Search result: Catalogue data in Autumn Semester 2016

Environmental Sciences Master Information
Major in Atmosphere and Climate
Prerequisites
NumberTitleTypeECTSHoursLecturers
701-0471-01LAtmospheric Chemistry Information W3 credits2GM. Ammann, D. W. Brunner
AbstractThe lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the kinetics of gas phase and heterogeneous reactions on aerosols and in clouds and explains the chemical and physical mechanisms responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.
ObjectiveThe students will understand the basics of gas phase and heterogeneous reactions and will know the most relevant atmospheric chemical processes taking place in the gas phase as well as between different phases including aerosols and clouds.
The students will also acquire a good understanding of atmospheric environmental problems including air pollution, stratospheric ozone destruction and changes in the oxidative capacity of the global atmosphere.
Content- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources
- Multiphase chemistry: heterogeneous kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Lecture notesVorlesungsunterlagen (Folien) werden laufend während des Semesters jeweils mind. 2 Tage vor der Vorlesung zur Verfügung gestellt.
Prerequisites / NoticeAttendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent is a pre-requisite.
701-0473-00LWeather Systems Information W3 credits2GM. A. Sprenger, C. Grams
AbstractThis lecture introduces the theoretical principles and the observational and analytical methods of atmospheric dynamics. Based on these principles, the following aspects are discussed: the energetics of the global circulation, the basic synoptic- and meso-scale flow phenomena, in particular the dynamics of exrtatropical cyclones, and the influence of mountains on the atmospheric flow.
ObjectiveThe students are able to
- explain up-to-date meteorological observation techniques and the basic methods of theoretical atmospheric dynamics
- to discuss the mathematical basis of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0475-00LAtmospheric Physics Information W3 credits2GU. Lohmann, A. A. Mensah
AbstractThis course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, thermodynamics, aerosol physics, radiation as well as the impact of aerosols and clouds on climate and artificial weather modification.
ObjectiveStudents are able
- to explain the mechanisms of cloud and precipitation formation using knowledge of humidity processes and thermodynamics.
- to evaluate the significance of clouds and aerosol particles for climate and artificial weather modification.
ContentMoist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, storms; importance of aerosols and clouds for climate and weather modification, clouds and precipitation
Lecture notesPowerpoint slides and script will be made available
LiteratureLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.
Prerequisites / Notice50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate with some instruments how some of the processes, that are discussed in the lectures, are measured.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.
701-0461-00LNumerical Methods in Environmental Sciences Information W3 credits2GC. Schär, O. Fuhrer
AbstractThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ObjectiveThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ContentClassification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Matlab (previous experience not necessary: a Matlab introduction is given). Example programs and graphics tools are supplied.
Lecture notesIs provided (CHF 10.- per copy).
LiteratureList of literature is provided.
Weather Systems and Atmospheric Dynamics
NumberTitleTypeECTSHoursLecturers
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 credits2V + 1UH. Wernli, S. Pfahl
AbstractDynamic, synoptic Meteorology
ObjectiveUnderstanding the dynamics of large-scale atmospheric flow
ContentDynamical Meteorology is concerned with the dynamical processes of the
earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.
Lecture notesDynamics of large-scale atmospheric flow
Literature- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Prerequisites / NoticePhysics I, II, Environmental Fluid Dynamics
651-4053-05LBoundary Layer MeteorologyW4 credits3GM. Rotach, P. Calanca
AbstractThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
ObjectiveOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Content- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Lecture notesavailable (i.e. in English)
Literature- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Prerequisites / NoticeUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
Climate Processes and Feedbacks
NumberTitleTypeECTSHoursLecturers
701-1235-00LCloud Microphysics Information Restricted registration - show details
Number of participants limited to 16.
W4 credits2V + 1UU. Lohmann, Z. A. Kanji
AbstractClouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.
ObjectiveThe learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.
Contentsee: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html
Lecture notesThis course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.
LiteraturePao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012
Prerequisites / NoticeTarget group: Master students in Atmosphere and Climate
701-1251-00LLand-Climate Dynamics Information W3 credits2GS. I. Seneviratne, E. L. Davin
AbstractThe purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) for the climate system. The course consists of 2 contact hours per week, including 2 computer exercises.
ObjectiveThe students can understand the role of land processes and associated feedbacks for the climate system.
Lecture notesPowerpoint slides will be made available
Prerequisites / NoticePrerequisites: Introductory lectures in atmospheric and climate science
Atmospheric physics -> Link
and/or
Climate systems -> Link
Atmospheric Composition and Cycles
NumberTitleTypeECTSHoursLecturers
701-1233-00LStratospheric Chemistry Information W4 credits2V + 1UT. Peter, A. Stenke
AbstractThermodynamical and kinetic basics: bi- and terrmolecular reactions, photo-dissociation. Chemical family concept. Chapman chemistry. Radical reactions of oxygen species with nitric oxide, active halogens and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere. Heterogeneous chemistry on background aerosol. Chemistry and dynamics of the ozone hole.
ObjectiveThe lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects. Especially the intercontinental air traffic and the ozone depletion caused by FCKW CFC in the mid-latitude and the polar regions as well as coupling with the greenhouse effect.
ContentShort presentation of thermodynamical and kinetic basics of chemical reactions: bi- and terthermo rmolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chloride activation.
Lecture notesDocuments are provided in the contact hours.
Literature- Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005).
- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- WMO, Scientific Assessment of Ozone Depletion: 2002, Report No.47, Geneva, 2003.
Prerequisites / NoticePrerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.

701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.
402-0572-00LAerosols I: Physical and Chemical PrinciplesW4 credits2V + 1UM. Gysel, U. Baltensperger, H. Burtscher
AbstractAerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.
ObjectiveKnowledge of basic physical and chemical properties of aerosol particles and their importance in the atmosphere and in other fields
Contentphysical and chemical properties of aerosols, aerosol dynamics (diffusion, coagulation...), optical properties (light scattering, -absorption, -extinction), aerosol production, physical and chemical characterization.
Lecture notesmateriel is distributed during the lecture
Literature- Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011.
- Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999.
- Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006
Climate History and Paleoclimatology
NumberTitleTypeECTSHoursLecturers
651-4049-00LConceptual and Quantitative Methods in Geochemistry
For this course the successful completion of the BSc-course "Geochemistry" (651-3400-00L) is a condition.
W3 credits2GO. Bachmann, M. Schönbächler, D. Vance
AbstractThis course will introduce some of the main quantitative methods available for the quantitative treatment of geochemical data, as well as the main modelling tools. Emphasis will both be on conceptual understanding of these methods as well as on their practical application, using key software packages to analyse real geochemical datasets.
ObjectiveDevelopment of a basic knowledge and understanding of the main tools available for the quantitative analysis of geochemical data.
ContentThe following approaches will be discussed in detail: major and trace element modelling of magmas, with application to igneous systems; methods and statistics for calculation of isochrons and model ages; reservoir dynamics and one-dimensional modelling of ocean chemistry; modelling speciation in aqueous (hydrothermal, fresh water sea water) fluids.

We will discuss how these methods are applied in a range of Earth Science fields, from cosmochemistry, through mantle and crustal geochemistry, volcanology and igneous petrology, to chemical oceanography.

A special emphasis will be put on dealing with geochemical problems through modeling. Where relevant, software packages will be introduced and applied to real geochemical data.
Lecture notesSlides of lectures will be available.
Prerequisites / NoticePre-requisite: Geochemistry (651-3400-00L), Isotope Geochemistry and Geochronology (651-3501-00L).
651-4057-00LClimate History and PalaeoclimatologyW3 credits2GS. Bernasconi, B. Ausin Gonzalez, A. Fernandez Bremer, A. Gilli
AbstractThe course "Climate history and paleoclimatology gives an overview on climate through geological time and it provides insight into methods and tools used in paleoclimate research.
ObjectiveThe student will have an understanding of evolution of climate and its major forcing factors -orbital, atmosphere chemistry, tectonics- through geological time. He or she will understand interaction between life and climate and he or she will be familiar with the use of most common geochemical climate "proxies", he or she will be able to evaluate quality of marine and terrestrial sedimentary paleoclimate archives. The student will be able to estimate rates of changes in climate history and to recognize feedbacks between the biosphere and climate.
ContentClimate system and earth history - climate forcing factors and feedback mechanisms of the geosphere, biosphere, and hydrosphere.

Geological time, stratigraphy, geological archives, climate archives, paleoclimate proxies

Climate through geological time: "lessons from the past"

Cretaceous greenhouse climate

The Late Paleocene Thermal Maximum (PETM)

Cenozoic Cooling

Onset and Intensification of Southern Hemisphere Glaciation

Onset and Intensification of Northern Hemisphere Glaciation

Pliocene warmth

Glacial and Interglacials

Millennial-scale climate variability during glaciations

The last deglaciation(s)

The Younger Dryas

Holocene climate - climate and societies
Hydrology and Water Cycle
NumberTitleTypeECTSHoursLecturers
701-1251-00LLand-Climate Dynamics Information W3 credits2GS. I. Seneviratne, E. L. Davin
AbstractThe purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) for the climate system. The course consists of 2 contact hours per week, including 2 computer exercises.
ObjectiveThe students can understand the role of land processes and associated feedbacks for the climate system.
Lecture notesPowerpoint slides will be made available
Prerequisites / NoticePrerequisites: Introductory lectures in atmospheric and climate science
Atmospheric physics -> Link
and/or
Climate systems -> Link
701-1253-00LAnalysis of Climate and Weather Data Information W3 credits2GC. Frei
AbstractObservation networks and numerical climate and forcasting models deliver large primary datasets. The use of this data in practice and in research requires specific techniques of statistical data analysis. This lecture introduces a range of frequently used techniques, and enables students to apply them and to properly interpret their results.
ObjectiveObservation networks and numerical climate and forcasting models deliver large primary datasets. The use of this data in practice and in research requires specific techniques of statistical data analysis. This lecture introduces a range of frequently used techniques, and enables students to apply them and to properly interpret their results.
ContentIntroduction into the theoretical background and the practical application of methods of data analysis in meteorology and climatology.

Topics: exploratory methods, hypothesis tests, analysis of climate trends, measuring the skill of climate and forecasting models, analysis of extreme events, principal component analysis and maximum covariance analysis.

The lecture also provides an introduction into R, a programming language and graphics tool frequently used for data analysis in meteorology and climatology. During hands-on computer exercises the student will become familiar with the practical application of the methods.
Lecture notesDocumentation and supporting material include:
- documented view graphs used during the lecture
- excercise sets and solutions
- R-packages with software and example datasets for exercise sessions

All material is made available via the lecture web-page.
LiteratureSuggested literature:
- Wilks D.S., 2005: Statistical Methods in the Atmospheric Science. (2nd edition). International Geophysical Series, Academic Press Inc. (London)
- Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp.
Prerequisites / NoticePrerequisites: Atmosphäre, Mathematik IV: Statistik, Anwendungsnahes Programmieren.
102-0237-00LHydrology IIW3 credits2GP. Burlando, S. Fatichi
AbstractThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
ObjectiveTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
ContentMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
Lecture notesParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteratureAdditional literature is presented during the course.
651-4053-05LBoundary Layer MeteorologyZ4 credits3GM. Rotach, P. Calanca
AbstractThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
ObjectiveOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Content- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Lecture notesavailable (i.e. in English)
Literature- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Prerequisites / NoticeUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
Colloquia and Seminars
NumberTitleTypeECTSHoursLecturers
701-1211-01LMaster's Seminar: Atmosphere and Climate 1 Information O3 credits2SH. Joos, O. Stebler, F. Tummon, M. A. Wüest
AbstractIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
ObjectiveTraining scientific writing skills.
ContentIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
Prerequisites / NoticeAttendance is mandatory.
701-1211-02LMaster's Seminar: Atmosphere and Climate 2 Information O3 credits2SH. Joos, O. Stebler, F. Tummon, M. A. Wüest
AbstractIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
ObjectiveApply scientific project management techniques to your master project.
ContentIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
Prerequisites / NoticeAttendance is mandatory.
701-1213-00LIntroduction Course to Master Studies Atmosphere and Climate Information O2 credits2GH. Joos, T. Peter
AbstractNew master students are introduced to the atmospheric and climate research field through keynotes given by the programme's professors. In several self-assessment and networking workshops they get to know each other and find their position in the science.
ObjectiveThe aims of this course are i) to welcome all students to the master program and to ETH, ii) to acquaint students with the faculty teaching in the field of atmospheric and climate science at ETH and at the University of Bern, iii) that the students get to know each other and iv) to assess needs and discuss options for training and eduction of soft-skills during the Master program and to give an overview of the study options in general
651-4095-01LColloquium Atmosphere and Climate 1 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-02LColloquium Atmosphere and Climate 2 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-03LColloquium Atmosphere and Climate 3 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
Electives
Climate Processes and Feedbacks
NumberTitleTypeECTSHoursLecturers
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 credits2V + 1UH. Wernli, S. Pfahl
AbstractDynamic, synoptic Meteorology
ObjectiveUnderstanding the dynamics of large-scale atmospheric flow
ContentDynamical Meteorology is concerned with the dynamical processes of the
earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.
Lecture notesDynamics of large-scale atmospheric flow
Literature- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Prerequisites / NoticePhysics I, II, Environmental Fluid Dynamics
651-4057-00LClimate History and PalaeoclimatologyW3 credits2GS. Bernasconi, B. Ausin Gonzalez, A. Fernandez Bremer, A. Gilli
AbstractThe course "Climate history and paleoclimatology gives an overview on climate through geological time and it provides insight into methods and tools used in paleoclimate research.
ObjectiveThe student will have an understanding of evolution of climate and its major forcing factors -orbital, atmosphere chemistry, tectonics- through geological time. He or she will understand interaction between life and climate and he or she will be familiar with the use of most common geochemical climate "proxies", he or she will be able to evaluate quality of marine and terrestrial sedimentary paleoclimate archives. The student will be able to estimate rates of changes in climate history and to recognize feedbacks between the biosphere and climate.
ContentClimate system and earth history - climate forcing factors and feedback mechanisms of the geosphere, biosphere, and hydrosphere.

Geological time, stratigraphy, geological archives, climate archives, paleoclimate proxies

Climate through geological time: "lessons from the past"

Cretaceous greenhouse climate

The Late Paleocene Thermal Maximum (PETM)

Cenozoic Cooling

Onset and Intensification of Southern Hemisphere Glaciation

Onset and Intensification of Northern Hemisphere Glaciation

Pliocene warmth

Glacial and Interglacials

Millennial-scale climate variability during glaciations

The last deglaciation(s)

The Younger Dryas

Holocene climate - climate and societies
Atmospheric Composition and Cycles
NumberTitleTypeECTSHoursLecturers
701-1235-00LCloud Microphysics Information Restricted registration - show details
Number of participants limited to 16.
W4 credits2V + 1UU. Lohmann, Z. A. Kanji
AbstractClouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.
ObjectiveThe learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.
Contentsee: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html
Lecture notesThis course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.
LiteraturePao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012
Prerequisites / NoticeTarget group: Master students in Atmosphere and Climate
102-0635-01LAir Pollution ControlW6 credits4GB. Buchmann, P. Hofer
AbstractThe lecture provides in the first part an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and their im-pact on air quality. The second part covers different strategies and techniques for emis-sion reduction. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society.
ObjectiveThe students gain general knowledge of the factors resulting in air pollution and the techniques used for air pollution control. The students can identify major air pollution sources and understand the methods for measurement, data collection and analysis. The students can evaluate possible control methods and equipment, design a control system and estimate the efficiency and cost.
The students know the different techniques of air pollution control and their scientific basements. They are able to incorporate goals concerning the air quality into their engineering work.
ContentPart 1 Emission, Immission, Transmission
Fluxes of pollutants and their environmental impact
- physical and chemical processes leading to emission of pollutants
- mass and energy of processes
- Emission measurement techniques and concepts
- quantification of emissions from individual and aggregated sources
- extent and development of the emissions (Switzerland and global)
- propagation and transport of pollutants (transmission)
- meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing the air pollution dispersion
- dispersion models (Gaussian model, box model, receptor model)
- measurement concepts for ambient air (immission level)
- extent and development of ambient air mixing ratios
- goal and instrument of air pollution control

Part 2 Air Pollution Control Technologies
-The reduction of the formation of pollutants is done by modifying the processes (pro-cess-integrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back on the application of a few basic principles of physical chemistry.
- Procedures for the removal of particles (inertial separator, filtration, electrostatic pre-cipitators, scrubbers) with their different mechanisms (field forces, impaction and diffu-sion processes) and the modelling of these mechanisms.
- Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions).
- Discussion of the technical possibilities to solve the actual air pollution problems.
Lecture notes- Brigitte Buchmann, Air pollution control, Part I
- Peter Hofer, Air pollution control, Part II
- Lecture slides and exercises
LiteratureList of literature included in scrip
Prerequisites / NoticeCollege lectures on basic physics, chemistry and mathematics
651-4053-05LBoundary Layer MeteorologyW4 credits3GM. Rotach, P. Calanca
AbstractThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
ObjectiveOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Content- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Lecture notesavailable (i.e. in English)
Literature- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Prerequisites / NoticeUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
Hydrology and Water Cycle
NumberTitleTypeECTSHoursLecturers
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 credits2G + 2UD. Or
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
ObjectiveStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
ContentWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
Lecture notesClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
http://www.step.ethz.ch/education/active-courses/vadose-zone-hydrology
LiteratureSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
102-0287-00LFluvial Systems Information W3 credits2GP. Molnar
AbstractThe course presents a view of the processes acting on and shaping the landscape and the fluvial landforms that result. The fluvial system is viewed in terms of the production and transport of sediment on hillslopes, the structure of the river network and channel morphology, fluvial processes in the river, riparian zone and floodplain, and basics of catchment and river management.
ObjectiveThe course has two fundamental aims: (1) it aims to provide environmental engineers with the physical process basis of fluvial system change, using the right language and terminology to describe landforms; and (2) it aims to provide quantitative skills in making simple and more complex predictions of change and the data and models required.
ContentThe course consists of three sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. (2) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. (3) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is hydrological and the scales of interest are field and catchment scales.
Lecture notesThere is no script.
LiteratureThe course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.
Prerequisites / NoticePrerequisites: Hydrology 1 and Hydrology 2 (or contact instructor).
651-2915-00LSeminar in HydrologyZ0 credits1SP. Burlando, J. W.  Kirchner, S. Löw, D. Or, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, University lecturers
Abstract
Objective
651-4023-00LGroundwaterW4 credits3GM. O. Saar, X.‑Z. Kong
AbstractThe course provides an introduction into quantitative analysis of groundwater flow and solute/heat transport. It is focussed on understanding, formulating, and solving groundwater flow and solute/heat transport problems.
Objectivea) Students understand the basic concepts of groundwater flow and solute/heat transport processes and boundary conditions.

b) Students are able to formulate simple, practical groundwater flow and solute/heat transport problems.

c) Students are able to understand and apply simple analytical and/or numerical solutions to fluid flow and solute/heat transport problems.
Content1. Introduction to groundwater problems. Concepts to quantify properties of aquifers.

2. Flow equation. The generalised Darcy law.

3. The water balance equation.

4. Boundary conditions. Formulation of flow problems.

5. Analytical solutions to flow problems I

6. Analytical solutions to flow problems II

7. Finitie difference solution to flow problems.

8. Numerical solution to flow problems using a code.

9. Case studies for flow problems.

10. Concepts of transport modelling. Mass balance equation for contaminants.

11. Boundary conditons. Formulation of contaminant transport problems in groundwater.

12. Analytical solutions to transport problems I.

13. Analytical solutions to transport problems II

14. Numerical solution to simple transport problems using particle tracking technique.
Lecture notesHandouts of slides.

Script in English is planned.
LiteratureBear J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979

Domenico P.A., and F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001.

Kruseman G.P., de Ridder N.A., Analysis and evaluation of pumping test data. Wageningen International Institute for Land Reclamation and Improvement, 1991.

de Marsily G., Quantitative Hydrogeology, Academic Press, 1986
Additional Elective Courses
NumberTitleTypeECTSHoursLecturers
701-1237-00LSolar Ultraviolet RadiationW1 credit1VJ. Gröbner
AbstractThe lecture will introduce the student to the thematics of solar ultraviolet radiation and its effects on the atmosphere and the biosphere. The lecture will cover the modeling and the measurement of solar ultraviolet radiation. The instruments used for solar radiation measurements will also be introduced.
ObjectiveThe lecture should enable the student to understand the specific problematics related to solar ultraviolet radiation and its interaction with the atmosphere and the biosphere.
Content1) Einführung in die Problematik – Motivation
Begriffe (UV-C, UV-B, UV-A,...)
Einfluss der UV Strahlung auf Biosphäre (Mensch, Tier, Pflanzen)
Positive und schädliche Effekte
Wirkungsspektrum, Konzept, Beispiele
UVIndex

2) Geschichtlicher Rückblick
Rayleigh - Himmelsblau
1907: Dorno, PMOD
1970: Bener, PMOD
1980: Berger, Erythemal sunburn meter
1990- : State of the Art

3) Extraterrestrische UV Strahlung
Spektrum
Energieverteilung
Variabilität (Spektral, zeitlich, relativ zu Totalstrahlung)
Satellitenmessungen, Übersicht

4) Einfluss der Atmosphäre auf die solare UV Strahlung
Atmosphärenaufbau
Beinflussende Parameter (Ozon, Wolken, ...)
Ozon, Stratosphärisches versus troposphärisches
Geschichte: Ozondepletion, Polare Ozonlöcher und Einfluss auf die UV Strahlung
Wolken
Aerosole
Rayleighstreuung
Trends (Ozon, Wolken, Aerosole)
Radiation Amplification Factor (RAF)

5-6) Strahlungstransfer
Strahlungstransfergleichung
Modellierung, DISORT
libRadtran, TUV, FASTRT
Parameter
Sensitivitätsstudien
Vergleiche mit Messungen
3-D Modellierung (MYSTIC)
Beer-Lambert Gesetz

7) Strahlungsmessungen
Instrumente zur Strahlungsmessung
Messgrössen: Irradiance (global, direct, diffus), radiance, aktinischer Fluss
Horizontale und geneigte Flächen
Generelle Problematik: Freiluftmessungen...
Qualitätssicherung

8) Solare UV Strahlungsmessungen
Problematik: Dynamik, Spektrale Variabilität, Alterung
Stabilität
Spezifische Instrumente: Filterradiometer, Spektroradiometer, Dosimetrie
Übersicht Aufbau und Verwendung

9-10) Solare UV Strahlungsmessgeräte
Spektroradiometer, Filterradiometer (Breit und schmalbandig)
Charakterisierung
Kalibriermethoden (Im Labor, im Feld)
Qualitätssicherung, Messkampagnen


11-12) Auswerteverfahren
Atmosphärische Parameter aus Strahlungsmessungen
Ozon, SO2
Albedo (Effektiv versus Lokal)
Aerosol Parameter (AOD, SSA, g, Teilchenverteilungen)
Zusammenspiel Messungen - Modellierung
Aktinische UV-Strahlungsflüsse und Bestimmung von atmosphärischen Photolysefrequenzen

13) UV Klimatologie
Trends
UV Klimatologie durch Messnetze
UV Klimatologie durch Satellitenmessungen am Beispiel von TOMS
Modellierung am Beispiel Meteosat-JRC
UV Rekonstruktionen

14) Aktuelle Forschungen
Internationale Projekte, Stand der Forschung
651-4273-00LNumerical Modelling in Fortran Information W3 credits2VP. Tackley
AbstractThis course gives an introduction to programming in FORTRAN95, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.
ObjectiveFORTRAN 95 is a modern programming language that is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.
Lecture notesSee http://jupiter.ethz.ch/~pjt/FORTRAN/FortranClass.html
651-4273-01LNumerical Modelling in Fortran (Project)
Prerequisite: 651-4273-00L Numerical Modelling in Fortran
W1 credit1UP. Tackley
AbstractThis course gives an introduction to programming in FORTRAN95, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.
ObjectiveFORTRAN 95 is a modern programming language that is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.
ContentThe project consists of writing a Fortran program to solve a problem agreed upon between the instructor and student; the topic is often related to (and helps to advance) the student's Masters or PhD research. The project is typically started towards the end of the end of the main Fortran class when the student has acquired sufficient programming skills, and is due by the end of Semesterprüfung week.
Lecture notesSee http://jupiter.ethz.ch/~pjt/FORTRAN/FortranProject.html