, and, consequently, perhaps also ours? What were the main ecological challenges for societies and how did they change over time? And how did societies adapt to changing environmental conditions?
ObjectiveIntroduction into environmental history; survey of long-term development of human-nature-interrelations; discussion of selected problems. Improved ability to assess current problems from a historical perspective and to critically interrogate one's own standpoint.
Lecture notesCourse material is provided on OLAT.
LiteratureMcNeill, John R. 2000. Something new under the sun: An environmental history of the twentieth-century world, New York: Norton.

Uekötter, Frank (Ed.) 2010. The turning points of environmental history, Pittsburgh: University of Pittsburgh Press.

Winiwarter, Verena und Martin Knoll 2007. Umweltgeschichte: Eine Einführung, Köln: Böhlau.
Prerequisites / NoticeStudents are asked to write an exam during the second last session (11.12.2015).
701-0963-00LEnergy and Mobility Information W3 credits2GP. J. de Haan van der Weg, M.  Müller
AbstractThe lecture ‘Energy and Mobility’ imparts profound knowledge on how to reduce energy in mobility systems. Both Engineering science and social science aspects are integrated, as technological potentials, policy tools, and human decision making behaviour are combined in order to assess how to reduce energy demand for transport.
ObjectiveThe main objectives of this lecture are:
(i) Students gain profound knowledge on how to frame problems related to the reduction of energy demand (or greenhouse gas emissions) of mobility (sub-)systems.
(ii) Students have an overview on the most relevant technological potentials (fuel-based and vehicle-based).
(iii) Students can assess whether a given reduction goal is ambitious or not, and whether given policy tools are adequate to reach the defined reduction goal.
ContentThe lecture Energy and Mobility deals with the intersection of energy and transportation with focus on motorized individual transport.
The lecture deals with the question, how the energy demand, or greenhouse gas emissions, of mobility can be reduced. A five step approach provides a common framework:
a) Status quo and Scope: Definition of the system boundary (whole transport system, or only road transport) and of the status quo of that system (energy demand and energy carrier mix for this system, current technology mix, transportation services provided);
b) Trends and Targets: Analysis of trend development of the mobility system under consideration, establishment of a trend scenario (baseline scenario). Definition of the reduction targets (expressed in terms of energy demand or greenhouse gas emissions; base year and target year; absolute or relative reduction target)
c) Potential Analysis: Analysis of currently employed technologies and of upcoming technologies. Identification of the reduction potential of current, conventional technologies and of future, alternative technologies. Technologies cover both the fuel and the vehicle side.
d) Policy Measures: Possible policy measures, direct, indirect and macro-level effects of policies, psychological aspects of decision making, elements of behavioral economics and prospect theory, combination of policies into policy mixes.
e) Effects and Side Effects: Forecasting the effects of policy measures, differentiation between effects that can be quantified and those that cannot. Identification of unintended (side) counter-effects like rebound effects and perverse incentives.
Forest and Landscape
NumberTitleTypeECTSHoursLecturers
701-0553-00LLandscape Ecology Information W3 credits2GF. Kienast, L. Pellissier
AbstractThe course is an introduction to Landscape Ecology and Landscape Modelling and provides various practical applications of Landscape Ecology in nature and landscape management.
ObjectiveThe students are able
- to explain and apply the concepts and methods of landscape analysis using examples,
-to explain causes and effects of changes in landscape using examples and simulations,
- to describe practical applications of Landscape Ecology in the management of nature and landscape.
ContentContents of the lecture:
- important terms and concepts of Landscape Ecology,
- analysis of landscape pattern (metrics),
- landscape modelling,
- perception of landscapes,
- landscape inventories used for nature and landscape protection.
Lecture notesThere is no script. Slides and other materials are provided on Moodle.
LiteratureMaster students seeking recognition of this course in the Bologna process have to show adequate knowledge of the landscape ecology topics described above and have to read selected chapters of

****Landscape Ecology in Theory and Practice, M. G. Turner, R. H. Gardner and R. V. O'Neill, Springer-Verlag.

Introduction, chapter 2, 3, 4, 5, 7, 10
Prerequisites / NoticeThis lecture uses the flipped classroom concept. Students acquire major parts of the knowledge self-paced on the Moodle platform. Contact hours (approx. every 2nd week) deepen and complement the content with additional case studies, examples and discussions.
It is advantageous but not required to have some GIS knowledge for this lecture and the practical 'Praktikum Wald und Landschaft' (spring semester) which is loosely linked with this lecture.
701-0559-00LSeminar for Bachelor Students: Forest and LandscapeO2 credits2SH. Bugmann, E. Lieberherr, P. Rotach
AbstractInterdisciplinary seminar on forest and landscape issues with particular emphasis on the key processes shaping the development of forest ecosystems and landscapes.
Objective- To analyze scientific original articles and other complex materials critically and to present the results in an understandable way.
- To understand selected processes, cases and methods related to forest and landscape issues.
- To be able to analyze problems related to forest ecosystems and landscape from the viewpoint of various disciplines.
ContentBiological, ecological, physical and technical processes with impacts on the community, ecosystem and landscape scale. Social processes and institutions with relation to land use. Products and services of forest ecosystems and landscapes. Forest management systems. The contributions will be organized around topical clusters.
Lecture notesNo script available. The seminar papers will be made available to all particpants in electronic form.
LiteratureLiterature references will be provided by the lecturers.
Prerequisites / NoticeThe credits are given if the following requirements are met
a) oral presentation (15-20 Min + discussion)
b) seminar paper (up to approx. 5 pages, with references, no powerpoint printout).
The contributions can be presented in German or English. We expect a regular and active participation.
701-0561-00LForest Ecology Information W3 credits2VH. Bugmann
AbstractThis course conveys the basics of forest ecology with an emphasis on trees as those organisms that dominate the physiognomy and the dynamics of forest ecosystems. Based on this course, students have a good grasp of the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with a focus on central Europe.
ObjectiveStudents are able to
- summarize the fundamentals of forest ecology at the autecological, demecological and synecological level
- explain how trees dominate the physiognomy and dynamics of forest ecosystems
- describe the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with an emphasis on central Europe and Alpine region.
ContentIntroduction and overview of the forests of the world
Forest ecosystem ecology: Production ecology of forests
Autecology: light, temperature, wind, water, and nutrients
Demecology: regeneration ecology, forest growth, mortality
Synecology: Fundamentals of trophic interactions (forest-ungulate interactions), succession
Lecture notesHandouts (mixture of overhead slides and full text chapters) are sold at cost
Relevant chapters from textbooks will be indicated.
LiteratureKimmins, J.P., 2004. Forest Ecology. Third ed., Pearson-Prentice Hall
Prerequisites / NoticeThe contents of the following courses of the 2nd year of the USYS BSc are required:

Pedosphere, Hydrosphere, Fundamentals of biology and ecology.

Knowledge from the following courses of the 2nd year of the USYS BSc are an asset:

701-0312-00L Pflanzen- und Vegetationsökologie
701-0314-00L Systematische Botanik
701-0563-00LForest and Tree DiseasesW3 credits3GT. N. Sieber
AbstractDiseases and abiotic damage influence the use and maintenance of forest ecosystems, tree populations and individual trees. This course provides a basic overview of important infectious diseases and abiotic damage in woody plants, with a focus on Central Europe.
ObjectiveStudents are able to
- describe the basic processes of pathogenesis in trees.
- explain methods of disease diagnosis and control.
- name and identify ecologically or economically significant tree and forest diseases.
ContentThe concept of 'Forest Health', history of forest pathology, environment and disease, pathogenesis and defence, basics of epidemiology, Principles of tree management. Morphology, biology, diagnosis and control of selected pathogens (parasitic phanerogams, fungi, bacteria, viruses and viroids). Morphology of mycorrhiza. Damages to woody plants caused by abiotic environmental factors.
Lecture notesLecture slides are avilable in electronic form.
LiteratureButin, H., 2011: Krankheiten der Wald- und Parkbäume. Diagnose - Biologie - Bekämpfung. 3. Aufl., G. Thieme-Verlag, Stuttgart (only the previous edition is available in English: Butin, H.: 1995: Tree Diseases and Disorders. Causes, Biology and Control in Forest and Amenity Trees. Oxford University Press, 252 S.)
Hartmann, G., Nienhaus, F., Butin, H., 1995: Farbatlas Waldschäden. Diagnose von Baumkrankheiten. 2. Aufl., G. Thieme-Verlag, Stuttgart.
Hartman, G., Nienhaus, F., Butin, H., (1991): Les symptômes de dépérissement des arbres forestiers : atlas de reconnaissance en couleurs des maladies, insectes et divers [Paris] : Institut pour le Développement Forestier; 256 S.
Hartmann, G., Nienhaus, F., Butin, H., (1990): Atlante delle malattie delle piante : guida illustrata dei danni alle specie arboree. Padova : Muzzio. 266 S.
Prerequisites / NoticePrerequisites: Basics in General and Systematic Biology, good knowledge of morphology and biology of the most common forest tree species in Switzerland.
The course includes practical work (microscopy).
701-0565-00LFundamentals of Natural Hazards ManagementW3 credits3GH. R. Heinimann, B. Krummenacher, S. Löw
AbstractRisks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.
ObjectiveConcepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:
Risk analysis - What can happen?
-Characterize the processes and environmental measures that lead to a natural hazard and integrate modeling results of these processes.
- Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.
Risk assessment - What are the acceptable levels of risk?
- Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
- Explain causes for conflicts between risk perception and risk analysis.
Risk management - What steps should be taken to manage risks?
- Explain how various hazard mitigation approaches reduce risk.
- Describe hazard scenarios as a base for adequate dimensioning of control measures.
- Identify the best alternative from a set of thinkable measures based on an evaluation scheme.
- Explain the principles of risk-governance.
ContentDie Vorlesung besteht aus folgenden Blöcken:
1) Einführung ins Vorgehenskonzept (1W)
2) Risikoanalyse (6W + Exkursion) mit:
- Systemabgrenzung
- Gefahrenbeurteilung
- Expositions- und Folgenanalyse
3) Risikobewertung (2W)
4) Risikomanagement (2W + Exkursion)
5) Abschlussbesprechung (1W)
Bachelor's Thesis
Students can choose between one Bachelor thesis of 10 KP or two Bachelor theses of 5 KP each.
NumberTitleTypeECTSHoursLecturers
701-0010-02LShort Bachelor's Thesis in Social Sciences and Humanities Restricted registration - show details W5 credits11DLecturers
AbstractBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an an applied projekt.
ObjectiveBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.
ContentA bachelor's thesis in the domain "Social sciences and humanities" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation stemming from the social sciences are applied.
A short bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.
701-0010-03LShort Bachelor's Thesis in Natural Sciences and Engineering Restricted registration - show details W5 credits11DLecturers
AbstractBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an an applied projekt.
ObjectiveBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.
ContentA bachelor's thesis in "Natural sciences" deals with a topic at the interface of natural sciences, the environment and sustainability. The methods of data collection, analysis and interpretation appropriate to the natural sciences are used.
A thesis in "Engineering" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors.
A short bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.
701-0010-10LBachelor's Thesis Restricted registration - show details W10 credits21DLecturers
AbstractBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an an applied projekt.
ObjectiveBy developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.
ContentThe BA is written either under the "Social sciences and humanities" or the "Natural sciences and technology" modules. The thesis may also be inter- and transdisciplinary.
A bachelor's thesis in the domain "Social sciences and humanities" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation stemming from the social sciences are applied. A bachelor's thesis in "Natural sciences" deals with a topic at the interface of natural sciences, the environment and sustainability. The methods of data collection, analysis and interpretation appropriate to the natural sciences are used. A thesis in "Technology" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors.
A bachelor's thesis should consist of a text, with graphs and figures, of 30-40 pages.