Search result: Catalogue data in Autumn Semester 2016

Environmental Sciences Bachelor Information
Natural Science and Technical Electives
Natural Science Modules
Biomedicine
NumberTitleTypeECTSHoursLecturers
227-0399-10LPhysiology and Anatomy for Biomedical Engineers I Information W3 credits2GH. Niemann
AbstractThis course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.
ObjectiveTo understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.
Content- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis
Lecture notesLecture notes and handouts
LiteratureSilbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014
551-0317-00LImmunology I Information W3 credits2VA. Oxenius, M. Kopf
AbstractIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
ObjectiveIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
Content- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions
Lecture notesElectronic access to the documentation will be provided. The link can be found at "Lernmaterialien"
Literature- Kuby, Immunology, 7th edition, Freemen + Co., New York, 2009
Prerequisites / NoticeImmunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung".
752-6001-00LIntroduction to Nutritional Science Information W3 credits2VM. B. Zimmermann, C. Wolfrum
AbstractThis course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.
ObjectiveTo introduce the students to the both macro- and micronutrients in relation to food and metabolism.
ContentThe course is devided into two parts. The lectutres on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism. The nutrients are described in relation to digestion, absorption and metabolism. Special aspects of homeostasis and homeorhesis are emphasized.
Lecture notesThere is no script. Powerpoint presentations will be made available.
LiteratureElmadfa I & Leitzmann C: Ernährung des Menschen
UTB Ulmer, Stuttgart, 4. überarb. Ausgabe 2004
ISBN-10: 3825280365; ISBN-13: 978-3825280369

Garrow JS and James WPT: Human Nutrition and Dietetics
Churchill Livingstone, Edinburgh, 11th rev. ed. 2005
ISBN-10: 0443056277; ISBN-13: 978-0443056277
Soil Sciences
NumberTitleTypeECTSHoursLecturers
701-0533-00LSoil ChemistryW3 credits2GR. Kretzschmar, D. I. Christl
AbstractThis course discusses chemical and biogeochemical processes in soils and their influence on the behavior and cycling of nutrients and pollutants in terrestrial systems. Approaches for quantitative modeling of the processes are introduced.
ObjectiveUnderstanding of important chemical soil properties and processes and their influence on the behavior (e.g., speciation, bioavailability, mobility) of nutrients and pollutants.
ContentImportant topics include the structure and properties of clays and oxides, the chemistry of the soil solution, gas equilibria, dissolution and precipitation of mineral phases, cation exchange, surface complexation, chemistry of soil organic matter, redox reactions in flooded soils, soil acidification and soil salinization.
Lecture notesHandouts in lectures.
Literature- Selected chapters in: Encyclopedia of Soils in the Environment, 2005.
- Chapters 2 and 5 in Scheffer/Schachtschabel - Soil Science, 1st English edition, Springer, 2016.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 credits2G + 2UD. Or
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
ObjectiveStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
ContentWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
Lecture notesClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
Link
LiteratureSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
651-3525-00LIntroduction to Engineering GeologyW3 credits3GS. Löw
AbstractThis introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.
ObjectiveUnderstanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.
ContentRock, soil and rock mass: scale effects and fundamental geotechnical properties. Soil mechanical properties and their determination. Rock mechanical properties and their determination. Fractures: geotechnical properties and their determination. Geotechnical classification of intact rock, soils and rock masses. Natural and induced stresses in rock and soil. Interaction of soil masses with surface loads, water and excavations. Slope instability mechanisms and stability analyses. Underground excavation instability mechanisms and rock deformation. Geological mass wasting processes.
Lecture notesWritten course documentation available under "Kursunterlagen".
LiteraturePRINZ, H. & R. Strauss (2006): Abriss der Ingenieurgeologie. - 671 S., 4. Aufl., Elsevier GmbH (Spektrum Verlag).

CADUTO, D.C. (1999): Geotechnical Engineering, Principles and Practices. 759 S., 1. Aufl., (Prentice Hall)

LANG, H.-J., HUDER, J. & AMMAN, P. (1996): Bodenmechanik und Grundbau. Das Verhalten von Böden und die wichtigsten grundbaulichen Konzepte. - 320 S., 5.Aufl., Berlin, Heidelberg etc. (Springer).

HOEK, E. (2007): Practical Rock Engineering - Course Notes. Link

HUDSON, J.A. & HARRISON, J.P. (1997): Engineering Rock Mechanics. An Introduction to the Principles. - 444 S. (Pergamon).
Methodes of Statistical Data Analysis
NumberTitleTypeECTSHoursLecturers
701-0105-00LApplied Statistics for Environmental SciencesW3 credits2GC. Bigler, U. Brändle, M. Kalisch, L. Meier
AbstractStatistical methods from current publications in environmental sciences are presented and applied. Students are enabled to understand the methods, clean datasets, analyse them using the software package R and present the results in a suitable form. They will be able to describe strengths and weaknesses of the methods for given fields of application.
ObjectiveStudents are able to
- use suitable statistical methods for data analysis in their subject area.
- characterize data sets using explorative methods
- check the suitability of data sets to answer a given question, prepare data sets for import to a statistics program and conduct the analysis.
- interpret statistical analyses and process them graphically for use in presentations and publications.
- describe the basics of statistical methods used in current publications.
- use the software package R for statistical analysis
ContentStatistische Methoden: Regression (lineare Modelle; generalisierte lineare Modelle; GLMs); Varianzanalyse; gemischte Modelle für gruppierte Daten (mixed-effects models); Fragebogenstatistik; Tests (t Test; Chiquadrat Test; Fisher Test); Power-Analyse

Werkzeuge: Explorative Datenanalyse für Hypothesenbildung; Auswahlverfahren für geeignete statistische Verfahren; Datenaufbereitung (Excel -> R; Datenbereinigung); graphische Darstellung von Resultaten; statistische Verfahren in Publikationen erkennen
Wir arbeiten mit dem Softwarepaket R.

Form: Im Wochenrhythmus finden alternierend Einführungen in eine neue Methode und Übungsstunden zum Thema statt.
Prerequisites / NoticeBesuch von "Mathematik IV: Statistik" oder vergleichbare Lehrveranstaltung
701-1671-00LSampling Techniques for Forest InventoriesW3 credits2VD. Mandallaz
AbstractIntroduction to design and model assisted sampling theory for finite populations as well as to the infinite population model for forest inventory. Two-phase two-stage forest inventories with simple or cluster sampling. Small area estimation. Presentation of the Swiss National Inventory.
Short introduction to Kriging techniques.
ObjectiveStudents should have a good understanding of the concepts of general sampling theory in a modern framework. They should also master the specific problems arising in forest inventory and be able, if necessary, to read more specialized books or research papers.
ContentInclusion probabilities. Horwitz-Thompson estimates. Simple random sampling. Stratified sampling. PPS sampling and multi-stage sampling. Model assisted procedures. Formalism of sampling theory in forest inventory. One-phase simple and cluster sampling schemes. Two-phase two-sampling schemes. Model-dependent and model assisted procedures. Small area estimation. Kriging techniques. The Swiss National Forest Inventory.
Lecture notesSampling techniques for forest inventories. Daniel Mandallaz, Chapman and Hall. A free electronic copy of the book is also available. A PDF file containing parts of the book will be mailed to the participants
LiteratureSampling methods for multiresource forest inventory. H.T. Schreuder, T.G. Gregoire, G.B. Wood, 1993, Wiley.
Model assisted survey sampling, C.E. Särndal, B. Swenson, J. Wretman, 2003, Springer.
Sampling methods, remote sensing and GIS multisource forest inventory
M. Köhl, S. Magnussen, M. Marchetti, 2006, Springer.
Sampling techniques for forest inventories, Daniel Mandallaz, 2007, Chapman and Hall.
T.G. Gregoire, H.T. Valentine. Sampling strategies for natural resources and the environment, Chapman and Hall.
Prerequisites / NoticeA simulation software will be used throughtout the lectures to illustrate the theoretical developments. Upon request a half day field demonstration can be organized at the WSL outside the lecture time. A repetitorium for the exam is also offered.
401-0625-01LApplied Analysis of Variance and Experimental Design Information W5 credits2V + 1UL. Meier
AbstractPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
ObjectiveParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
ContentPrinciples of experimental design. One-way analysis of variance. Multi-factor experiments and analysis of variance. Block designs. Latin square designs. Split-plot and strip-plot designs. Random effects and mixed effects models. Full factorials and fractional designs.
LiteratureG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
401-0649-00LApplied Statistical Regression Information W5 credits2V + 1UM. Dettling
AbstractThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
ObjectiveThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
ContentThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
Lecture notesA script will be available.
LiteratureFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
401-6215-00LUsing R for Data Analysis and Graphics (Part I) Information W1 credit1GA. Drewek, A. J. Papritz
AbstractThe course provides the first part an introduction to the statistical software R for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.
ObjectiveThe students will be able to use the software R for simple data analysis.
ContentThe course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: Link

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.
Lecture notesAn Introduction to R. Link
Prerequisites / NoticeThe course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
Link
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
401-6217-00LUsing R for Data Analysis and Graphics (Part II) Information W1 credit1GA. Drewek, A. J. Papritz
AbstractThe course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.
Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.
ObjectiveThe students will be able to use the software R efficiently for data analysis.
ContentThe course provides the second part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: Link
Lecture notesAn Introduction to R. Link
Prerequisites / NoticeBasic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
Link
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
Ecology and Conservation Biology
NumberTitleTypeECTSHoursLecturers
701-0305-00LVertebrate EcologyW2 credits2GW. Suter, J. Senn
AbstractThe course offers an overview on the ecology and conservation biology of birds and mammals. Important concepts from physiology, behavioural ecology, population biology, biogeography and community ecology will be linked to applications in conservation and management. A worldwide perspective will be complemented by a focus on the Central European fauna and its dynamics.
ObjectiveThe students are familiar with important topics in animal ecology, with an emphasis on birds and mammals. They are able to link theoretical concepts with visible ecological phenomena, and view them against an evolutionary backdrop. They can thus appraise applied aspects of the conservation and the use of animal populations, such as the influence of larger predators on prey populations or of herbivores on vegetation, the effects of hunting, landscape change, or of other human influences on animal populations. They understand the biogeographical characteristics of the Central European vertebrate fauna and its temporal and spatial dynamics.
ContentThe course deals with a number of main topics that include feeding and resource use, spatial behaviour and migrations, reproduction, population dynamics, competition and predation, biodiversity and distributions, and dynamics of the Central European fauna. There is an emphasis on linking theory with management issues in conservation and management of wildlife populations. During the first half of the course, examples will be drawn worldwide whereas during the second half, the course will focus more strongly on the European fauna, particularly of the Alpine region. Although the course is not designed to teach natural history of the native species, examples will cover much of the taxonomic breadth of the European fauna. Students are expected to read one paper and to present it to the audience. In addition, two optional field trips will be offered on weekends during the semester (2 days in the Swiss National Park: probably 10-11 October, one day in an important wetland for waterbirds: a Saturday in Nov./Dec., by arrangement).
For the detailed program, see the German text.
Lecture notesLecture notes will be available.
LiteratureLiterature will be listed in the lecture notes, and papers to be presented will be distributed if needed. Some books relevant to the course are (optional reading):

- Fryxell, J.M., Sinclair, A.R.E., & Caughley, G. 2014. Wildlife Ecology, Conservation, and Management. 3rd ed. Wiley Blackwell, Chichester, UK.
- Boitani, L. & Fuller, T. editors. 2000. Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press.
Prerequisites / Notice- Everybody will be expected to present a scientific paper in class, to be chosen from a list given.
701-0405-00LFresh Water: Concepts and Methods for Sustainable Management Information W3 credits2GC. Scheidegger, C. Weber, V. Weitbrecht
AbstractIn this course the important freshwater ecosystems, on a global perspective, will be presented. The foci of the lectures are basic ecological properties of those aquatic systems, their anthropogenic influences and subsequent modifications. The learning is organized along case studies, for which conflicting interests, as well as concepts and methods for sustainable management will be discussed.
Objective• basics concerning the functioning of the most important freshwater ecosystems
• basics of the sustainable management of aquatic ecosystems
• application of these principles with case studies
• critical analyses, organization of discussion groups
Content1) Einführung, Gewässerschutzgesetz
2) Biodiversität
3) Sedimenthaushalt
4) Moore - Verbreitung, Schutz und Regeneration
5) Flussrevitalisierung
6) Flussaufweitungen und Blockrampen
7) Auenschutz und Revitalisierung
8) Schutz von Fliessgewässern
9) Pumpspeicherwerke
10) Sedimentdynamik
11) Fischwanderung und Kraftwerke
12) Wasser und Gesundheit, Auswirkungen des Klimawandels
13) Schlussdiskussion
Lecture notesthemenspezifische Unterlagen werden verteilt und auf
Link
zugänglich gemacht.
LiteratureLiteraturlisten zu den Fallbeispielen werden abgegeben und auf
Link
zugänglich gemacht.
Prerequisites / NoticeBasic ecology lectures of the first four semesters. Students will organize discussion groups.
701-1663-00LExploring Resilience of Tropical Forest Landscapes
This course will run in complement to 701-1661-00 Conservation and Development in Complex Landscapes.
W4 credits9GC. Kettle, C. D. Philipson
AbstractA highly interactive learning experience with real world exposure to the challenges associated with conservation and management of tropical forest systems. Designed as a complementary course to Rain Forest Ecology 701-0324-00L. Students will gain first-hand experience of tropical forest landscapes and the challenges associated with conducting ecological research in this fascinating environment.
ObjectiveThe course will have four core learning objectives: 1) provide students with an understanding and experience of a range of tropical rainforest systems, and an appreciation of the challenges of managing these landscapes to provide multiple ecosystem services. 2) To develop their creative and critical scientific thinking and experimental design in the context of tropical field ecology. Specifically through design and implementation an Adaptive Management approach to tropical forest landscapes. 3) Students will develop their understanding of multiple stakeholders perspectives in the context of landscape management in SE Asian develop the knowledge to discuss this issues with experts in the field. Students will present their Adaptive Management Plans to senior Forest Researchers in the forest department at the FRC Sabah and engage in dialogue regarding diverse perspectives in forest and landscape management. 4) To develop their team building skills to work in culturally diverse groups and under sometimes challenging conditions to work toward a common research goal.
ContentProposed topics to be covered within the scope of the projects and based upon the expertise of the course lecturers: Tropical Ecology, Forest Ecology and Forest Botany. Tropical Forest management and restoration. Conservation biology, Animal behaviour, tropical entomology. Biodiversity and ecosystem function. Resilience and Adaptive Management.
LiteratureLiterature presented in Tropical Rainforest Ecology
Prerequisites / Notice701-0324-00 G Rain Forest Ecology
Environmental Chemistry/Ecotocxicology
NumberTitleTypeECTSHoursLecturers
701-0201-00LIntroduction to Environmental Organic ChemistryW5 credits4GM. Sander, K. McNeill
AbstractThis course presents significant organic environmental pollutants and the physical-chemical bases required to understand their environmental behavior, and deepens this knowledge through exercises. The most important analytical methods for the qualitative and quantitative determination of organic pollutants in environmental samples are discussed.
ObjectiveThe students are able to
- name and recognise the most important classes of environmentally-relevant anthropogenic chemicals.
- explain, on the basis of physical-chemical foundations, the most important processes which determine the environmental behavior of organic pollutants.
- name fundamental methods of trace analysis of organic pollutants in environmental sampling.
- propose experimental methods for determining substance-specific properties.
- identify, on the basis of chemical structure, the processes relevant for the environmental behavior of a compound.
- critically evaluate published work and data.
Content- Overview of the most important classes of environmental organic pollutants
- Molecular interactions that determine the partitioning behavior (adsorption and absorption processes) of organic compounds between different environmental compartments (gas,liquid,solid)
- Physical-chemical properties (vapor pressure, aqueous solubility, air-water partition constant, organic solvent-water partition constants, etc) and partitioning behavior of organic compounds between environmentally relevant phases (air, aerosols, soil, water, biota)
- Basics of trace analytical methods to determine organic componds (enrichment techniques, separation (chromatography), detection)
- Chemical transformation reactions of organic pollutants in aquatic and in terrestrial systems (reactions with nucleophiles incl. hydrolysis, elimination, addition)
Lecture notesScript will be distributed
LiteratureSchwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden.
Environmental Organic Chemistry. 2nd Ed. Wiley, New York, 1313 p.(2003)

Goss, K.U. and Schwarzenbach, R.P. (2003). "Rules of thumb for assessing equilibrium partitioning of organic compounds-success and pitfalls", Journal of Chemical Education, 80, 4, 450-455.
Prerequisites / NoticeDie Lehrveranstaltung richtet sich nicht nur an jene Studierenden, welche sich später chemisch vertiefen wollen, sondern ausdrücklich auch an alle jene, welche sich mit der Problematik von organischen Schadstoffen in der Umwelt vertraut machen wollen, um dieses Wissen in anderen Vertiefungen anzuwenden
701-0225-00LOrganic ChemistryW2 credits2VK. McNeill
AbstractIntroduction to Isomerism.
Reaction mechanisms in organic chemistry (substitutions, additions, eliminations condensations)
Biosynthesis of Terpenes.
ObjectiveThe students are able to differentiate between structural and stereoisomers.
The students know the basic reaction mechanisms in organic chemistry. They are able to understand and formulate simple biochemical rections.
They know the basics of the biosynthesis of terpenes.
ContentIsomerism (structural isomers, stereoisomers).
Descriptive chemistry of natural products (glycerides, peptides, saccharides).
Reaction mechanisms (substitutions, additions, eliminations, condensations).
The citric acid cycle, the gloxylate cycle.
Biosynthesis of terpenes.
LiteratureCarsten Schmuck, Basisbuch Organische Chemie, Pearson
Prerequisites / NoticeDer Stoff der Basischemie wird vorausgesetzt.
701-0297-00LApplied EcotoxicologyW2 credits2VK. Fent
AbstractBesides regarding basic concepts, this lecture focus on applied aspects of ecotoxicology. Case studies and effects of environmental chemicals on cells, organisms up to ecosystems are regarded. In a multidisciplinary approach based on toxicological concepts, pollutants are analysed, in particular hormonally active compounds and their effects on reproduction.
ObjectiveThis lecture focusses on basic concepts of ecotoxicology and their application to enviromental chemicals and environmental pollution problems. Basic concepts are regarded with respect to their consequences for the environment. Toxicological effects on organisms are analysed at different levels of organisation, from the molecular to the ecosystem level. Case studies are regarded in order to understand chemical's actions and their effects. In addition bioaccumulation and their consequences, the methods in ecotoxicology and environmental effects of various compounds will be regarded. Emphasis will be placed on hormonally active compounds and their effects to aquatic organisms. Furthermore, methods of enviornmental risk assessment of environmental pollutants will be discussed.
ContentBasic concepts of ecotoxicology. Bioavailability, uptake and metabolism. Bioacculation of environmental chemicals. Methods of ectotoxicology. Effects on moleculse, cells, organisms, populations and ecosystems. Mode of actions of environmental chemicals. Effect assessment in model ecosystems. Environmental hazard and risk assessment. Case studies on environmental pollutants. Endocrine disrupters and their ecological consequences.
Lecture notesHochschullehrbuch von K. Fent "Ökotoxikologie. Umweltchemie-Toxikologie-Ökologie" (Georg Thieme Verlag, Stuttgart, 2013, 4. Auflage).
LiteratureFent K. Ökotoxikologie. Georg Thieme Verlag, Stuttgart, 2013. (4. Auflage)
529-0051-00LAnalytical Chemistry IW3 credits3GD. Günther, M.‑O. Ebert, R. Zenobi
AbstractIntroduction into the most important spectroscopical methods and their applications to gain structural information.
ObjectiveKnowledge about the necessary theoretical background of spectroscopical methods and their practical applications
ContentApplication oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD).
Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation.
Lecture notesScript will be for the production price
Literature- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Prerequisites / NoticeExcercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended.
Environmental Physics
NumberTitleTypeECTSHoursLecturers
701-0479-00LEnvironmental Fluid Dynamics Information W3 credits2GH. Wernli, M. Croci-Maspoli
AbstractThis course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.
ObjectiveStudents are able
- to name the bases, concepts and methods of environmental fluid dynamics.
- to understand and discuss the components of the basic physical equations in fluid dynamics
- to apply basic mathematical equations to simple problems of environmental fluid dynamics
ContentBasic physial terminology and mathematical laws:
Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
Concepts and illustrative flow sytems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
Scale analysis: dimensionles variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
Waves in environmental fluid systems.
Lecture notesIn english language
LiteratureWill be presnted in class.
See also: web-site.
101-0203-01LHydraulics IW5 credits3V + 1UR. Stocker
AbstractThe course teaches the basics of hydromechanics, relevant for civil and environemental engineers.
ObjectiveFamiliarization with the basics of hydromechanics of steady state flows
ContentProperties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
Lecture notesScript and collection of previous problems
LiteratureBollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin
102-0455-01LGroundwater IW3 credits2GM. Willmann
AbstractThe course provides an introduction into quantitavie analysis of groundwater flow and transport. It is focussed on formulating flow and transport problems in groundwater, which are to be solved analytically or numerically.
Objectivea) Students understand the basic concepts of flow and contaminant transport processes and boundary conditions in groundwater.

b) Students are able to formulate simple practical flow and transport problems.

c) Students are able to understand and apply simple analytical solutions to simple flow and transport problems.

d) Students are able to use simple numerical codes to adequately solve simple flow (and transport) problems.
ContentIntrodiction, aquifers, groundwater use, sustainability, porosity.

Properties of porous media.
Exercises: Groundwater use, porosity, grain size analysis.

Flow properties, Darcy's law, filter.

Flow equations, stream function.
Exercises: Darcy's law.

Analytical solutions, confined aquifers, steady-state flow.
Exercises: Head isolines.

Use of superposition principles, transient flow, freee surface flow.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems I.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems II.
Exercises: Finite differece formulations to flow problems.

Transport processes.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems I.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems II.
Exercises: Analytical solutions to transport problems.

Path lines, groundwater protection.
Exercises: Analytical solutions to transport problems.

Groundwater remediation, groundwater management.
Exercises: Groundwater remediation.
Lecture notesFolien auf Internet unter Link

Altes Skript auf Internet Link

Weitere Texte auf Internet Link

Didaktische Software auf Internet unter Link
LiteratureJ. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979

P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

Krusemann, de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970

G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986
651-3561-00LCryosphere Information W3 credits2VM. Funk, M. Huss, K. Steffen
AbstractThis course introduces the different parts of the cryosphere - snow, glaciers, sea ice, permafrost - and their role in the climate system. A significant physical aspect is the focus in each part. Those completing the course are able to describe the dynamics of cryosphere components both formally and using examples.
ObjectiveStudents are able
- to qualitatively describe the main components of the cryosphere and their role in the climate system
- to formally describe the relevant physical processes which determine the state of cryosphere components
ContentIntroduction into the different components of the Cryosphere: Snow, glaciers, sea ice and permafrost, and their roles in the climate system. Each part is use to emphasized on one specific physical aspect: material qualities of ice, mass balance and dynamics of glaciers and energy balance of sea ice.
Lecture noteshandouts will be distributed during the teaching semester
Module Engineering and Planning
Spacial and Transport Planning
NumberTitleTypeECTSHoursLecturers
701-0951-00LGIS - Introduction into Geoinformation Science and Technology Restricted registration - show details
Number of participants limited to 60.
W5 credits2V + 3PM. A. M. Niederhuber, S. Salvini
AbstractTheoretical basics and fundamental concepts of Geographic Information Science (GIS) are imparted and subsequently further elaborated with the software ArcGIS.
At the end, the students will be able to independently solve basic realistic GIS problems.
ObjectiveStudents are able to
- elucidate the theoretical and conceptional foundations of geographic information systems (GIS)
- independently perform normal GIS work using commercial software and practical examples
ContentThe course covers the following topics:
- What is GIS? What are spatial data?
- The representation of reality by means of spatial data models: vector, raster, TIN
- The four phases of data modelling: Spatial, conceptual, logical and physical model
- Basic concepts of database management systems and spatial databases
- Possibilities of data collection
- Transition of reference frame
- Spatial Analysis I: query and manipulation of vector data
- Spatial Analysis II: operators and functions with raster data
- Digital elevation models and derived products
- Process modelling with vector and raster data
- Presentation possibilities of spatial data

One Friday is reserved for a field trip or guest speaker;
LiteraturePaul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind (2010): Geographic Information Systems and Science. John Wiley & Son, Ltd. Chichester.

Norbert Bartelme (2005): Geoinformatik - Modelle, Strukturen, Funktionen. Springer Verlag. Heidelberg.

Ralf Bill (2010): Grundlagen der Geo-Informationssysteme. 5., völlig neu bearbeitete Auflage. Wichmann Verlag. Heidelberg.

GI GEOINFORMATIG GmbH (Hrsg.) (2011): ArcGIS 10 - das deutschsprachige Handbuch für ArcView und ArcEditor. Wichmann Verlag. Heidelberg.
Prerequisites / NoticeAufgrund der Grösse des verfügbaren EDV-Schulungsraumes ist die Teilnehmerzahl auf 60 Studierende beschränkt! Für die Übungen werden die Studierenden auf verschiedene Zeitfenster aufgeteilt. Pro Zeitfenster können maximal 20 Studierende betreut werden.
101-0415-01LRailway Infrastructures (Transportation II)W3 credits2GU. A. Weidmann
AbstractFundamentals of railroad technology and interactions between track and vehicles, network development and infrastructure planning, planning of rail infrastructure, planning and design of railway stations, construction and dimensioning of tracks, approval and beginning service on complex infrastructure facilities, special issues of maintenance.
ObjectiveTeaches the basic principles of public transport network and topology design, geometrical design, dimensioning and construction as well as the maintenance of rail infrastructures. Teaches students to recognize the interactions between the infrastructure design and the production processes. Provides the background for Masters degree study.
Content(1) Fundamentals: Infrastructures of public transport systems; interaction between track and vehicles; passengers and goods as infrastructure users; management and financing of networks; railway standards and normes. (2) Infrastructure planning: Planning processes and decision levels in network development and infrastructure planning, planning of railway tracks and rail topologies; planning of the passenger parts of stations. (3) Infrastructure design: Fundamentals of the layout of a line; track geometry; switchs and crossings; design of station platforms. (4) Construction of railway infrastructures: Assembly and evolution of the railway track; elements of the railway track; dimensioning of the track; track stability. (5) Approval and beginning service on complex infrastructure facilities: Definitions and limitations; fundamentals of the legal situation; test and approval processes; processes of putting railway systems into operation. (6) Maintenance of railway infrastructures: Fundamentals of infrastructure maintenance; kinds of depreviations; supervision methods; steps of infrastructure maintenance; estimation of maintenance need; methods to minimize maintenance costs.
Lecture notesCourse notes will be provided in German. Slides are made available some days before each lecture.
LiteratureReferences to technical literature will be included in the course script. An additional list of literature will be given during the course.
Prerequisites / NoticeNo remarks.
Renewable Energy
NumberTitleTypeECTSHoursLecturers
701-0967-00LProject Development in Renewable Energies Information Restricted registration - show details
Number of participants limited to 30.
W2 credits2GR. Rechsteiner, A. Appenzeller, A. Wanner
AbstractProject development in renewable Energies
Realization of projects in the field of renewable energies, analysis of legal frame conditions and risks.
The students learn basics of renewable energy project realization from acknowledged experts active in the field.
They identify different tasks of various investor types.
They develop sample projects in practice within groups
ObjectiveYou become acquainted with the regulative, juridical and economic requirements of project development in renewable energies in the fireld of wind power, solar power and hydro power.
You learn to launch and judge projects by exercises in groups
You recognize chances and risks of renewable energy projects
ContentBusiness models for renewable energy projects
Introduction of market trends, market structure, technical trends and regulation in Switzerland and in the EU internal energy market
Necessary frame conditions for profitable projects
Project development samples and exercises in
wind power
hydro power
photovoltaics
due diligence and country assessment.
Exact Program in German below
Link
Lecture notesPPT presentation will be distributed (in German)
special frames:
Link
LiteratureLonglist: Link
REN21 Renewables GLOBAL STATUS REPORT Link
Mit einer grünen Anlage schwarze Zahlen schreiben Link
UNEP: Global Trends in Renewable Energy Investments Link
Renewable Energy World: Market Status Link
Ryan Wiser, Mark Bolinger: Wind Technologies Market Report, Lawrence Berkeley National Laboratory Link
IEA PVPS: TRENDS 2014 IN PHOTOVOLTAIC APPLICATIONS Link
Bundesamt für Energie: Perspektiven für die Grosswasserkraft in der Schweiz Link
Windenergie-Report Deutschland Link
Prerequisites / NoticeFor group exercise and presentation reasons the number of participants is limited at 35 students. For exercices students build learning and presentational groups.
529-0193-00LRenewable Energy Technologies I
The lectures Renewable Energy Technologies I (529-0193-00L) and Renewable Energy Technologies II (529-0191-01L) can be taken independently from one another.
W4 credits3GA. Wokaun, A. Steinfeld
AbstractScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
ObjectiveScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
ContentScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
Lecture notesLecture notes will be distributed electronically during the course.
Literature- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Prerequisites / NoticeFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
Individual Subjects
NumberTitleTypeECTSHoursLecturers
701-0317-00LIdentification of Woody Plants in WinterW1 credit1GA. Rudow
AbstractWoody plants are important elements of forest ecosystems and landscapes. The practical characterization of forest stands often requires the identification of woody plants in winter. The course focuses on the practical identification of native tree and shrub species to be used for the characterization of forest stands.
ObjectiveKnowledge of selected native tree and shrub species in winter. Understanding relationships of trees and forest ecosytems by in situ observation of woody plants and forest stands. Introduction into the characterization of forest stands.
ContentFour half-day excursions in the surroundings of Zurich and Baden the identification of native tree and shrub species is treated. The course aims at broadening and application of species knowledge towards the identification of woody plants during the leafless phase and their identification from distance (selected native species). Besides that the relationships of trees and forest ecosytems as well as forestry aspects are elucidated. In the context of an individual work the students will practically train and deepen their acquired knowledge.
Lecture notesRudow, A., 2013: Dendrologie Grundlagen - Bestimmungshilfe (in German, will be provided for registered students on an online-platform)
LiteratureRudow 2011 (betaversion): EBot Dendrologie.E-learning-Tool for the support of dendrology courses at ETHZ, integrated into online-application eBot.
An overview of the most adequate literature will be given at the introdcution (sept 28).
Prerequisites / NoticeHalf-day excursions into forests. Weatherproof clothes are presupposed.
The course is based on the Introduction into Dendrology (spring sem, 2nd sem).
701-0901-00LETH Week 2016: Challenging Water Restricted registration - show details
All ETH Bachelor`s, Master`s students and exchange students can take part in the ETH week 2016.
Tuition, food and accommodation are free of charge.
W1 creditR. Knutti, C. Bratrich, S. Brusoni, P. Burlando, A. Cabello Llamas, G. Folkers, D. Molnar, A. Vaterlaus, B. Wehrli
AbstractThe ETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2016, ETH Week will focus on the topic of water.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives. The focus in 2016 is on challenging water systems.

- Analytical skills The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyze the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper,...) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organizations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of water. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyze both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about how the food system works, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.
Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.

A panel of experts will judge your presentations at the end of the week. The winning teams will receive attractive prizes.
Prerequisites / NoticeNo prerequisites. Program is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process that will open in March 2016 at Link. Participation is subject to successful selection through this competitive process.
051-0159-00LUrban Design I Information W1 credit2VH. Klumpner, A. Brillembourg
AbstractThe lecture series will introduce tools for reading contemporary urban conditions, urban models and operational modes. Urban development will be deciphered, presented as operational tools, extracted from cities where they have been tested and became exemplary samples, most relevant for providing the understanding of how urban landscape has taken shape as well as inspiration for future practice.
ObjectiveHow can a glossary of tools be used as a basis for reading cities and recognizing in them current trends and urban phenomena? The lectures series will produce a glossary of operational urban tools with collected urban knowledge that provides students with an 'improvised' manual to navigate theories. Urban Stories is a lecture series that aims to amplify your repertoire of urban instruments and empowers you to read cities and to critically reflect on the urban environment. The course will approach a series of case studies, employing an analytical, research-based model for crosscutting scale, political, economical and social components. Through this lens, and with our toolbox, we aim to tell the fundamental story of our cities from today and provide information, analysis and knowledge to help students prepare for justifiable own contributions and interventions in the future. Also the aspect of knowledge transfer will be considered in order to sensibilize the students to understand how to operate in an international context.
ContentHow did cities develop into the cities we live in now? Which urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs and social organization have been used to operate in urban settlements in specific moments of change? Which cities are exemplary in illustrating how these instruments have been implemented and how they have shaped urban environments? Can these instruments be transcripted into urban operational tools that we recognize within existing tested cases in contemporary cities across the globe? Urban form cannot be reduced to the physical space. Cities are the result of social construction, under the influence of technologies, ecology, culture, the impact of experts and accidents. Urban unconcluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and planers and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of an urban evolution. The facts stored in urban environments include contributions from its entire lifecycle. That is true for the physical environment, but also for non-physical aspects, the imaginary city that exists along with its potentials and problems and with the conflicts that have evolved over time. Knowledge and understanding along with a critical observation of the actions and policies are necessary to understand the diversity and instability present in the contemporary city and to understand how urban form evolved to its current state. This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. Urban knowledge will be translated into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for providing the understanding of how urban landscape has taken shape. Case studies will be identified to compile documents and an archive, that we use as templates to read the city and to critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life as well as to provide instruments for valuable contributions and interventions.
Lecture notesThe skript can be downloaded from the student-server.
LiteratureThe learning material can be downloaded from the student-server: afp://brillembourg-klumpner-server.ethz.ch

Please check also the Chair website: Link
Prerequisites / NoticeEXERCISE
After each lecture, students are asked to produce an exercise based on the presented tools. The format of the exercise is an A3 or an A4, according to the given template. Each student has one week to prepare each exercise, and it should be delivered, in form of a physical copy, in the next lecture. (Language: preferably English, German).
The Exercise tasks are a valuable preparation for the Exam (Exam only relevant for the "Jahreskurs" students) therefore it is highly recommendable to finalize all weekly Exercise tasks, as an individually conducted piece of work.


"Semesterkurs" (semester course) students from other departments or students taking this lecture as GESS / Studium Generale course as well as exchange students must submit a research paper, which will be subject to the performance assessment: "Bestanden" (pass) or "Nicht bestanden" (failed) as the performance assessment type, for "Urban Design I: Urban Stories" taken as a semester course, is categorized as "unbenotete Semesterleistung" (ungraded semester performance).
751-3401-00LPlant Nutrition IW2 credits2VE. Frossard
AbstractThe aim of these lecture is to present the processes controlling the uptake and transport of nutrients and water by the plant, the assimilation of nutrients in the plant, the effect of nutrients on crop yield and quality, the role of the soil as a source of nutrients for crops, and the basic principles of fertilization of different crop types using mineral and organic fertilizers.
ObjectiveAt the end of the lecture, students know how mineral nutrients and water are taken up through roots and circulate in the plants and what their roles in plants are. They understand the importance of nutrients for yield formation and for crop product quality. They are able to propose fertilization plans adapted for field crops growing under Swiss conditions.
ContentA general introduction explains the needs of appropriately managing nutrients in plant production. Afterwards, we will study the physiology of plant nutrition (nutrient uptake by roots; water and nutrient transports in the plant; physiological roles of nutrients in the plant). Then the role of nutrients for yield formation and their effects on crop quality is dealt with. Finally, the bases of crop fertilization are taught (availability of nutrient in soil; N, P and K fertilization; different types of fertilizers).
Lecture notesWe will distribute a script for the part dealing with the physiology of plant nutrition. For the part on fertilization we will use the booklet of ACW and ART presenting the recommendations for the fertilization of crops and grassland in Switzerland (GRUDAF/DBF).
LiteraturePhysiology of plant nutrition:
Epstein and Bloom 2004. Mineral nutrition of plants: Principles and perspectives
Taiz and Zeiger 2002. Plant physiology.
Marschner 1995. Mineral Nutrition of higher plants.
Schilling 2000. Pflanzenernährung und Düngung.
Schubert S 2006 Pflanzenernährung Grundwissen Bachelor Ulmer UTB
Pictures of nutrients deficiency symptoms:
Bergmann, W. 1988. Ernährungsstörungen bei Kulturpflanzen.
Link
Water balance:
Kramer, P.J., Boyer, J.S. 1995. Water relations of plants and soils.
Lösch, R. 2001. Wasserhaushalt der Pflanzen.
Ehlers, W. 1996. Wasser in Boden und Pflanze.
751-4801-00LSystem-Oriented Management of Herbivore Insects IW2 credits2GD. Mazzi
AbstractThe focus is on the potential to assess strategies and tactics of pest management, taking into account the demands from the economy, the environment and the society. Significant agricultural approaches will be explained using practical examples, including prevention using natural resources, surveillance and forecasting, resistance management, as well as product registration, incl. ecotoxicology.
ObjectiveThe students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will have the ability to assess options for action in view of requirements from the economy, the ecology and the society. Further, they will learn to perform searches on relevant issues in pest management, and to critically evaluate case studies.
» Courses of the Specialisation in an Environmental System