Search result: Catalogue data in Autumn Semester 2017

Electrical Engineering and Information Technology Bachelor Information
1. Semester
First Year Examinations
First Year Examination Block A
NumberTitleTypeECTSHoursLecturers
227-0003-00LDigital CircuitsO4 credits2V + 2UG. Tröster
AbstractDigital and analogue signals and their representation. Combinational and sequential circuits and systems, boolean algebra, K-maps. Finite state machines. Memory and computing building blocks in CMOS technology, programmable logic circuits.
ObjectiveProvide basic knowledge and methods to understand and to design digital circuits and systems.
ContentDigital and analogue signals and their representation. Boolean Algebra, circuit analysis and synthesis, the MOS transistor, CMOS logic, static and dynamic behaviour, tristate logic, Karnough-Maps, hazards, binary nuber systems, coding. Combinational and sequential circuits and systems (boolean algebra, K-maps, etc.). Memory building blocks and memory structures, programmable logic circuits. Finite state machines, architetcure of microprocessors.
Lecture notesLecture notes for all lessons, assignments and solutions.
Link
LiteratureLiterature will be announced during the lessons.
Prerequisites / NoticeNo special prerequisites
401-0151-00LLinear Algebra Information O4 credits3G + 2UV. C. Gradinaru
AbstractContents: Linear systems - the Gaussian algorithm, matrices - LU decomposition, determinants, vector spaces, least squares - QR decomposition, linear maps, eigenvalue problem, normal forms - singular value decomposition; numerical aspects; introduction to MATLAB.
ObjectiveEinführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte
Lecture notesK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
LiteratureK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
227-0001-00LNetworks and Circuits I Information O4 credits2V + 2UJ. W. Kolar
AbstractElectrostatic field; Stationary electric current flow; Basic electric circuits; current conduction mechanisms; time variant electromagnetic field; alternating voltages and currents.
ObjectiveVoltage, current and properties of basic elements of electric circuits, i.e. capacitors, resistors and inductors should be understood in relation to electric and magnetic fields. Furthermore, the students should be able to mathematically describe, analyze and finally design technical realizations of circuit elements. Students should also be familiar with the calculation of voltage and current distributions of DC circuits. The effect and the mathematical formulation of magnetic induction should be known for technical applications. The fundamentals of complex AC current calculus for description of periodic sinusoidal quantities should be known and students should be able to apply the concept to basic AC circuits.
ContentElectrostatic field; Stationary electric current flow; Basic electric circuits; current conduction mechanisms; time variant electromagnetic field; alternating voltages and currents.
Lecture notesGrundlagen der Elektrotechnik, Bd. 1 und 2, M. Albach, and Textbook
LiteratureGrundlagen der Elekrotechnik

Band 1 – Erfahrungssätze, Bauelemente, Gleichstromschaltungen
M. Albach
Pearson Studium
Edition 2008 (ISBN 9783827373410) or
Edition 2011 (ISBN 9783868940794)

Band 2 - Periodische und nicht periodische Signalformen
M. Albach
Pearson Studium
Edition 2005 (ISBN 9783827371089) or
Edition 2011 (ISBN 9783868940800)
151-0223-10LEngineering Mechanics Information O4 credits2V + 2U + 1KS. P. Kaufmann
AbstractIntroduction to engineering mechanics: kinematics, statics and dynamics of rigid bodies and systems of rigid bodies.
ObjectiveStudents can solve problems of elementary engineering mechanics.
ContentBasic notions: position and velocitiy of particles, rigid bodies, planar motion, kinematics of rigid body, force, couple, power.
Statics: static equivalence, force-couple system, center of forces, centroid, principle of virtual power, equilibrium, constraints, statics, friction.
Dynamics: acceleration, inertial forces, d'Alembert's Principle, Newton's Second Law, principles of linear and angular momentum, equations of planar motion of rigid bodies.
Lecture notesyes
LiteratureM. B. Sayir, J. Dual, S. Kaufmann, E. Mazza: Ingenieurmechanik 1, Grundlagen und Statik. Springer Vieweg, Wiesbaden, 2015.
M. B. Sayir, S. Kaufmann: Ingenieurmechanik 3, Dynamik. Springer Vieweg, Wiesbaden, 2014.
Prerequisites / NoticeThree optional midterm exams are offered. If improving, the mean of the two better midterm exams counts with weight 30% to the final grade.
First Year Examination Block B
NumberTitleTypeECTSHoursLecturers
401-0231-10LAnalysis IO8 credits4V + 3UT. H. Willwacher
AbstractCalculus of one variable: Real and complex numbers, vectors, limits, sequences, series, power series, continuous maps, differentiation and integration in one variable, introduction to ordinary differential equations
ObjectiveEinfuehrung in die Grundlagen der Analysis
Lecture notesKonrad Koenigsberger, Analysis I.
Christian Blatter: Ingenieur-Analysis (Kapitel 1-3)
252-0835-00LComputer Science I Information O4 credits2V + 2UF. Friedrich Wicker
AbstractThe course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Teached language is C++. No programming experience is required.
ObjectivePrimary educational objective is to learn programming with C++. When successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the secenes" when a program is translated and executed.
Secondary goals are an algorithmic computational thinking, undestanding the possibilities and limits of programming and to impart the way of thinking of a computer scientist.
ContentThe course covers fundamental data types, expressions and statements, (Limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientiation deals with classes, inheritance and polymorphy, simple dynamic data types are introduced as examples.
In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.
Lecture notesA script written in English will be provided during the semeter. The script and slides will be made available for download on the course web page.
LiteratureBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
Prerequisites / NoticeFrom AS 2013, an admission to the exam does not any more formally require an attending of the recitation sessions. Handing in solutions to the weekly exercise sheets is thus not mandatory, but we strongly recommend it.

Examination is a one hour-long written test.
First Year Compulsory Laboratory Courses
NumberTitleTypeECTSHoursLecturers
227-0005-10LDigital Circuits Laboratory Restricted registration - show details O1 credit1PG. Tröster
AbstractDigital and analogue signals and their representation. Combinational and sequential circuits and systems, boolean algebra, K-maps. Finite state machines. Memory and computing building blocks in CMOS technology, programmable logic circuits.
ObjectiveDeepen and extend the knowledge from lecture and exercises, usage of design software Quartus II as well as an oscilloscope
ContentThe contents of the digital circuits laboratory will deepen and extend the knowledge of the correspondent lecture and exercises. With the help of the logic device design software Quartus II different circuits will be designed and then tested on an evaluation board. You will build up the control for a 7-digit display as well as an adder and you will create different types of latches and flip-flops. At the end of the laboratory a small synthesizer will be programmed that is able to play self-created melodies. At the same time the usage of a modern oscilloscope will be taught in order to analyse the programmed circuits through the digital and analogue inputs.
Lecture notesLecture notes for all experiments.
Link
Prerequisites / NoticeNo special prerequisites
3. Semester
Examination Blocks
Examination Block 1
NumberTitleTypeECTSHoursLecturers
401-0353-00LAnalysis III Information O4 credits2V + 1UA. Figalli
AbstractIn this lecture we treat problems in applied analysis. The focus lies on the simplest cases of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation and the wave equation.
Objective
Content1.) Klassifizierung von PDE's
- linear, quasilinear, nicht-linear
- elliptisch, parabolisch, hyperbolisch

2.) Quasilineare PDE
- Methode der Charakteristiken (Beispiele)

3.) Elliptische PDE
- Bsp: Laplace-Gleichung
- Harmonische Funktionen, Maximumsprinzip, Mittelwerts-Formel.
- Methode der Variablenseparation.

4.) Parabolische PDE
- Bsp: Wärmeleitungsgleichung
- Bsp: Inverse Wärmeleitungsgleichung
- Methode der Variablenseparation

5.) Hyperbolische PDE
- Bsp: Wellengleichung
- Formel von d'Alembert in (1+1)-Dimensionen
- Methode der Variablenseparation

6.) Green'sche Funktionen
- Rechnen mit der Dirac-Deltafunktion
- Idee der Green'schen Funktionen (Beispiele)

7.) Ausblick auf numerische Methoden
- 5-Punkt-Diskretisierung des Laplace-Operators (Beispiele)
LiteratureY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)

Zusätzliche Literatur:
Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, Kap. 8, 11, 16 (sehr gutes Buch, als Referenz zu benutzen)
Norbert Hungerbühler, "Einführung in die partiellen Differentialgleichungen", vdf Hochschulverlag AG an der ETH Zürich.
G. Felder:Partielle Differenzialgleichungen.
Link
Prerequisites / NoticePrerequisites: Analysis I and II, Fourier series (Komplexe Analysis)
402-0053-00LPhysics IIO8 credits4V + 2UJ. Faist
AbstractThe goal of the Physics II class is an introduction to quantum mechanics
ObjectiveTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
ContentContent:
- The Photon of Planck and Einstein
- Wave mechanics: the old quantum theory
- Postulates and formalism of Quantum Mechanics
- First application: the quantum well and the harmonic Oscillator
- QM in three dimension: the Hydrogen atom
- Identical particles: Pauli's principle
- Crystalline Systems and band structures
- Quantum statistics
- Approximation Methods
- Applications in Engineering
- Entanglement and superposition
Lecture notesLecture notes (Some in as a Latex script and some hand-written) will be distributed via the Moodle interface
LiteratureDavid J. Griffiths, "Introduction to quantum mechanics" Second edition, Cambridge University Press.

Link
Prerequisites / NoticePrerequisites: Physics I.
227-0045-00LSignals and Systems IO4 credits2V + 2UH. Bölcskei
AbstractSignal theory and systems theory (continuous-time and discrete-time): Signal analysis in the time and frequency domains, signal spaces, Hilbert spaces, generalized functions, linear time-invariant systems, sampling theorems, discrete-time signals and systems, digital filter structures, Discrete Fourier Transform (DFT), finite-dimensional signals and systems, Fast Fourier Transform (FFT).
ObjectiveIntroduction to mathematical signal processing and system theory.
ContentSignal theory and systems theory (continuous-time and discrete-time): Signal analysis in the time and frequency domains, signal spaces, Hilbert spaces, generalized functions, linear time-invariant systems, sampling theorems, discrete-time signals and systems, digital filter structures, Discrete Fourier Transform (DFT), finite-dimensional signals and systems, Fast Fourier Transform (FFT).
Lecture notesLecture notes, problem set with solutions.
227-0013-00LComputer Engineering I Information Restricted registration - show details O4 credits2V + 1U + 1PL. Thiele
AbstractThe course provides knowledge about structures and models of digital systems (abstract data types finite state automata, dependence and process graphs), assembler and compiler, control path and data path, pipelining, speculation techniques, superscalar computer architectures, memory hierarchy and virtual memory, operating system, processes and threads.
ObjectiveLogical and physical structure of computer systems. Introduction to principles in hardware design, datapath and control path, assembler programming, modern architectures (pipelining, speculation techniques, superscalar architectures), memory hierarchy and virtual memnory, software concepts.
ContentStructures and models of digital systems (abstract data types finite state automata, dependence and process graphs), abstraction and hierarchy in computer systems, assembler and compiler, control path and data path, pipelining, speculation techniques, superscalar computer architectures, memory hierarchy and virtual memory, operating system, processes and threads.

Theoretical and practical exercises using a simulation-based infrastructure.
Lecture notesMaterial for practical training, copies of transparencies.
LiteratureD.A. Patterson, J.L. Hennessy: Computer Organization and Design: The Hardware/ Software Interface. Morgan Kaufmann Publishers, Inc., San Francisco, ISBN-13: 978-0124077263, 2014.
Prerequisites / NoticePrerequisites: Programming skills in high level language, knowledge of digital design.
Examination Block 2
NumberTitleTypeECTSHoursLecturers
227-0077-10LElectronic Circuits Information O4 credits2V + 1UQ. Huang
AbstractIntroductory lecture on electronic circuits. Transistor fundamentals, analysis and design of transistor based electronic circuits such as amplifiers and filters; A/D- and D/A-converters, function generators, oscillators, PLLs.
ObjectiveModern, transistor-based electronics has transformed our lives and plays a crucial role in our economy since the 2nd half of last century. The main objective of this course in electronic circuits is to introduce the concept of active device, including operational amplifiers, and their use in amplification, signal conditioning, switching and filtering to students. In addition to gaining experience with typical electronic circuits that are found in common applications, including their own Gruppenarbeit and Fachpraktikum projects, students sharpen their understanding of linear circuits based on nonlinear devices, imperfections of electronic circuits and the concept of design (as opposed to analysis). The course is a prerequisite for higher semester subjects such as analog integrated circuits, RF circuits for wireless communications, A/D and D/A converters and optoelectronics.
ContentReview of transistor devices (bipolar and MOSFET), large signal and small signal characteristics, biasing and operating points. Single transistor amplifiers, simple feedback for bias stabilization. Frequency response of simple amplifiers. Broadbanding techniques. Differential amplifier, variable gain amplifiers. Instrumentation amplifiers: common mode rejection, noise, distortion, chopper stabilization. Transimpedance amplifiers. Active filters: simple and biquadratic active RC-filters, higher order filters, biquad and ladder realizations. Switched-capacitor filters. Nonlinear active circuits. Signal generation: oscillators, function generators.
Literature- Holger Göbel. Einführung in die Halbleiter-Schaltungstechnik.
Springer, Berlin, 2nd edition, 2006.
- A. Sedra and K. Smith, Microelectronic Circuits, 7th Edition, Oxford University Press
401-0053-00LDiscrete Mathematics Information O4 credits2V + 1UR. Zenklusen
AbstractIntroduction to foundations of discrete mathematics: combinatorics (elementary counting), graph theory, algebra, and applications thereof.
ObjectiveThe main goal is to get a good understanding of some of the most prominent areas within discrete mathematics.
Examination Block 3
The courses of the examination block 3 will be offered in spring semester.
Second Year Compulsory Laboratory Courses
NumberTitleTypeECTSHoursLecturers
227-0079-10LElectronic Circuits Laboratory Information Restricted registration - show details O1 credit1PQ. Huang
AbstractLab with principal electronic circuit experiments on the transistor and operational amplifier basis.
ObjectiveModern, transistor-based electronics has transformed our lives and plays a crucial role in our economy since the 2nd half of last century. The main objective of this course in electronic circuits is to introduce the concept of active device, including operational amplifiers, and their use in amplification, signal conditioning, switching and filtering to students. In addition to gaining experience with typical electronic circuits that are found in common applications, including their own Gruppenarbeit and Fachpraktikum projects, students sharpen their understanding of linear circuits based on nonlinear devices, imperfections of electronic circuits and the concept of design (as opposed to analysis). The course is a prerequisite for higher semester subjects such as analog integrated circuits, RF circuits for wireless communications, A/D and D/A converters and optoelectronics.
ContentGet to know and understand basic transistor and op amp based electronic circuits. Build and operate simple electronic circuits including supply decoupling. Carry out and understand different, principal measurement methods such as DC- and AC-analysis, time and frequency domain measurements, impedance and transfer function measurements. In the lab we will have a closer look at the following topics and circuits: characterization of a real capacitor including non-idealties; common-emitter transistor amplifier with emitter degeneration; characterization of a real operational amplifier with non-idealties; band pass filter with op amp, resistors and capacitors; data converters; oscillator and function generator based on an op amp.
Laboratory Courses, Projects, Seminars
A minimum of 18 cp must be obtained from the category "Laboratory Courses, Projects, Seminars".
General Laboratory
NumberTitleTypeECTSHoursLecturers
227-0095-10LGeneral Laboratory I Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Enrolment via Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses)
W2 credits2PProfessors
AbstractThe Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the aquired knowledge. Furthermore students have the possibilty to gain specific knowledge in certain software packages as MATLAB.
ObjectiveImplementing the knowledge acquired during the basic studies.
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0096-10LGeneral Laboratory II Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Enrolment via Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses)
W4 credits4PProfessors
AbstractThe Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the aquired knowledge. Furthermore students have the possibilty to gain specific knowledge in certain software packages as MATLAB.
ObjectiveImplementing the knowledge acquired during the basic studies.
Prerequisites / NoticeEnrollment through the Online-Tool, Link
Projects & Seminars
A maximum of 13 cp can be obtained from Projects & Seminars. Each course can be registered for only once.
NumberTitleTypeECTSHoursLecturers
227-0085-10LProjects & Seminars for 1 CP (1) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W1 credit1PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0085-20LProjects & Seminars for 1 CP (2) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W1 credit1PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0085-30LProjects & Seminars for 2 CP (1) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W2 credits2PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0085-40LProjects & Seminars for 2 CP (2) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W2 credits2PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0085-50LProjects & Seminars for 3 CP Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0085-60LProjects & Seminars for 4 CP Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W4 credits4PProfessors
AbstractProcurement of knowledge about the build up of systems as well as enhancement of general knowledge.
Procurement of skills in the area of Electrical Engineering and Information Technology that are useful for the remaining terms as well during ones work life.
Objectivesee above
Prerequisites / NoticeEnrollment through the Online-Tool, Link
Group Projects
NumberTitleTypeECTSHoursLecturers
227-0091-10LGroup Project I Restricted registration - show details W6 credits5ALecturers
AbstractStudents must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.
Objectivesee above
227-0092-10LGroup Project II Restricted registration - show details W6 credits5ALecturers
AbstractStudents must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.
Objectivesee above
Internship in Industry
Please note the conditions for Internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see Link (German only).
NumberTitleTypeECTSHoursLecturers
227-0093-10LInternship in Industry Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.
W6 creditsexternal organisers
AbstractThe main objective of the 12-week internship is to expose bachelor's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.
Objectivesee above
Prerequisites / NoticePlease note the conditions for Internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see Link (German only).
Additional Subjects
NumberTitleTypeECTSHoursLecturers
227-0651-00LApplied Circuit and PCB-Design Information Restricted registration - show details W2 credits4GA. Blanco Fontao
AbstractParticipants learn how to design a predefined electronic circuit and how to lay out the pertaining circuit board. CAE and CAD activities for design and simulation are carried out with the aid of Altium Designer.
ObjectiveThe goal is to become acquainted with all those practical aspects of electronic circuit and PCB design by working through a modest but complete application example. This involves analysis of specifications, the evaluation of electronic parts, efficient testing and failure search, electromagnetic compatibility (EMC), the usage of industrial CAE/CAD tools for circuit simulation and PCB layout, generating production data for the board manufacturer, board mounting, testing and start up.
ContentContent:

- Understanding circuit, system, and product specifications
- Guidelines, standards, and regulations
- Design and development flow

- Introduction to the Altium Designer environment

- Selection of components and circuit sizing
- Preparing schematic symbols and footprints for CAE/CAD
- Working with database component libraries

- Logically structured schematic circuit diagrams
- Capturing a predefined circuit
- Definition of net classes and layout rules in schematics
- Design for EMC
- Checking schematic data
- Simulation of mixed signal circuits using Spice
- Hints for improved testing and debugging

- Component placement on the PCB
- Turning circuit diagrams into a workable layout
- Manual and automatic interconnect routing
- Definition of layout rules
- RF- and EMC-guidelines for circuit wire routing
- Differential pairs and impedance-controlled routing

- Introduction to PCB manufacturing
- Preparation of production and assembly data
- PCB and device assembly (component mounting)
- Final circuit testing and start up
LiteratureAll necessary documents will be available as electronic documents (PDF).
Prerequisites / Notice- The course is recommended to all students who plan to design an electronic circuit or a PCB in an upcoming term project or as part of their master thesis. Attending this course during the term before will ensure they are optimally prepared and will allow them to fully focus on their project.

- The number of participants is limited.

- For their own students and staff, the Department of Information Technology and Electrical Engineering provides electronic components and consumables free of charge. All other participants have to bear a 200 CHF fee for those items.
Third Year Core Courses
Can be freely combined, a list of recommendations is available under Link
NumberTitleTypeECTSHoursLecturers
227-0101-00LDiscrete-Time and Statistical Signal ProcessingW6 credits4GH.‑A. Loeliger
AbstractThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
ObjectiveThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Content1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
Lecture notesLecture Notes
227-0102-00LDiscrete Event Systems Information W6 credits4GL. Thiele, L. Vanbever, R. Wattenhofer
AbstractIntroduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
ObjectiveOver the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.
Content1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus
Lecture notesAvailable
Literature[bertsekas] Data Networks
Dimitri Bersekas, Robert Gallager
Prentice Hall, 1991, ISBN: 0132009161

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.
Kluwer Academic Publishers, 1999, ISBN 0-7923-8609-4

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger

[hochbaum] Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin)
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.
PWS Publishing Company, 1996, ISBN 053494728X
227-0103-00LControl Systems Information W6 credits2V + 2UF. Dörfler
AbstractStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ObjectiveStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ContentProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteratureK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Prerequisites / NoticePrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0110-00LAdvanced Electromagnetic WavesW6 credits2V + 2UP. Leuchtmann
AbstractThis course provides advanced knowledge of electromagnetic waves in linear materials including negative index and other non classical materials.
ObjectiveThe behavior of electromagnetic waves both in free space and in selected environments including stratified media, material interfaces and waveguides is understood. Material models in the time harmonic regime including negative index and plasmonic materials are clarified.
ContentDescription of generic time harmonic electromagnetic fields; the role of the material in Maxwell's equations; energy transport and power loss mechanism; EM-waves in homogeneous space: ordinary and evanescent plane waves, cylindrical and spherical waves, "complex origin"-waves and beams; EM-waves in stratified media; generic guiding mechanism for EM waves; classical wave guides, dielectric wave guides.
Lecture notesA script including animated wave representations as well as the view graphs are provided in electronic form.
LiteratureSee literature list in the script.
Prerequisites / NoticeThe lecture is taught in German while both the script and the view graphs are in English.
227-0112-00LHigh-Speed Signal Propagation Information W6 credits2V + 2UC. Bolognesi
AbstractUnderstanding of high-speed signal propagation in microwave cables and integrated circuits and printed circuit boards.

As clock frequencies rise in the GHz domain, there is a need grasp signal propagation to maintain good signal integrity in the face of symbol interference and cross-talk.

The course is of high value to all interested in high-speed analog (RF, microwave) or digital systems.
ObjectiveUnderstanding of high-speed signal propagation in interconnects, microwave cables and integrated transmission lines such as microwave integrated circuits and/or printed circuit boards.

As system clock frequencies continuously rise in the GHz domain, a need urgently develops to understand high-speed signal propagation in order to maintain good signal integrity in the face of phenomena such as inter-symbol interference (ISI) and cross-talk.

Concepts such as Scattering parameters (or S-parameters) are key to the characterization of networks over wide bandwidths. At high frequencies, all structures effectively become "transmission lines." Unless care is taken, it is highly probable that one ends-up with a bad transmission line that causes the designed system to malfunction.

Filters will also be considered because it turns out that some of the problems associated by lossy transmission channels (lines, cables, etc) can be corrected by adequate filtering in a process called "equalization."
ContentTransmission line equations of the lossless and lossy TEM-transmission line. Introduction of current and voltage waves. Representation of reflections in the time and frequency domain. Application of the Smith chart. Behavior of low-loss transmission lines. Attenuation and impulse distortion due to skin effect. Transmission line equivalent circuits. Group delay and signal dispersion. Coupled transmission lines. Scattering parameters.
Butterworth-, Chebychev- and Bessel filter approximations: filter synthesis from low-pass filter prototypes.
Lecture notesScript: Leitungen und Filter (In German).
Prerequisites / NoticeExercises will be held in German, but assistants also speak English.
227-0113-00LPower Electronics Information W6 credits4GJ. W. Kolar
AbstractFields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the control oriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility.
ObjectiveFields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the controloriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility.
ContentBasic structure of power electronic systems, applications. DC/DC converters, high frequency isolation, control oriented modeling / state-space averaging and PWM switch model. Power semiconductors, non-idealities, cooling. Magnetic components, skin and proximity effect, design. Electromagnetic compatibility. Single-phase diode bridge with capacitive smoothing, effects on the mains, power factor correction / PWM rectifier. Pulse-width modulated single-phase and three-phase full bridge converter with impressed DC voltage, modulation schemes, space vector calculus. Line-commutated single-phase full bridge with impressed output current, commutation, phase-control, inverter operation, commutation failure. Line-commutated three-phase full bridge converter, impressed output voltage, impressed output current / phase-control. Parallel connection of three-phase line-commutated thyristor circuits, inter-phase transformer. Anti-parallel connection of three-phase line-commutated thyristor bridge circuits, four-quadrant DC motor drive. Load-resonant converters, state plane analysis.
Lecture notesLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Prerequisites / NoticePrerequisites: Basic knowledge of electric circuit analysis and signal theory.
227-0116-00LVLSI I: From Architectures to VLSI Circuits and FPGAs Information W6 credits5GF. K. Gürkaynak, L. Benini
AbstractThis first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.
ObjectiveUnderstand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with VHDL or SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language VHDL and with industrial Electronic Design Automation (EDA) tools.
ContentThis course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- VLSI and FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- VHDL and SystemVerilog compared.
- VHDL (IEEE standard 1076) for simulation and synthesis.
- A suitable nine-valued logic system (IEEE standard 1164).
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model digital ICs with VHDL. They write testbenches for simulation purposes and synthesize gate-level netlists for VLSI chips and FPGAs. Commercial EDA software by leading vendors is being used throughout.
Lecture notesTextbook and all further documents in English.
LiteratureH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Prerequisites / NoticePrerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
Link
227-0121-00LCommunication Systems Information W6 credits4GA. Wittneben
AbstractInformation Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example und Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet
ObjectiveIntroduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems
ContentCovered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

The application of the basic methods will be extensively explained using existing and future wireless and wired systems.
Lecture notesLecture Slides
Literature[1] Simon Haykin, Communication Systems, 4. Auflage, John Wiley & Sons, 2001
[2] Andrew S. Tanenbaum, Computernetzwerke, 3. Auflage, Pearson Studium, 2003
[3] M. Bossert und M. Breitbach, Digitale Netze, 1. Auflage, Teubner, 1999
227-0122-00LIntroduction to Electric Power Transmission: System & TechnologyW6 credits4GC. Franck, G. Hug
AbstractIntroduction to theory and technology of electric power transmission systems.
ObjectiveAt the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and lines, explain the technology of overhead power lines, calculate stationary power flows, current and voltage transients and other basic parameters in simple power systems.
ContentStructure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, symmetrical and unsymmetrical three-phase systems, transient current and voltage processes, technology and principle of electric power systems.
Lecture notesLecture script in English, exercises and sample solutions, translation of important vocabulary: english-german.
227-0145-00LSolid State Electronics and Optics Information W6 credits4GV. Wood
Abstract"Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids.
ObjectiveUnderstand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials.
Prerequisites / NoticeRecommended background:
Undergraduate physics, mathematics, semiconductor devices
227-0166-00LAnalog Integrated Circuits Information W6 credits2V + 2UQ. Huang
AbstractThis course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.
ObjectiveIntegrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.
The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.
ContentReview of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; Stability; Comparators; Second-order effects in analog circuits such as mismatch, noise and offset; A/D and D/A converters; Introduction to switched capacitor circuits.
The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurments.
Lecture notesHandouts of presented slides. No script but an accompanying textbook is recommended.
LiteratureGray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", 5th Ed. Wiley, 2010.
227-0385-10LBiomedical ImagingW6 credits5GS. Kozerke, K. P. Prüssmann
AbstractIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
ObjectiveTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Content- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
Lecture notesLecture notes and handouts
LiteratureWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Prerequisites / NoticeAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0393-10LBioelectronics and BiosensorsW6 credits2V + 2UJ. Vörös, M. F. Yanik, T. Zambelli
AbstractThe course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
ObjectiveDuring this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
ContentL1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning
LiteraturePlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Prerequisites / NoticeSupervised exercises solving real-world problems. Some Matlab based exercises in groups.
Electives
This is but a short selection. Other courses from the ETH course catalogue may be chosen. Please consult the "Richtlinien zu Projekten, Praktika, Seminare" (German only), published on our website (Link).
Economics, Law and Management Electives
These subjects are particularly suitable for students planning to apply to the Master's Degree Program in Energy Science and Technology (MSc EST) or Management, Technology and Economics (MSc MTEC).
NumberTitleTypeECTSHoursLecturers
351-0778-00LDiscovering Management
Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Excercises) 351-0778-01.
W3 credits3GB. Clarysse, M. Ambühl, S. Brusoni, E. Fleisch, G. Grote, V. Hoffmann, T. Netland, G. von Krogh, F. von Wangenheim
AbstractDiscovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. The module provides an overview of the principles of management, teaches knowledge about management that is highly complementary to the students' technical knowledge, and provides a basis for advancing the knowledge of the various subjects offered at D-MTEC.
ObjectiveDiscovering Management combines in an innovate format a set of lectures and an advanced business game. The learning model for Discovering Management involves 'learning by doing'. The objective is to introduce the students to the relevant topics of the management literature and give them a good introduction in entrepreneurship topics too. The course is a series of lectures on the topics of strategy, innovation, corporate finance, leadership, design thinking and corporate social responsibility. While the 14 different lectures provide the theoretical and conceptual foundations, the experiential learning outcomes result from the interactive business game. The purpose of the business game is to analyse the innovative needs of a large multinational company and develop a business case for the company to grow. This business case is as relevant to someone exploring innovation within an organisation as it is if you are planning to start your own business. By discovering the key aspects of entrepreneurial management, the purpose of the course is to advance students' understanding of factors driving innovation, entrepreneurship, and company success.
ContentDiscovering Management aims to broaden the students' understanding of the principles of business management, emphasizing the interdependence of various topics in the development and management of a firm. The lectures introduce students not only to topics relevant for managing large corporations, but also touch upon the different aspects of starting up your own venture. The lectures will be presented by the respective area specialists at D-MTEC.
The course broadens the view and understanding of technology by linking it with its commercial applications and with society. The lectures are designed to introduce students to topics related to strategy, corporate innovation, leadership, corporate and entrepreneurial finance, value chain analysis, corporate social responsibility, and business model innovation. Practical examples from industry experts will stimulate the students to critically assess these issues. Creative skills will be trained by the business game exercise, a participant-centered learning activity, which provides students with the opportunity to place themselves in the role of Chief Innovation Officer of a large multinational company. As they learn more about the specific case and identify the challenge they are faced with, the students will have to develop an innovative business case for this multinational corporation. Doing so, this exercise will provide an insight into the context of managerial problem-solving and corporate innovation, and enhance the students' appreciation for the complex tasks companies and managers deal with. The business game presents a realistic model of a company and provides a valuable learning platform to integrate the increasingly important development of the skills and competences required to identify entrepreneurial opportunities, analyse the future business environment and successfully respond to it by taking systematic decisions, e.g. critical assessment of technological possibilities.
Prerequisites / NoticeDiscovering Management is designed to suit the needs and expectations of Bachelor students at all levels as well as Master and PhD students not belonging to D-MTEC. By providing an overview of Business Management, this course is an ideal enrichment of the standard curriculum at ETH Zurich.
No prior knowledge of business or economics is required to successfully complete this course.
363-0305-00LEmpirical Methods in Management Information W3 credits2GF. von Wangenheim
AbstractEvidence-based management requires valid empirical research. In this course, students will learn the basics of research design, fundamentals of data collection and statistical methods to analyze the data acquired in social science research. Students are expected to apply their knowledge in class discussions and out-of-class assignments.
Objective- Ability to formulate research questions and designing an appropriate study
- Ability to collect and analyze data using a variety of methods
- Ability to critically assess the quality of empirical research in management
- Applied knowledge of empirical methods through out-of-class assignments
Content1) Introduction to empirical management research
2) Research designs: exploratory, descriptive, experimental
3) Measurement and scaling
4) Data collection and sampling
5) Data analysis methods
6) Reporting and presenting empirical research
Prerequisites / NoticeAssignments and projects: This course includes out-of-class assignments and projects to give students some hands-on experience in conducting empirical research in management. Projects will focus on one particular aspect of empirical research, like the formulation of a research question or the design of a study. Students will have at least one week to work on each assignment. Students are expected to work on these assignments individually. Duplicate answers will receive no credit and will be subject to a disciplinary review. Assignments will be graded and need to be turned-in on time.

Class participation: Class participation is encouraged and can greatly improve students' learning in this class. In this spirit, students are expected to attend class regularly and come to class prepared.
363-0503-00LPrinciples of MicroeconomicsW3 credits2GM. Filippini
AbstractThe course introduces basic principles, problems and approaches of microeconomics.
ObjectiveThe learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can apply simple mathematical treatment of some basic concepts and can solve utility maximization and cost minimization problems.
Lecture notesLecture notes, exercises and reference material can be downloaded from Moodle.
LiteratureN. Gregory Mankiw and Mark P. Taylor (2017), "Economics", 4th edition, South-Western Cengage Learning.
The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
N. Gregory Mankiw and Mark P. Taylor (2017), "Microeconomics", 4th edition, South-Western Cengage Learning.

Complementary:
1. R. Pindyck and D. Rubinfeld (2012), "Microeconomics", 8th edition, Pearson Education.
2. Varian, H.R. (2014), "Intermediate Microeconomics", 9th edition, Norton & Company
363-0511-00LManagerial Economics
Not for MSc students belonging to D-MTEC!
W4 credits3VS. Rausch, V. Hoffmann
AbstractManagerial Economics applies economic theory and methods to business and economic decision-making. Economic ideas related to optimization, the theory of consumer demand, the theory of the firm, industrial organization and decision making under uncertainty are studied using methods of numerical analysis, statistical estimation, game theory and constrained optimization.
ObjectiveThe objective of the course is to provide undergraduate and graduate students in MAVT with an understanding of the use of economic concepts for firm-level management decisions. The course covers a number of models and methods of analysis which are commonly employed in business decisions. The course covers the economic theory of choice, models of oligopoly and industrial organization, applications of game theory to contract design and agency theory, and the theory of decision making under uncertainty focusing specifically on long-term investment decisions. The course will include three lectures by Professor Volker Hoffman focusing on related case-studies in management.
LiteratureMikroökonomie (Pearson Studium - Economic VWL) Gebundene Ausgabe, August 2013, Robert S. Pindyck, Dr. Daniel L. Rubinfeld.
Prerequisites / NoticeThe course acquaints students who have previous not studied economics to economic concepts and quantitative methods which can be used to solve management decision problems.
851-0703-00LIntroduction to Law
Students who have attended or will attend the lecture "Introduction to Law for Civil Engineering and Architecture " (851-0703-03L) or " Introduction to Law" (851-0708-00L), cannot register for this course unit.

Particularly suitable for students of D-MAVT, D-MATL
W2 credits2VO.  Streiff Gnöpff
AbstractThis class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.
ObjectiveStudents are able to identify basic structures of the legal system. They unterstand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.
ContentBasic concepts of law, sources of law.
Private law: Contract law (particularly contract for work and services), tort law, property law.
Public law: Human rights, administrative law, procurement law, procedural law.
Insights into the law of the EU and into criminal law.
Lecture notesJaap Hage, Bram Akkermans (Eds.), Introduction to Law, Cham 2014 (Online Resource ETH Library)
LiteratureFurther documents will be available online (see Link).
851-0735-10LBusiness Law Restricted registration - show details
Number of participants limited to 100

Particularly suitable for students of D-ITET, D-MAVT
W2 credits2VP. Peyrot
AbstractThe students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.
ObjectiveThe students shall obtain the following competence:
- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprize.
- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution
- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable ressource of the company.
Lecture notesA comprehensive script will be made available online on the moodle platform.
851-0738-00LIntellectual Property: Introduction
Particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D- MATL, D-MTEC
W2 credits2VM. Schweizer
AbstractThe course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.
ObjectiveThe aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).
851-0738-01LThe Role of Intellectual Property in Daily Routine: A Practical Introduction
Particularly suitable for students of D-BAUG, D-ITET, D-MAVT
W2 credits2VC. Soltmann
AbstractThe lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.
ObjectiveIn recent years, knowledge about intellectual property has become increasingly important for engineers. Both in production and distribution and in research and development, engineers are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint students with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will comprise practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.
Prerequisites / NoticeThe lecture is in particular tailored to the needs of the following degree programs: Agricultural science, architecture, civil engineering, computational science and engineering, computer science, electrical engineering and information technology, environmental engineering, geomatic engineering and planning, interdisciplinary sciences, materials science, mathematics, mechanical engineering, physics.

For students of chemistry-related degree programs, the lecture 'Protecting inventions in chemistry' (851-0738-03) will be offered in the autumn semester.
Engineering Electives
NumberTitleTypeECTSHoursLecturers
» Additional third year core courses may be credited as electives.
151-0621-00LMicrosystems I: Process Technology and Integration Information W6 credits3V + 3UM. Haluska, C. Hierold
AbstractStudents are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow).
ObjectiveStudents are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow).
Content- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.
Application of selected technologies will be demonstrated on case studies.
Lecture notesHandouts (available online)
Literature- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed.
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications
Prerequisites / NoticePrerequisites: Physics I and II
376-0021-00LIntroduction to Biomedical Engineering IW4 credits3GR. Müller, J. G. Snedeker, M. Zenobi-Wong
AbstractIntroduction to biomechanics, biomaterials, tissue engineering, medical imaging as well as the history of biomedical engineering.
ObjectiveUnderstanding of physical and technical principles in biomechanics, biomaterials, tissue engineering, medical imaging as well as the history of biomedical engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
ContentTissue and Cellular Biomechanics, Molecular Biomechanics and Biopolymers, Computational Biomechanics, Biomaterials, Tissue Engineering, Radiation and Radiographic Imaging, Diagnostic Ultrasound Imaging, Magnetic Resonance Imaging,
Biomedical Optics and Lasers.
Lecture notesStored on ILIAS.
LiteratureIntroduction to Biomedical Engineering, 3rd Edition 2011,
Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796
Academic Press
Man-Technology-Environment Electives ("MTU")
NumberTitleTypeECTSHoursLecturers
227-0802-01LSocial PsychologyW2 credits2GR. Mutz
AbstractThe lecture covers the following main topics: Social perception and interpersonal judgement; attitudes; group dynamics and group performance; leadership behavior and leadership styles.
ObjectiveThe aim of the lecture is to impart a well-founded scientific understanding of social influence processes in individuals, groups, organizations, and social settings.
The participants should develop competencies in the structuring of communication, interaction, and management processes.
ContentIm Einzelnen sollen die Teilnehmerinnen und Teilnehmer lernen:

- an den Beispielen von Kaufverhalten oder ökologischem Verhalten zu beschreiben, wie Normen und Einstellungen Einfluss auf das Verhalten nehmen,
- Die Subjektivität und die Fehlerquellen sozialer Wahrnehmung verstehen,
- Prinzipien der Psychologie der Kommunikation zu nutzen für eine Verbesserung der Kommunikation in Studium und Beruf,
- Merkmale und Strukturen von Gruppen zu identifizieren und mit geeigneten Methoden zu analysieren,
- Die Grundlagen von Konformität und Gehorsam gegenüber Autoritäten zu erkennen,
- Gruppenphänomene wie „soziales Faulenzen“, „Risiko- und Konservatismus-Schub“ und „Gruppendenken“ entgegenzuwirken,
- Gruppenleistungen und -–entscheidungen zu optimieren,
- Führungsstile zu unterscheiden lernen,
- Techniken zur Moderation von interagierenden Gruppen kennen zu lernen.
Lecture noteskein Skript
Literaturezur Einführung: Stroebe, W., Jonas, K. & Hewstone, M. (2014). Sozialpsychologie. Heidelberg: Springer. Es wird ein Reader mit ausgewählten Texten zu den Vorlesungsthemen angeboten.
Prerequisites / NoticeEs werden für D-ITET-Studierende Gruppenarbeiten (6 Kreditpunkte) in Form eines 3-tätigen computer-unterstützten Assessments fachübergreifender Kompetenzen angeboten (Teilnehmerzahl beschränkt auf 12 Studierende). Die Teilnehmenden verfassen Berichte, die benotet werden.
227-0802-02LSociologyW2 credits2VA. Diekmann
AbstractVarious studies are used to introduce basic sociological concepts, theories and empirical research methods, along with selected sociological topics. The goal of the course is to provide participants with an understanding of working practice in empirical sociology and the central findings of sociological studies.
ObjectiveTo learn about methods of empirical social research and key results of classic and modern sociological studies.
ContentSoziologie befasst sich mit den Regelmässigkeiten sozialer Handlungen und ihrer gesellschaftlichen Folgen. Sie richtet ihren Blick auf die Beschreibung und Erklärung neuer gesellschaftlicher Entwicklungen und erfasst diese mit empirischen Forschungsmethoden. Die Vorlesung wird u.a. anhand von Beispielstudien - klassische Untersuchungen ebenso wie moderne Forschungsarbeiten - in die Grundbegriffe, Theorien, Forschungsmethoden und Themenbereiche der Soziologie einführen. Dabei kommen auch neue Arbeiten zur Sprache, die auf Spieltheorie, Netzwerkanalyse, Modellen sozialer Diffusion, experimentellen Studien und der Analyse von Internetdaten aufbauen, zur Sprache.

Folgende Themen werden behandelt:

1. Einführung in die Arbeitsweise der Soziologie anhand verschiedener Beispielstudien. Darstellung von Forschungsmethoden und ihrer Probleme. Etappen des Forschungsprozesses: Hypothese, Messung, Stichproben, Erhebungsmethoden, Datenanalyse.

2. Darstellung und Diskussion soziologischer Befunde aus der Umwelt- und Techniksoziologie. (1) Modernisierung und Technikrisiken, (2) Umweltbewegung, Umweltbewusstsein und Umweltverhalten, (3) Umweltprobleme als "soziale Dilemmata", (4) Modelle der Diffusion technischer Innovationen.

3. Der Beitrag der Sozialtheorie. Vorstellung und Diskussion ausgewählter Studien zu einzelnen Themenbereichen, z.B.: (1) Die Entstehung sozialer Kooperation, (2) Reputation und Märkte, (3) Soziale Netzwerke u.a.m.

Ergänzende Gruppenarbeiten (nicht verpflichtend). Im Rahmen des MTU-Programms des ITET und Programmen anderer Departemente können Semesterarbeiten in Soziologie (Durchführung einer kleinen empirischen Studie, Konstruktion eines Simulationsmodels sozialer Prozesse oder Diskussion einer vorliegenden soziologischen Untersuchung) angefertigt werden. Kreditpunkte (in der Regel 6 bis 12) für "kleine" oder "grosse" Semesterarbeiten werden nach den Regeln des Departements, das Semestergruppenarbeiten ermöglicht, vergeben.
Lecture notesFolien der Vorlesung und weitere Materialien (Fachartikel, Kopien aus Büchern) werden auf der Webseite der Vorlesung zum Download zur Verfügung gestellt.
LiteratureFolien der Vorlesung und weitere Materialien (Fachartikel, Kopien aus Büchern) werden auf der Webseite der Vorlesung zum Download zur Verfügung gestellt.
Prerequisites / NoticeInteresse am Thema und Bereitschaft zum Mitdenken.
101-0499-00LBasics of Air Transport (Aviation I)
Hinweis: alter Titel bis HS16 "Grundlagen der Luftfahrt"
W4 credits3GP. Wild
AbstractIn general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics.
Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation.
The program is taught in English and we provide 11 different experts/lecturers.
ObjectiveThe goal is to understand and explain basics, principles and contexts of the broader air transport industry.
Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport.
Ideal foundation for Aviation II - Management of Air Transport.
ContentWeekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be tought as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Law Enforcement; Maintenance & Manufacturers; Airport Operations & Planning; Customs & Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Operations.

Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, tower & radar Simulator at Skyguide Dubendorf).
Additionally, the lecture "military operations" will be held at Dubendorf airfield with visiting Swiss Army helicopters.

Examination: written, 90 min, open books
Lecture notesPreparation materials & slides are provided prior to each class
LiteratureLiterature will be provided by the lecturers, respectively there will be additional Information upon registration
Prerequisites / NoticeNone
GESS Science in Perspective
Science in Perspective
» see Science in Perspective: Type A: Enhancement of Reflection Capability
» Recommended Science in Perspective (Type B) for D-ITET.
Language Courses
» see Science in Perspective: Language Courses ETH/UZH