Search result: Catalogue data in Autumn Semester 2017

Mechanical Engineering Master Information
Core Courses
Energy, Flows and Processes
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0105-00LQuantitative Flow VisualizationW4 credits2V + 1UT. Rösgen
AbstractThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
ObjectiveIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
ContentFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
Lecture notesavailable
Prerequisites / NoticePrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture noteshttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0109-00LTurbulent FlowsW4 credits2V + 1UP. Jenny
AbstractContents
- Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows
ObjectiveBasic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling
Content- Properties of laminar, transitional and turbulent flows.
- Origin and control of turbulence. Instability and transition.
- Statistical description, averaging, equations for mean and fluctuating quantities, closure problem.
- Scalings, homogeneous isotropic turbulence, energy spectrum.
- Turbulent free shear flows. Jet, wake, mixing layer.
- Wall-bounded turbulent flows.
- Turbulent flow computation and modeling.
Lecture notesLecture notes are available
LiteratureS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0113-00LApplied Fluid DynamicsW4 credits2V + 1UJ.‑P. Kunsch
AbstractApplied Fluid Dynamics
The methods of fluid dynamics play an important role in the description of a chain of events, involving the release, spreading and dilution of dangerous fluids in the environment.
Tunnel ventilation systems and strategies are studied, which must meet severe requirements during normal operation and in emergency situations (tunnel fires etc.).
ObjectiveGenerally applicable methods in fluid dynamics and gas dynamics are illustrated and practiced using selected current examples.
ContentOften experts fall back on the methodology of fluid dynamics when involved in the construction of environmentally friendly processing and incineration facilities, as well as when choosing safe transport and storage options for dangerous materials. As a result of accidents, but also in normal operations, dangerous gases and liquids may escape and be transported further by wind or flowing water.
There are many possible forms that the resulting damage may take, including fire and explosion when flammable substances are mixed. The topics covered include: Emissions of liquids and gases from containers and pipelines, evaporation from pools and vaporization of gases kept under pressure, the spread and dilution of waste gas plumes in the wind, deflagration and detonation of inflammable gases, fireballs in gases held under pressure, pollution and exhaust gases in tunnels (tunnel fires etc.)
Lecture notesnot available
Prerequisites / NoticeRequirements: successful attendance at lectures "Fluiddynamik I und II", "Thermodynamik I und II"
151-0163-00LNuclear Energy ConversionW4 credits2V + 1UH.‑M. Prasser
AbstractPhyiscal fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, converion and breeding
ObjectiveStudents get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows.
ContentNuclear physics of fission and chain reaction. Themodynamics of nuclear reactors. Design of the rector core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breaders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of rector technology.
Lecture notesHand-outs will be distributed. Additional literature and information on the website of the lab: Link
LiteratureS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-0182-00LFundamentals of CFD MethodsW4 credits3GA. Haselbacher
AbstractThis course is focused on providing students with the knowledge and understanding required to develop simple computational fluid dynamics (CFD) codes to solve the incompressible Navier-Stokes equations and to critically assess the results produced by CFD codes. As part of the course, students will write their own codes and verify and validate them systematically.
Objective1. Students know and understand basic numerical methods used in CFD in terms of accuracy and stability.
2. Students have a basic understanding of a typical simple CFD code.
3. Students understand how to assess the numerical and physical accuracy of CFD results.
Content1. Governing and model equations. Brief review of equations and properties
2. Overview of basic concepts: Overview of discretization process and its consequences
3. Overview of numerical methods: Finite-difference and finite-volume methods
4. Analysis of spatially discrete equations: Consistency, accuracy, stability, convergence of semi-discrete methods
5. Time-integration methods: LMS and RK methods, consistency, accuracy, stability, convergence
6. Analysis of fully discrete equations: Consistency, accuracy, stability, convergence of fully discrete methods
7. Solution of one-dimensional advection equation: Motivation for and consequences of upwinding, Godunov's theorem, TVD methods, DRP methods
8. Solution of two-dimensional advection equation: Dimension-by-dimension methods, dimensional splitting, multidimensional methods
9. Solution of one- and two-dimensional diffusion equations: Implicit methods, ADI methods
10. Solution of one-dimensional advection-diffusion equation: Numerical vs physical viscosity, boundary layers, non-uniform grids
11. Solution of incompressible Navier-Stokes equations: Incompressibility constraint and consequences, fractional-step and pressure-correction methods
12. Solution of incompressible Navier-Stokes equations on unstructured grids
Lecture notesThe course is based mostly on notes developed by the instructor.
LiteratureLiterature: There is no required textbook. Suggested references are:
1. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Prentice Hall, 2007
2. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed., Taylor & Francis, 2011
Prerequisites / NoticePrior knowledge of fluid dynamics, applied mathematics, basic numerical methods, and programming in Fortran and/or C++ (knowledge of MATLAB is *not* sufficient).
151-0185-00LRadiation Heat Transfer Information W4 credits2V + 1UP. Pozivil
AbstractAdvanced course in radiation heat transfer
ObjectiveFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Content1. Introduction to thermal radiation. Definitions. Spectral and directional properties. Electromagnetic spectrum. Blackbody and gray surfaces. Absorptivity, emissivity, reflectivity. Planck's Law, Wien's Displacement Law, Kirchhoff's Law.

2. Surface radiation exchange. Diffuse and specular surfaces. Gray and selective surfaces. Configuration factors. Radiation exchange. Enclosure theory, radiosity method. Monte Carlo.

3.Absorbing, emitting and scattering media. Extinction, absorption, and scattering coefficients. Scattering phase function. Optical thickness. Equation of radiative transfer. Solution methods: discrete ordinate, zone, Monte-Carlo.

4. Applications. Cavities. Selective surfaces and media. Semi-transparent windows. Combined radiation-conduction-convection heat transfer.
Lecture notesCopy of the slides presented.
LiteratureR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0203-00LTurbomachinery Design Restricted registration - show details
Number of participants limited to 20.
W4 credits2V + 1UR. S. Abhari, N. Chokani, B. Ribi
AbstractIntroduction to the understanding of a broad range of turbomachinery devices.
Learn the steps of turbomachinery design.
ObjectiveUnderstand the principles, and learn the design procedures and the behaviour of turbomachines.
ContentDiese Vorlesung beschreibt die Grundlagen des Designs von Turbomaschinen (Turbinen und Verdichtern). Dazu werden zunächst die theoretischen Grundlagen vertieft erarbeitet. Ausgehend von den thermodynamischen Grundlagen werden Verlustkorrelationen und -Mechanismen behandelt. Diese Grundlagen führen zu einem Verständnis des 3D Design der Turbomaschinen.
Im zweiten Teil der Vorlesung wird das Verhalten der Turbomaschinen bei veränderten Betriebsbedingungen dargestellt. Ebenfalls behandelt werden mechanische Fragestellungen des Turbomaschinenbaus wie z.B. Vibrationen, Lagerbelastungen und auftretende Spannungen in den Bauteilen.
Lecture notesLecture notes
151-0207-00LTheory and Modeling of Reactive FlowsW4 credits3GC. E. Frouzakis, I. Mantzaras
AbstractThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
ObjectiveTheory of combustion with numerical applications
ContentThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
Lecture notesHandouts
Prerequisites / NoticeNEW course
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 credits3GI. Karlin
AbstractThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
ObjectiveMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
ContentThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
Lecture notesLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Prerequisites / NoticeThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0216-00LWind EnergyW4 credits2V + 1UN. Chokani
AbstractThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.
ObjectiveThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.
ContentThis mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.
151-0235-00LThermodynamics of Novel Energy Conversion Technologies Restricted registration - show details
Number of participants limited to 100.
W4 credits3GC. S. Sharma, G. Sansavini
AbstractIn the framework of this course we will look at a current electronic thermal and energy management strategies and novel energy conversion processes. The course will focus on component level fundamentals of these process and system level analysis of interactions among various energy conversion components.
ObjectiveThis course deals with liquid cooling based thermal management of electronics, reuse of waste heat and novel energy conversion and storage systems such as batteries, fuel cells and micro-fuel cells. The focus of the course is on the physics and basic understanding of those systems as well as their real-world applications. The course will also look at analysis of system level interactions between a range of energy conversion components.
ContentPart 1: Fundamentals:
- Overview of exergy analysis, Single phase liquid cooling and micro-mixing;
- Thermodynamics of multi-component-systems (mixtures) and phase equilibrium;
- Electrochemistry;

Part 2: Applications:
- Basic principles of battery;
- Introduction to fuel cells;
- Reuse of waste heat from supercomputers
- Hotspot targeted cooling of microprocessors
- Microfluidic fuel cells

Part3: System- level analysis
- Integration of the components into the system: a case study
- Analysis of the coupled operations, identification of critical states
- Support to system-oriented design
Lecture notesLecture slides will be made available. Lecture notes will be available for some topics (in English).
Prerequisites / NoticeThe course will be given in English:

1- Mid-term examination: Mid-term exam grade counts as 20% of the final grade.
2- Final exam: Written exam during the regular examination session. It counts as 80% of the final grade.
151-0251-00LIC-Engines and Propulsion Systems I Restricted registration - show details
Number of participants limited to 60.
W4 credits2V + 1UK. Boulouchos, G. Georges, P. Kyrtatos
AbstractIntroduction to basic concepts, operating maps and work processes of internal combustion engines. Thermodynamic analysis and design, scavenging methods, heat transfer mechanisms, turbulent flow field in combustion chambers, turbocharging. Energy systemic role of IC engines: conventional and electrified vehicle propulsion systems and decentralized power generation.
ObjectiveThe students learn the basic concepts of an internal combustion engine by means of the topics mentioned in the abstract. This knowledge is applied in several calculation exercises and two lab exercises at the engine test bench. The students get an insight in alternative power train systems.
Lecture notesin English
LiteratureJ. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill
151-0368-00LAeroelasticityW4 credits2V + 1UF. Campanile
AbstractIntroduction to the basics and methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads.
ObjectiveThe course will give you a physical basic overview of current-structure phenomena. Furtermore you will get to know the most important phenomena in the statistical and dynamical aeroelastic as well as an introduction to the methods for mathematical descriptions and for the wording of quantitative forecasts.
ContentElemente der Profilaerodynamik. Aeroelastische Divergenz am starren Streifenmodell. Aeroelastische Divergenz eines kontinuierlichen Flügels. Allgemeines über statische Aeroelastik.
Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene.
Grundelemente der instationären Aerodynamik.
Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns.
Einführung in die Modalanalyse
Einfühung in weitere Phänomene der dynamischen Aeroelastik.
LiteratureY. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions.
151-0709-00LStochastic Methods for Engineers and Natural Scientists Restricted registration - show details
Number of participants limited to 30.
W4 credits3GD. W. Meyer-Massetti
AbstractThe course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.
ObjectiveBy the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.
Content- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Polynomial chaos and other expansion methods
All topics are illustrated with engineering applications.
Lecture notesDetailed lecture notes will be provided.
LiteratureSome textbooks related to the material covered in the course:
Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010
The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996
Turbulent Flows, S.B. Pope, Cambridge University Press, 2000
Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010
151-0851-00LRobot Dynamics Information Restricted registration - show details W4 credits2V + 1UM. Hutter, R. Siegwart
AbstractWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
ObjectiveThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
ContentThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Prerequisites / NoticeThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
151-0911-00LIntroduction to PlasmonicsW4 credits2V + 1UD. J. Norris
AbstractThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
ObjectiveElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
ContentFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
Lecture notesClass notes and handouts
LiteratureS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Prerequisites / NoticePhysics I, Physics II
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, K. Wegner, M. Eggersdorfer
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
151-0927-00LRate-Controlled Separations in Fine ChemistryW6 credits3V + 1UM. Mazzotti
AbstractThe students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology.
ObjectiveThe students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology.
ContentThe class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Liquid-liquid extraction; 2) Adsorption and chromatography; 3) Membrane processes; 4) Crystallization and precipitation.
Lecture notesHandouts during the class
LiteratureRecommendations for text books will be covered in the class
Prerequisites / NoticeRequirements: Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)
151-0933-00LSeminar on Advanced Separation Processes Restricted registration - show details Z0 credits1SM. Mazzotti
AbstractResearch seminar for master's students and doctoral students
ObjectiveResearch seminar for master's students and doctoral students
151-0951-00LProcess Design and SafetyW4 credits2V + 1UP. Rudolf von Rohr
AbstractProcess design and saftey deals with the fundamentals of process apparatus, plant design and safety.
ObjectiveThe goal of the lecture is to expound design characteristics of systems for process engineering applications.
ContentFundamentals of plant and apparatus design; materials in the process industries, mechanical design and design rules of main components; pumps and fans; piping and armatures, safety in process industry
Lecture notesScript is available, english slides will be distributed
LiteratureCoulson and Richardson's: Chemical Engineering , Vol 6: Chemical Engineering Design, (1996)
151-1116-00LIntroduction to Aircraft and Car AerodynamicsW4 credits3GJ. Wildi
AbstractAircraft aerodynamics: Atmosphere; aerodynamic forces (lift, drag); thrust.
Vehicle aerodynamics: Aerodynamic and mass forces, drag, lift, car aerodynamics and performence. Passenger cars, trucks, racing cars.
ObjectiveAn introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics.
To understand the basic relations of the origin of aerodynamic forces (ie lift, drag). To quantify the aerodynamic forces for basic configurations of aercraft and car components.
Illustration of the intrinsic problems and results using examples.
Using experimental and theoretical methods to illustrate possibilities and limits.
ContentAircraft aerodynamics: atmosphere, aerodynamic forces (ascending force: profile, wings. Resistance, residual resistance, induced resistance); thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

Automobile aerodynamics: Basic principles: aerodynamic force and the force of inertia, resistance, drive, aerodynamic and driving performance. Cars commercial vehicles, racing cars.
Lecture notes1.) Grundlagen der Flugtechnik (Basics of flight science, script in german language)
2.) Einführung in die Fahrzeugaerodynamik (Introduction in car aerodynamics, script in german language)
LiteratureEnglish literature covering the content of the course:
- Anderson Jr, John D: Introduction to Flight, Mc Graw Hill, Ed 06, 2007; ISBN: 9780073529394
- Mc Cormick, B.W.: Aerodynamics, Aeronautics and Flight Mechanics, John Wiley and Sons, 1979
- Hucho, Wolf-Heinrich: Aerodynamics of Road Vehicles, SAE International, 1998
101-0187-00LStructural Reliability and Risk Analysis Information W3 credits2GS. Marelli
AbstractStructural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.
ObjectiveThe goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.
ContentEngineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
Lecture notesSlides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.
LiteratureAng, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Prerequisites / NoticeBasic course on probability theory and statistics
101-0499-00LBasics of Air Transport (Aviation I)
Hinweis: alter Titel bis HS16 "Grundlagen der Luftfahrt"
W4 credits3GP. Wild
AbstractIn general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics.
Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation.
The program is taught in English and we provide 11 different experts/lecturers.
ObjectiveThe goal is to understand and explain basics, principles and contexts of the broader air transport industry.
Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport.
Ideal foundation for Aviation II - Management of Air Transport.
ContentWeekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be tought as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Law Enforcement; Maintenance & Manufacturers; Airport Operations & Planning; Customs & Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Operations.

Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, tower & radar Simulator at Skyguide Dubendorf).
Additionally, the lecture "military operations" will be held at Dubendorf airfield with visiting Swiss Army helicopters.

Examination: written, 90 min, open books
Lecture notesPreparation materials & slides are provided prior to each class
LiteratureLiterature will be provided by the lecturers, respectively there will be additional Information upon registration
Prerequisites / NoticeNone
227-0455-00LTerahertz: Technology & Applications
Does not take place this semester.
W3 credits2VK. Sankaran
AbstractThis course will provide a solid foundation for understanding physical principles of THz applications. We will discuss various building blocks of THz technology - components dealing with generation, manipulation, and detection of THz electromagnetic radiation. We will introduce THz applications in the domain of imaging, communications, and energy harvesting.
ObjectiveThis is an introductory course on Terahertz (THz) technology and applications. Devices operating in THz frequency range (0.1 to 10 THz) have been increasingly studied in the recent years. Progress in nonlinear optical materials, ultrafast optical and electronic techniques has strengthened research in THz application developments. Due to unique interaction of THz waves with materials, applications with new capabilities can be developed. In theory, they can penetrate somewhat like X-rays, but are not considered harmful radiation, because THz energy level is low. They should be able to provide resolution as good or better than magnetic resonance imaging (MRI), possibly with simpler equipment. Imaging, very-high bandwidth communication, and energy harvesting are the most widely explored THz application areas. We will study the basics of THz generation, manipulation, and detection. Our emphasis will be on the physical principles and applications of THz in the domain of imaging, communication and energy harvesting.
ContentINTRODUCTION
Chapter 1: Introduction to THz Physics
Chapter 2: Components of THz Technology

THz TECHNOLOGY MODULES
Chapter 3: THz Generation
Chapter 4: THz Detection
Chapter 5: THz Manipulation

APPLICATIONS
Chapter 6: THz Imaging
Chapter 7: THz Communication
Chapter 8: THz Energy Harvesting
Literature- Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer 2009
- Ali Rostami, Hassan Rasooli, and Hamed Baghban, Terahertz Technology: Fundamentals and Applications, Springer 2010

Whenever we deviate from the main material discussed in these books, softcopy of lectures notes will be provided.
Prerequisites / NoticeGood foundation in electromagnetics & knowledge of microwave or optical communication is helpful.
227-0665-00LBattery Integration Engineering Restricted registration - show details
Number of participants limited to 30.
W3 credits2V + 1UT. J. Patey
AbstractBatteries enable sustainable mobility, renewable power integration, various power grid services, and residential energy storage. Linked with low cost PV, Li-ion batteries are positioned to shift the 19th-century centralized power grid into a 21st-century distributed one. As with battery integration, this course combines understanding of electrochemistry, heat & mass transfer, device engineering.
ObjectiveThe learning objectives are:
- Know the history of batteries and understand the material science breakthroughs that enabled disruptive battery technologies.
- Understand the physical processes behind making battery models in order to predict lifetime.
- Understand system and battery requirements for various applications in the modern power system and sustainable mobility, with a deep focus on replacing diesel buses with electric buses combined with charging infrastructure.
- Critically assess progresses in material science for novel battery technologies reported in literature, and understand the opportunities and challenges these materials could have.
Content- History and introduction to electrochemistry & batteries.
- Li-ion batteries & next generation batteries.
- Battery lifetime modelling by aging, thermal, and electric sub-models.
- Introduction to power conversion systems and control & protection.
- Battery systems for the modern power grid and sustainable mobility.
Prerequisites / NoticeTaken and passed 227-0664-00L
Limited to 30 Students
Priority given to Electrical and Mechanical Engineering students
227-0950-00LAcoustics Information Z0 credits0.5KK. Heutschi
AbstractCurrent topics in Acoustics presented mostly by external speakers from academia and industry.
Objectivesee above
529-0193-00LRenewable Energy Technologies I
Does not take place this semester.
The lectures Renewable Energy Technologies I (529-0193-00L) and Renewable Energy Technologies II (529-0191-01L) can be taken independently from one another.
W4 credits3GA. Wokaun, A. Steinfeld
AbstractScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
ObjectiveScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
ContentScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
Lecture notesLecture notes will be distributed electronically during the course.
Literature- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Prerequisites / NoticeFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
636-0507-00LSynthetic Biology II Restricted registration - show details W4 credits4AS. Panke, Y. Benenson, J. Stelling
Abstract7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).
ObjectiveThe students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.
ContentPresentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external,) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).
Lecture notesHandouts during course
Prerequisites / NoticeThe final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton Universtiy, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.
Mechanics, Materials, Structures
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture noteshttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 credits3GA. Kunz
AbstractThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
ObjectiveVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
ContentIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
Lecture notesThe handout is available in German and English.
Prerequisites / NoticePrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
151-0349-00LFatigue Strength of Materials, Components and StructuresW4 credits3GM. Guillaume, R. E. Koller
AbstractFatigue of materials is playing a key role in light weight structures. All applications are affected that are exposed to oscillating loads. The lecture will present the most important methods for analyzing the fatigue strength under service load conditions. This starts with the conventional assessment of a components endurance limit and ends with the application of the damage tolerance philosophy.
ObjectiveGoals of the lecture

An introduction to the most important terms and phenomena related to fatigue damages of metallic components will be given and explained by practical examples. Methods for assessment of endurance strength, finite life fatigue strength, crack initiation and crack growth will be discussed. The lecture shall demonstrate how to solve fatigue problems in practice.
Examples like the ICE disaster at Eschede or structural problems of the Combino tram demonstrate the significance of this subject. The fatigue behavior of lightweight structures for vehicles and aircrafts has to be considered during the component design process. Designing the static strength of a component alone is not sufficient since fatigue damages of such components may cause extremely high costs.
Structural components of modern aircraft like Airbus A380 or A400M are designed with respect to crack growth using the damage tolerance philosophy.
Understanding fatigue strength and its phenomena requires broad knowledge of material behavior, services loads, manufacturing effects as well as of analysis and test methods. Fatigue strength is a highly interdisciplinary area of work. For this the most important tools and methods shall be presented.
Content1. INTRODUCTION, OVERVIEW, MOTIVATION
1.1 Preface (General introduction and history survey) (Schijve; Chapter 1)
1.2 Standards and Guidelines
1.3 Examples of damage events • Comet-Accident (Pressure cycles, stress concentration)
• Aloha-Incident at Hawaii (Multiple site damage)
• Accident of an aerial passenger tramway (Fretting corrosion on axle)
• ICE-Accident (Wheel failure)
1.4 Presentations
• DVD "MTW Materialermüdung (1995, 21')",
• DVD "F/A-18 Full Scale Fatigue Test (2004, 12')",
• DVD "Sicherheit von Seilbahnen (1996, 7')" with discussion

2. LOADING
2.1 Fatigue strength overview
2.2 Significance of operational loading
2.3 Types of load histories(Schijve; Chapter 9)
2.4 Terms and definitions (Schijve; Chapter 9)
2.5 Measurement of operational loadings (Schijve; Chapter 9)
2.6 Counting algorithms (Schijve; Chapter 9)
2.7 Frequency distributions or spectra (Schijve; Chapter 9)
2.8 Impact of spectrum shape
2.9 Design Spectra (Schijve; Chapter 13)

3. MATERIAL
3.1 Fatigue strength overview
3.2 Evaluation of material properties for cyclic loading (Schijve; Chapter 13)
3.3 Fatigue properties (Schijve; Chapter 6)
3.4 Wöhler-Diagram (Schijve; Chapter 6, 7)
3.5 Scatter of fatigue properties (Schijve; Chapter 12)
3.6 Mean stress effect (Schijve; Chapter 6)
3.7 Damage mechanisms & matierial selection (Schijve; Chapter 2)
3.8 Environmental effects (Schijve; Chapter 16, 17)
3.9 Specific fatigue properties (Schijve; Chapter 6)

4. STRUCTURAL COMPONENT
4.1 Fatigue strength overview
4.2 Notches (Schijve; Chapter 3, 7)
4.3 Residual stresses (Schijve; Chapter 4)
4.4 Size effect
4.5 Surface condition and surface layers (Schijve; Chapter 7, 14)
4.6 Fretting corrosion (Schijve; Chapter 15)
4.7 Summary of fatigue strength improving methods (Schijve; Chapter 14)

5. SAFETY FACTORS (Schijve; Chapter 19)

6. FATIGUE STRENGTH ASSESSMENT
6.1 Fatigue strength overview
6.2 Assessment concepts for fatigue lifetime prediction
6.3 Assessment of the endurance strength
6.4 Finite life fatigue strength assessment using the nominal stress concept (Schijve; Chapter 10)
6.5 Local stress-strain concept (Schijve; Chapter 10)
6.6 Fracture mechanics concept (Schijve; Chapter 5, 8, 11)
6.7 Accuracy of concepts for fatigue lifetime assessment

7. STRUCTURAL INTEGRITY CONCEPTS
7.1 Safe life design (Mirage III, Pressure Vessel)
7.2 Fail safe design (modern aircraft construction)
7.3 Damage tolerance (approach according to US Air Force)
7.4 F/A-18 design philosophy
7.5 Summary
Lecture notesAll lecture chapters are on Powerpoint presentations. The chapters will be available as presentation handouts at the first day for a fee of CHF 20.-
LiteratureRecommended books as supplement to the lecture:

Schijve, Jaap
Fatigue of Structures and Materials
Springer Verlag, Berlin, ISBN 978-1-4020-6807-2 (Hardcover)

Broek, David
The Practical Use of Fracture Mechanics
Springer Netherlands, ISBN 978-90-247-3707-9 (Hardcover)
Prerequisites / NoticeDepending on actual fatigue tests a Laboratory visitation at Empa in Dübendorf may be organized.
151-0353-00LMechanics of Composite Materials Information W4 credits2V + 1UG. Kress
AbstractModelling of stiffness and strength of fiber-reinforced plastics and laminates made thereof as well as simple structures is considered. For free-edge effects and periodic structures numerically efficient FEM approaches for generalized plane strain and unit-cell modelling are explained. Finally, the mechanical interpretation of experimental measurement results is treated.
ObjectiveThe objective is to impart understanding of the mechanical response of structures made from anisotropic and heterogeneous fiber-reinforced composite materials with all the peculiarities which are not known from metals. The course shall incite fascination with the multifaceted and exciting modelling questions in this field, providing a basis for research. On the other hand the course provides qualification for composite-materials product development within an industrial environment.
Content1. Introduction and elastic anisotropy
2. Laminate theory
3. Thick-walled laminates and interlaminar stresses
4. Edge effects at multidirectional laminates
5. Structural problems and simplified finite-element modelling
6. Micromechanics
7. Failure hypotheses and damage prediction
8. Damage progression analysis
9. Static-strength notch-size influence
10. Fatigue Response
11. Design and sizing, sandwich theory
12. Plain-weave non-linear mechanical model
13. Composite materials mechanical testing
Lecture notesScript and all other course material is available on MOODLE:

https://moodle-app2.let.ethz.ch/course/view.php?id=2610
LiteratureThe lecture material is covered by the script and further literature is referenced in there.
Prerequisites / NoticeNone
151-0357-00LRopeway TechnologyW4 credits3GG. Kovacs
AbstractRopeways represent a public transport system where steel wired ropes play a central role. Such systems come to a favorite transport solution when the costs for conventional systems become out of scale due to difficult and impossible terrestrial surface (alpine terrain).
Additionally ropeways are environment friendly, very energy efficient and offer a very high safety level.
ObjectiveCable cars make use of extensive mechanical systems, which because of their operational location, are exposed to difficult meteorological and topographical conditions. In order to guarantee the requisite safety and reliability of the equipment, the components and their interaction in the system must fulfil stringent functional requirements. This is particularly the case because of the significant distance (2-4km) between the individual structures.
The lectures with related exercises offer an excellent opportunity to apply the learned theoretical basic principles of mechanics and engineering in plant construction. Not only the function and resistance of individual components will be studied, but also complex interactions, which are imperative for the safe and smooth running of the equipment. It also includes the teaching of the basics of project planning and design, as well as the evaluation of systems in a distinctly interdisciplinary manner. For the manufacturer of a cable car installation the integration of sub-assemblies making use of very different technologies always poses a particular challenge. For this reason, the methodology for the handling of these typical engineering assignments is important and makes up a significant part of the lecture content.
ContentCable cars and cable cranes: Construction methods and areas of application. The use of mechanical principles in system engineering, Swiss building and business regulations, planning and equipment with special consideration for business and the environment: steel cables (construction, evaluation, damage, inspection), drive mechanisms, brakes, vehicles, construction over an extended area. Calculation of the supporting cable with weight strain and with fixed mountings on both sides. Excursions.
Lecture notesSEILBAHNEN I
151-0360-00LProcedures for the Analysis of StructuresW4 credits2V + 1UG. Kress
AbstractBasic theories for structure integrity calculations are presented with focus on strength, stability, fatigue and elasto-plastic structural analysis.
Theories and models for one dimesional and planar structures are presented based on energy theorems.
ObjectiveBasic principles applied in structural mechanics. Introduction to the theories of planar structures. Development of an understanding of the relationship between material properties, structural theories and design criteria.
Content1. Basic problem of continuum mechanics and energy principles: structural theories, homogenization theories; finite elements; fracture mechanics.
2.Structural theories for planar structures and stability: plane-stress, plate theory, buckling of plates (non-linear plate theory).
3.Strength of material theories and material properties: ductile behaviour, plasticity, von Mises, Tresca, principal stress criterion; brittle behaviour; viscoplastic behaviour, creep resistance.
4. Structural design: fatigue and dynamic structural analysis.
Lecture notesScript and all other course material available on MOODLE
Prerequisites / Noticenone
151-0368-00LAeroelasticityW4 credits2V + 1UF. Campanile
AbstractIntroduction to the basics and methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads.
ObjectiveThe course will give you a physical basic overview of current-structure phenomena. Furtermore you will get to know the most important phenomena in the statistical and dynamical aeroelastic as well as an introduction to the methods for mathematical descriptions and for the wording of quantitative forecasts.
ContentElemente der Profilaerodynamik. Aeroelastische Divergenz am starren Streifenmodell. Aeroelastische Divergenz eines kontinuierlichen Flügels. Allgemeines über statische Aeroelastik.
Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene.
Grundelemente der instationären Aerodynamik.
Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns.
Einführung in die Modalanalyse
Einfühung in weitere Phänomene der dynamischen Aeroelastik.
LiteratureY. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions.
151-0509-00LMicroscale Acoustofluidics Restricted registration - show details
Number of participants limited to 30.
W4 credits3GJ. Dual
AbstractIn this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.
ObjectiveUnderstanding acoustophoresis, the design of devices and potential applications
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab session and hand in homework.
151-0513-00LMechanics of Soft Materials and TissuesW4 credits3GA. E. Ehret
AbstractAn introduction to concepts for the constitutive modelling of highly deformable materials with non-linear properties is given in application to rubber-like materials and soft biological tissues. Related experimental methods for materials characterization and computational methods for simulation are addressed.
ObjectiveThe objective of the course is to provide an overview of the wide range of non-linear mechanical behaviors displayed by soft materials and tissues together with a basic understanding of their physical origin, to familiarize students with appropriate mathematical concepts for their modelling, and to illustrate the application of these concepts in different fields in mechanics.
ContentSoft solids: rubber-like materials, gels, soft biological tissues
Non-linear continuum mechanics: kinematics, stress, balance laws
Mechanical characterization: experiments and their interpretation
Constitutive modeling: basic principles
Large strain elasticity: hyperelastic materials
Rubber-elasticity: statistical vs. phenomenological models
Biomechanics of soft tissues: composites, anisotropy, heterogeneity
Dissipative behavior: examples and the concept of internal variables.
Lecture notesAccompanying learning materials will be provided or made available for download during the course.
LiteratureRecommended text:
G.A. Holzapfel, Nonlinear Solid Mechanics - A continuum approach for engineering, 2000
L.R.G. Treloar, The physics of rubber elasticity, 3rd ed., 2005
P. Haupt, Continuum Mechanics and Theory of Materials, 2nd ed., 2002
Prerequisites / NoticeA good knowledge base in continuum mechanics, ideally a completed course in non-linear continuum mechanics, is recommended.
151-0519-00LComputational Solid Mechanics Information W4 credits4GD. Kochmann
AbstractTheoretical foundations and numerical applications of computational solid mechanics with a focus on the finite element method and related techniques, including the development and implementation of a finite element code in C++.
ObjectiveTo acquire the theoretical background and the practical implementation experience required to develop and use computational codes and to computationally solve problems of solid mechanics.
ContentTheoretical concepts of computational continuum mechanics (continuum mechanics in small and finite strains, constitutive modeling, variational methods, finite elements and finite differences, elastodynamics, initial boundary value problems), implementation strategies and details (coding in C++, development of a finite element code including material models, elements, assemblers, solvers, etc.) and application of the code to solve initial boundary value problems.
Lecture notesNotes will be provided.
LiteratureNo textbook, helpful reference literature will be announced.
Prerequisites / NoticeA background in solid mechanics is required (e.g., Mechanics 1, 2 and 3 or equivalent); a background in continuum mechanics is helpful.
151-0523-00LRailway Vehicle DynamicsW4 credits2V + 1UO. Polach
AbstractAfter an introduction in to the railway vehicle design, the modelling of the contact between wheel and rail, the building of a simulation model and the fundamentals of the track guiding will be explained. The applications of simulations in the development of railway vehicles will be presented and illustrated on examples.
ObjectiveDevelopment of the theoretical basics regarding the track guiding and the vehicle running dynamics. Understanding the background of multi-body dynamics simulation tools and their application in the development of railway vehicles.
ContentIntroduction in to railway vehicle technology: Vehicle concepts, bogies, suspension systems, brakes, drives.
Use of multi-body simulations in the railway vehicle industry. Simulation programmes.
Vehicle model: Model building, modelling of coil springs, rubber to metal springs, air springs and suspension components with friction.
Wheel/rail contact: Contact geometry, contact area, normal forces, tangential forces.
Track models. Modelling of track irregularities.
Linearization of the contact geometry wheelset-track.
Fundamentals of track guiding.
Eigenbehaviour, calculation of eigenvalues.
Linearised and nonlinear calculation of running stability: Methods and assessment criteria. Influence of vehicle design on the running stability.
Curving: Fundamentals, quasi-static solution, dynamic simulation, assessment criteria. Influence of vehicle design on the vehicle performance in curve.
Ride comfort assessment.
Testing and simulations for the acceptance of running characteristics of railway vehicles. Validation of simulation models for the application in context of vehicle acceptance.
Lecture notesScript will be provided.
Prerequisites / NoticeFundamentals of mechanics and physics.
151-0524-00LContinuum Mechanics IW4 credits2V + 1UE. Mazza
AbstractThe lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elsticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and eperiments.
ObjectiveBasic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.
ContentAnisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten.
Lecture notesyes
151-0525-00LWave Propagation in SolidsW4 credits2V + 1UJ. Dual, D. Mohr
AbstractPlane Waves, harmonic waves, Fourier analysis and synthesis, dispersion, distorsion, damping, group and phase velocity, transmission and reflection, impact, waves in linear elastic continua, elastic plastic waves, experimental and numerical methods in wave propagation.
ObjectiveStudents learn, which technical problems must be approached using the methods used in wave propagation in solids. Furthermore, they learn to use these methods and develop an intuitive feeling for phenomena that can be expected in various situations.
ContentWave Propagation in solids including applications.
Content: Phenomenology of wave propagation ( plane waves, harmonic waves, harmonic analysis and synthesis, dispersion, attenuation, group and phase velocity), transmission and reflection, impact problems, waves in linear elastic media ( P- Waves, S-Waves, Rayleigh waves, guided waves), elastic plastic waves, experimental and numerical methods.
Lecture notesHandouts
LiteratureVarious books will be recommended pertaining to the topics covered.
Prerequisites / NoticeLanguage according to the wishes of students.
151-0532-00LNonlinear Dynamics and Chaos I Information W4 credits2V + 2UF. Kogelbauer
AbstractBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
ObjectiveThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Content(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
Lecture notesThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Prerequisites / Notice- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
151-0535-00LOptical Methods in Experimental MechanicsW4 credits3GE. Hack, R. Brönnimann
AbstractThe lecture introduces optical methods to assess the mechanical behaviour of a structure, to determine material parameters, and to validate results from numerical simulations. Focus is on camera-based techniques for deformation, strain and stress analysis. Applications, strengths and limitations are discussed. The lecture includes two afternoons of hands-on experience at Empa in Dübendorf.
ObjectiveThe students are able to design basic optical set-ups and describe the process of image formation. They understand the working principle of various optical techniques for shape, deformation and strain measurement. Most notably, they can explain how the measurand is transformed into an interference signal, a change of polarization or of surface temperature. They know the main application fields of the individual techniques. They are able to choose the most appropriate technique for solving a measurement task and to estimate its expected resolution. Through the hands-on experience the students gain a deeper and sustained understanding of the content by applying the theoretical foundations to tangible measurement tasks.
ContentAfter an introduction into optics and image acquisition the lecture explains how to transform mechanical quantities such as strain, stress or deformation into an image content. The measurement techniques make use of a variety of optical principles:

- Triangulation (Digital Image Correlation, Fringe Projection)
- Interference (Speckle Pattern Interferometry, Shearography)
- Diffraction (Moiré-Interferometry, Fiber Bragg Grating)
- Birefringence (Photoelasticity)
- Infrared radiation (Thermal Stress Analysis)

In addition, dynamic measurements in the context of modal analysis and transient events are explained. The calibration of imaging optical methods and their application to the validation of numerical simulations are discussed.

The content is structured as follows:
1. Imaging methods: an introduction
2. Digital Image Correlation
3. White light structured light techniques
4. Diffraction and interferometry
5. Speckle pattern interferometry
6. Modal analysis and transient deformations
7. Applications to microsystems and interfaces
8. Stress analysis: Photoelasticity
9. Stress analysis: Thermoelasticity
10. Calibration and Validation of numerical models
11. Fibre based methods

The lecture includes two afternoons at Empa, where the student will gain first-hand experience with optical methods. Hands-on laboratory includes e.g. Digital Image Correlation, Speckle pattern interferometry, Thermal Stress Analysis, Fibre optic sensors, Fringe projection, depending on availability of the equipment and the interest of the students.
Lecture notesCopies of the presented slides will be made available on-line through ILIAS. Each lecture contains a set of exercises. You will be invited to a private blog which will stimulate the discussion of the lecture and the exercises. Standard solutions for the exercises will be posted with a time lag.
LiteratureA good overview on the optical methods is presented in the following text books:

Toru Yoshizawa, Ed., Handbook of Optical Metrology, 2nd edition, 2015, CRC Press, Boca Raton
ISBN 978-1-4665-7359-8

Pramod Rastogi, Erwin Hack, Eds., Optical Methods for Solid Mechanics: A Full-Field Approach
2012, Wiley-VCH, Berlin
ISBN 978-3-527-41111-5

W. N. Sharpe Jr., Ed., Handbook of Experimental Solid Mechanics
2009, Springer, New York
ISBN 978-0-387-26883-5
Prerequisites / NoticeBasic knowledge of optics and interferometry as taught in basic physics courses are advantageous.

The two afternoons with hands-on experience are central elements of the lecture.
151-0550-00LAdaptive Materials for Structural Applications Information W4 credits3GP. Ermanni, A. Bergamini
AbstractAdaptive materials offer appealing ways to extend the design space of structures by introducing time-variable properties into them. In this course, the physical working principles of selected adaptive materials are analyzed and simple models for describing their behavior are presented. Some applications are illustrated, also with laboratory experiments where possible.
ObjectiveThe study of adaptive materials covers topics that range from chemistry to theoretical mechanics.

The aim of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.
ContentThis course will provide the students with an insight into the properties and physical phenomena which lead to the features of adaptive materials. Starting from chemomechanical (skeletal muscles), the physical behavior of a wide range of adaptive materials, thermo- and photo-mechanical, electro-mechanical, magneto-mechanical and meta-materials will be thoroughly discussed and analyzed. Up-to-date results on their performance and their implementation in mechanical structures will be detailed and studied in laboratory sessions. Analytical tools and energy based considerations will provide the students with effective instruments for understanding adaptive materials and assess their performance when integrated in structures or when arranged in particular fashions.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Chemo-mechanical coupling: Energy conversion in skeletal muscle and other chemomechanical systems,optional: and photo-mechanical coupling, azopolymers.

Thermo-mechanical coupling: Shape memory alloys / polymers

Electromechanical coupling(1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect
Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials - electromagnetic, acoustical and other metamaterials

Magneto-mechanical coupling: Magnetostrictive effect, mSMA, magnetorheological fluids, ferrofluids

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,...
Lecture notesLecture notes (manuscript and handouts) will be provided
151-0573-00LSystem Modeling Information W4 credits2V + 2UG. Ducard
AbstractIntroduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.
ObjectiveLearn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.
ContentThis class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.
Lecture notesThe handouts in English will be sold in the first lecture.
LiteratureA list of references is included in the handouts.
151-0655-00LSkills for Creativity and InnovationW4 credits3GI. Goller, C. Kobe
AbstractThis lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.
Objective- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams
ContentBasic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer
Lecture notesSlides, script and other documents will be distributed via moodle.ethz.ch
(access only for students registered to this course)
LiteratureGoller, I. & Bessant, J. (2017). Creativity for Innovation Management. Routledge. (ISBN-13: 978-1138641327)
As well as material handed out in the lecture
151-0703-00LOperational Simulation of Production LinesW4 credits2V + 1UP. Acél
AbstractThe student learns the application of the event-driven and computer-based simulation for layout and operational improvement of production facilities by means of practical examples.
ObjectiveThe student learns the right use of (Who? When? How?) of the event-driven and computer-based simulation in the illustration of the operating procedures and the production facilities.
Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples.
The student should make his first experiences in the use of computer-based simulation.
Content- Application and application areas of the event-driven simulation
- Exemplary application of a software tool (Technomatrix-Simulation-Software)
- Internal organisation and functionality of simulation tools
- Procedure for application: optimizing, experimental design planning, analysis, data preparation
- Controlling philosophies, emergency concepts, production in sequence, line production, rescheduling
- Application on the facilities projecting

The knowledge is enhanced by practice-oriented exercises and an excursion. A guest speaker will present a practical example.
Lecture noteswill be distributed simultaneously during lecture (+ PDF)
Prerequisites / NoticeRecommended for all Bachelor-Students in the 5th semester and Master-Students in the 7th semester.
151-0705-00LManufacturing IW4 credits2V + 2UK. Wegener, M. Boccadoro, F. Kuster
AbstractDeeper insight in manufacturing processes: drilling, milling, grinding, honing, lapping, electro erosion and electrochemical machining. Stability of processes, process chains and process choice.
ObjectiveDeepened discussion on the machining processes and their optimisation. Outlook on additional areas such as NC-Technique, dynamics of processes and machines, chatter as well as process monitoring.
ContentDeepened insight in the machining processes and their optimisation, chip removal by undefined cutting edge such as grinding, honing and lapping, machining processes without cutting edges such as EDM, ECM, outlook on additional areas as NC-technique, machine- and process dynamics including chatter and process monitoring
Lecture notesyes
Prerequisites / NoticePrerequisites: Recommendation: Lecture 151-0700-00L Manufacturing elective course in the 4th semester.
Language: Help for English speaking students on request as well as english translations of the slides shown.
151-0717-00LMechanical Production: Assembly, Joining and Coating TechnologyW4 credits2V + 1UF. Kuster, V. H. Derflinger, F. Durand, P. Jousset
AbstractUnderstanding of the complexity of the assembly process as well as its meaning as success and cost factor. The assembly with the different aspects of adding, moving, adjusting, controling parts etc.. Adding techniques; solvable and unsolvable connections. Assembly plants. Coating techniques and their tasks, in particular corrosion protection.
ObjectiveTo understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a choice of selected joining and coating techniques.
ContentAssembly as combination of several classes of action like, e.g., joining, handling, fine adjustments, etc. Techniques for joining objects temporarily or permanently. Assembly systems.
Coating processes and their specific applications, with particular emphasis on corrosion protection.
Lecture notesYes
Prerequisites / NoticeRecommended to the focus production engineering.
Majority of lecturers from the industry.
151-0719-00LQuality of Machine Tools - Dynamics and Metrology at Micro and Submicro LevelW4 credits2V + 1UA. Günther, F. Kuster
AbstractThe course "Machine tool metrolgy" deals with the principal design of machine tools, their spindles and linear axes, with possible geometric, kinematic, thermal and dynamic errrors of machine tools and testing these errors, with the influence of errors on the workpiece (error budgeting), with testing of drives and numerical control, as well as with checking the machine tool capability.
ObjectiveKnowledge of
- principal design of machine tools
- errors of linear and rotational axes and of machine tools,
- influence of errors on the workpiece (error budgeting)
- dynamics of mechanical systems
- geometric, kinematic, thermal, dynamic testing of machine tools
- test uncertainty
- machine tool capability
ContentMetrology for production, machine tool metrology
- basics, like principal machine tool design and machine tool coordinate system
- principal design and errors of linear and rotaional axes
- error budgeting, influence of machine errors on the workpiece
- geometric and kinematic testing of machine tools
- reversal ,easurement techniques, multi-dimensional machine tool metrology
- thermal influences on machine tools and testing these influences
- test uncertainty, simulation
- dynamics of mechanical systems, dynamic error sources
- machine tool dynamics and the engineering tools modal analysis and finite lement method (FEM)
- testing of drives and numerical control
- machine tool capability
Lecture notesDocuments are provided during the course. English handouts available on request.
Prerequisites / NoticeExercises in the laboratories and with the machine tools of the institute for machine tools and manufacturing (IWF) provide the practical background for this course.
151-0721-00LProduction Machines IIW4 credits2V + 1UK. Wegener, F. Kuster, S. Weikert
AbstractControl, closed loop control, processing of geometrical data, main drives, noise, flexibility, rationalization and automation, modern machine concepts, thermal and dynamic behavior
ObjectiveDeeper competence for evaluation and development of production machines, sensitization for unconventional kinematics with their advantages and drawbacks.
ContentControl (PLC, NC), closed loop control, processing of geometrical data, main drives, noise emission, flexibility, rationalization and automation, modern machine concepts like high speed machines, alternative kinematics, ultraprecision machines, thermal and dynamic behavior of machine tools, flexibility, rationalization and automation, practical case studies
Lecture notesyes
Prerequisites / NoticeHelp for English speaking students on request.
Parts of the lecture are held in english.
151-0723-00LManufacturing of Electronic Devices Information W4 credits3GA. Kunz, A. Guber, R.‑D. Moryson, F. Reichert
AbstractThe lecture follows the value added process sequence of electric and electronic components. It contains: Development of electric and electronic circuits, design of electronic circuits on printed circuit boards as well as in hybrid technology, integrated test technology, planning of production lines, production of highly integrated electronic on a wafer as well as recycling.
ObjectiveKnowledge about the value added process sequence for electronics manufacturing, planning of electric and electronic product as well as their production, planning of production lines, value added process sequence for photovoltaics.
ContentNothing works without electronics! Typical products in mechanical engineering such as machine tools, as well as any kind of vehicle contain a significant amount of electric or electronic components of more than 60%. Thus, it is important to master the value added process sequence for electric and electronic components.

The lecture starts with a brief introduction of electronic components and the planning of integrated circuits. Next, an overview will be provided about electronic functional units assembled from these electronic components, on printed circuit boards as well as in hybrid technology. Value added process steps are shown as well as their quality check and their combination for planning a complete manufacturing line. The lecture further describes the manufacturing of integrated circuits, starting from the wafer via the structuring and bonding to the packaging. As an example, the manufacturing of micro-electromechanic and electro-optical systems and actuators is described. Due to similar processes in the electronic production, the value added process sequence for photovoltaics will described too.

The lecture concludes with an excursion to a large manufacturing company. Here, students can the see the application and realization of the manufacturing of electric and electronic devices.
Lecture notesLecture notes are handed out during the individual lessons (CHF 20.-).
Prerequisites / NoticeHelp for English speaking students on request.

The lecture is partly given by experts from industry. It is supplemented by an excursion to one of the industry partners.
151-0727-00LColloquium on Manufacturing TechnologyW4 credits3KK. Wegener, F. Kuster
AbstractFuture training on selected current topics of the manufacturing technology. Per afternoon a selected topic is presented in several lectures, by the majority by experts from the industry. The students prepare a summary of the lectures given and prepare themselves on the basis of these lectures and own information search.
ObjectiveContious further training to current topics of the manufacturing technique. Exchange of experience and knowledge with the industry and other universities.
ContentSelected actual topics on manufacturing methods and tools, machine tools, NC-control and drives, components and measuring methods and devices. Topics are changing every year.
Lecture notesno Script
Prerequisites / Notice- Students must have participated and passed the courses Manufacturing, Production Machines I and Forming Technology III - Forming Processes.

- Further training with specialized lectures and large participation from the industry.
Language: Help for English speaking students on request.
151-0731-00LForming Technology I - Basic Knowledge Information W4 credits2V + 2UP. Hora
AbstractThe fundamentals of forming technology are ipresented to Mechanical, Production and Material Engineers. The content of the lecture is: Overview of manufacturing with forming techniques, deformation specific description of material properties and their experimental measurement, material laws, residual stresses, heat balance, tribological aspects of forming processes, workpiece and tool failure.
ObjectiveForming technology represents with its 70% global share in manufactured metal volume with respect to yield and cost, the most important manufacturing process in metal-working industries. Typical applications of forming technology range from the manufacturing of sheet metal compontens in auto bodies to applications in food and pharma packaging, fabrication of implants in medical technologies and to the fabrication of leads in microelectronic components. This course introduces the fundamentals which are essential to evaluate metal-forming processes and its industrial applications. This includes, together with the acquirements of the most important forming processes, the characterization of plastic material behavior and manufacturing limits.
ContentOverview of the most important processes of metal-forming technology and its field of applications, characterization of the plastic metal-forming behavior, basic principles of plasto-mechanical calculations, metal-forming residual stresses, thermo-mechanical coupling of metal-forming processes, influence of tribology. Work piece failure through cracking and folding, tool failure through rupture and mechanical wear, metal-forming tools, sheet forming and massive forming processes, handling systems, metal-forming machinery.
Lecture notesja
151-0733-00LForming Technology III - Forming Processes Information W4 credits2V + 2UP. Hora
AbstractThe lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified.
ObjectiveAcquaintance with forming processes. Determination of forming processes. Interpretation of forming manufacturing
ContentThe study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling; active principle; elementary methods to estimate stress and strain; fundamentals of process design; manufacturing limits and machining accuracy; tools and operation; machinery and machine usage.
Lecture notesja
151-0833-00LPrinciples of Nonlinear Finite-Element-Methods Information W5 credits2V + 2UN. Manopulo, B. Berisha
AbstractMost problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced in the scope of this lecture for treating such problems.
ObjectiveThe goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of:

- Crash
- Collapse of structures
- Materials in Biomechanics (soft materials)
- General forming processes

Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex non linear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations
Content- Fundamentals of continuum mechanics to characterize large plastic deformations
- Elasto-plastic material models
- Updated-Lagrange (UL), Euler and combined Euler-Lagrange (ALE) approaches
- FEM implementation of constitutive equations
- Element formulations
- Implicit and explicit FEM methods
- FEM formulations of coupled thermo-mechanical problems
- Modeling of tool contact and the influence of friction
- Solvers and convergence
- Modeling of crack propagation
- Introduction of advanced FE-Methods
Lecture notesyes
LiteratureBathe, K. J., Finite-Element-Procedures, Prentice-Hall, 1996
Prerequisites / NoticeIf we will have a large number of students, two dates for the exercises will be offered.
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, K. Wegner, M. Eggersdorfer
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
151-3203-00LGrand Challenges in Engineering DesignW1 credit3SP. Ermanni, M. Meboldt, K. Shea
AbstractThe course is structured in three main blocks, each of them addressing a specific grand challenge in engineering design. Each block is composed of an introductory lecture and two to three talks from various speakers from academia and industry.
ObjectiveThe aim of the course is to introduce students to the engineering design research and practice in a multitude of Mechanical Engineering disciplines and convey knowledge from both academia and industry about state of the art methods, tools and processes.
ContentThe students are exposed to a variety of topics in the field of Engineering Design. Topics are bundled in three main grand challenges and include an introductory lecture held by one of the responsible Professors and 2-3 talks each, addressing specific issues and examples. The success of the course is largely dependant on active involvement of the students. The students also individually prepare and present a topic related to the grand challenges presented in the lectures.
Prerequisites / NoticeOffered in English and German
151-3217-00LCoaching Student Teams (Basic Training)W1 credit1GR. P. Haas, I. Goller, M. Lehner, B. Volk
AbstractAim is enhancement of knowledge and competency regarding coaching skills. Participants should be active coaches of a student team. Topics: Overview of the roles and mind set of a coach as, introduction into coaching methodology, mutual learning and reflecting of participants coaching expertise and situations.
Objective- Basic knowledge about role and mindset of a coach
- Basic Knowledge and reflection about classical coaching situations
- Inspiration and mutual learning from real coaching sessions (mutual peer observation)
ContentBasic knowledge about role and mindset of a coach
- Introduction into coaching: definition & models
- Introduction into the coaching process and team building phases
- Role of coaches between examinator, tutor and ""friend""
First steps building up personal coaching competencies, e.g. active listening, asking questions, giving feedback
- Competencies in theoretical models
- Coaching competencies: exercises and reflection
Some Reflection and exchange of experiences about personal coaching situations
- Exchange of experiences in the lecture group
- Mutual peer observations
Lecture notesSlides, script and other documents will be distributed electronically
(access only for participants registered to this course)
LiteraturePlease refer to lecture script.
Prerequisites / NoticeParticipants (Students, PhD Students, Postdocs) should be active coaches of a student project team.
151-3219-00LCoaching Student Teams (Advances Course 1)
This course assumes that participants have completed the basic training (151-3217-00L Coaching Student Teams (Basic Training)).
W1 credit1GR. P. Haas, I. Goller, M. Lehner, B. Volk
AbstractAim is enhancement of knowledge and competency regarding coaching skills. Participants should be active coaches of a student team. Topics: Overview of the roles and mind set of a coach as, introduction into coaching methodology, mutual learning and reflecting of participants coaching expertise and situations.
Objective- Basic knowledge about role and mindset of a coach
- Knowledge and reflection about classical coaching situations
- Development of personal coaching skills
- Knowledge and know-how about coaching methods
ContentAdvanced knowledge about role and mindset of a coach
- Introduction into coaching: definition & models
- Introduction into the coaching process and team building phases
- Role of coaches between examinator, tutor and "friend"
Development of personal coaching competencies, e.g. active listening, asking questions, giving feedback
- Competencies in theoretical models
- Coaching competencies: exercises and reflection
Knowledge and reflection about coaching situations in student teams
- Knowledge about team development
- Reflection about critical project phases
- Know-how about reference model for analysis critical situations
Reflection and exchange of experiences about personal coaching situations
- Self-reflection including individual coaching session and case study
- Exchange of experiences in the lecture group
- Mutual peer observations
Knowledge and know-how about coaching methods and situations
- Knowledge about basic coaching methods for student teams
- Know-how about usage of methods in the coaching process
- Facilitating decisions
- Using and applying coaches opinions and knowledge
- Facilitating conflict situations
Optional
- Organizational and management aspects
- How to do project/system engineering and simultaneous activities
- Project planning and re-planning
Lecture notesSlides, script and other documents will be distributed electronically
(access only for participants registered to this course).
LiteraturePlease refer to lecture script.
Prerequisites / Notice- Participants (Students, PhD Students, Postdocs) should be active coaches of a student project team.
- Completiont of the basic training is required.
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0523-00LRailway Systems IW6 credits4GM. Meyer
AbstractBasic characteristis of railway vehicles and their interfaces with the railway infrastructure:
- Transportation tasks and vehicle types
- Running dynamics
- Mechanical part of rail vehicles
- Brakes
- Traction chain and auxiliary supply
- Railway power supply
- Signalling systems
- Traffic control and maintenance
Objective- Overview of the technical characteristics of railway systems
- Know-how about the design and construction principles of rail vehicles
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators
ContentEST I (Frühjahrsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichte und Struktur des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnfahrzeuge:
2.3 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrweg
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
Betriebszentrale SBB, Zürich Flughafen
Reparatur und Unterhalt, SBB Zürich Altstetten
Fahrzeugfertigung, Stadler Bussnang
Lecture notesAbgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.
Prerequisites / NoticeDozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.
252-0535-00LMachine Learning Information W8 credits3V + 2U + 2AJ. M. Buhmann
AbstractMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
ObjectiveStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
ContentThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
Lecture notesNo lecture notes, but slides will be made available on the course webpage.
LiteratureC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Prerequisites / NoticeThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
252-0543-01LComputer Graphics Information W6 credits3V + 2UM. Gross, J. Novak
AbstractThis course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes.
ObjectiveAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
ContentThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering.
Lecture notesno
Prerequisites / NoticePrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
327-0501-00LMetals IW3 credits2V + 1UR. Spolenak
AbstractRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ObjectiveRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ContentDislocation theory:
Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
Hardening theory:
a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
b. particle hardening: case studies on aluminium-copper alloys
High temperature plasticity:
thermally activated glide
power-law creep
diffusional creep: Coble, Nabarro-Herring
deformation mechanism maps
Case studies in turbine blades
superplastizity
alloying effects
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-4101-00LDurability of Engineering MaterialsW2 credits2GJ. Wheeler
AbstractBasics of fracture mechanics, an engineering discipline that draws upon the principles of applied mechanics and materials science. The course gives the tools to a successful application of fracture mechanics concepts to failure analysis.
ObjectiveThe students should know the possibilities and limitations of the use of “standard” materials as well as get an idea of new innovative development to prevent failure problems. It is an introduction to the field of fracture mechanics, an engineering discipline that draws upon the principles of applied mechanics and materials science. Cracks and crack-like defects are evaluated with a view to understanding and predicting the cracks' growth tendencies. Such growth may be either stable (relatively slow and safe) or unstable (instantaneous and catastrophic). The course gives the tools to a successful application of fracture mechanics concepts to failure analysis.
ContentCrack-flaws cannot be neglected in engineering analysis. Even microscopic crack flaws can grow over time, ultimately resulting in fractured components. Structures that may have been blindly deemed "safe" could fail disastrously, causing injuries to its users, or the loss of life. Fracture mechanics can be used to:

* Determine how large a crack can be in a structure before it leads to catastrophic failure
* Predict the rate at which a crack can approach a critical size due to fatigue loads or aggressive environmental conditions

The topics covered are

* Introduction to Linear Elastic Fracture Mechanics (LEFM): crack tip stress, strain and displacement fields in linear elastic materials (Modes I, II and III); the stress-intensity factor, K; the fracture toughness KIc and their determination; fracture criterion
* Estimates of crack plastic zones in ductile materials
* The compliance method; experimental determination of compliance
* Introduction to fracture mechanics of nonlinear materials: the J-integral; the JIc fracture criterion; JIc testing
* Application of fracture mechanics concepts in the analysis of subcritical crack growth (fatigue, stress corrosion cracking, creep and their combinations)
* Lifetime determination and prediction; failure analysis.
Lecture notesCopy of the overheads
LiteratureT.L. Anderson, Fracture Mechanics, Fundamentals and Applications, CRC Press

K.H. Schwalbe, Bruchmechanik, Carl Hanser Verlag
351-0555-00LOpen- and User Innovation Information W3 credits2GS. Häfliger, S. Spaeth
AbstractThe course introduces the students to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies.
ObjectiveThe course includes both lectures and exercises alternately. The goal is to understand the opportunity of user innovation for management and develop strategies to harness the value of user-developed ideas and contributions for firms and other organizations.

The students actively participate in discussions during the lectures and contribute presentations of case studies during the exercises. The combination should allow to compare theory with practical cases from various industries.

The course presents and builds upon recent research and challenges the students to devise innovation strategies that take into account the availability of user expertise, free and public knowledge, and the interaction with communities that span beyond one organization.

Grading is based on the final exam, the class presentations (including the slides) as well as class participation.
ContentThis course on user innovation extends courses on knowledge management and innovation as well as marketing. The students are introduced to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies. Theoretical underpinnings taught in the course include models of innovation, the structuration of technology, and an introduction to entrepreneurship.
Lecture notesThe slides of the lectures are made available and updated continuously through the SMI website:
LiteratureRelevant literature for the exam includes the slides and the reading assignments. The corresponding papers are either available from the author online or distributed during class.

Reading assignments: please consult the SMI website:
363-0445-00LProduction and Operations ManagementW3 credits2GT. Netland
AbstractThis core course on Production and Operations Management provides the students insights into the basic theories, principles, concepts, and techniques used to design, analyze, and improve the operational capabilities of an organization.
ObjectiveThis POM core course provides students a broad theoretical basis for understanding, analyzing, designing, and improving operations. After completing this course:
1. Students can apply key concepts of operations strategy for analyzing production processes.
2. Students can conduct basic process mapping analysis and elaborate the limitations of the chosen method.
3. Students can calculate the needed capacity for production and service operations.
4. Students can select and use problem solving tools and methods.
5. Students can select and use the basic tools of lean thinking to improve the productivity of production and service operations.
6. Students can explain how new technologies and servitization affect production and operations management.
7. Additional skills: Students acquire experience in teamwork, report writing and presentation.
ContentThe course covers the most fundamental strategic and tactical concepts in production and operations management. The lectures cover: Introduction to POM; Operations strategy; Capacity management; Production planning and control; Lean management; Performance measurement; Problem solving; Service operations and servitization; New technologies in POM.
LiteraturePaton, S.; Clegg, B.; Hsuan, J.; Pilkington, A. (2011) Operations Management, 1st ed., McGraw Hill.
363-0445-02LProduction and Operations Management (Additional Cases)W1 credit2AT. Netland
AbstractExtension to course 363-0445-00 Production and Operations Management.
ObjectiveExtension to course 363-0445-00 Production and Operations Management.
ContentAdditional cases to course 363-0445-00 Production and Operations Management.
363-0541-00LSystems Dynamics and ComplexityW3 credits3GF. Schweitzer, G. Casiraghi, V. Nanumyan
AbstractFinding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption
ObjectiveA successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics
ContentWhy are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.
The course is structured along three main tasks:
1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM.
Lecture notesThe lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture
Prerequisites / NoticeSelf-study tasks (discussion exercises, Vensim exercises) are provided as home work. Weekly exercise sessions (45 min) are used to discuss selected solutions. Regular participation in the exercises is an efficient way to understand the concepts relevant for the final exam.
363-0711-00LAccounting for ManagersW3 credits2VJ.‑P. Chardonnens
AbstractOverview of financial and managerial accounting
Accounting for current and fixed assets
Liabilities and owner’s equity
Recording change in balance sheet
Measuring financial performance
Managing financial reporting
Full and variable costing system
Using accounting information for decision making purposes
ObjectiveUnderstand the different procedures involved in the accounting system
Record change in financial position
Measure business income
Prepare final accounts
Understand the principles of cost accounting
Calculate the different product costs
Make decisions about the acceptance or rejection of a particular product
ContentFinancial Accounting: Balance sheet, income statement, double-entry accounting, journal and ledger, accounting for merchandising activities, value-added tax, adjustments before final accounts, provisions, depreciation, valuation,

Managerial Accounting: Full costing, variable costing, cost-volume profit, break-even analysis, activity-based costing

Exercises
Prerequisites / NoticeThis course is a prerequisite for the course Financial Management.
376-1177-00LHuman Factors IW3 credits2VM. Menozzi Jäckli, R. Huang, M. Siegrist
AbstractEvery day humans interact with various systems. Strategies of interaction, individual needs, physical & mental abilities, and system properties are important factors in controlling the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's satisfaction & overall performance.
ObjectiveThe goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.
Content- Physiological, physical, and cognitive factors in sensation and perception
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance and well-being
- Human factors and ergonomics in system designs, product development and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks
Literature- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
376-1219-00LRehabilitation Engineering II: Rehabilitation of Sensory and Vegetative FunctionsW3 credits2VR. Riener, O. Lambercy
AbstractRehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.
ObjectiveProvide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
ContentIntroduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
LiteratureIntroductory Books:

An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007.

Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000.

Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS).

Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008.

The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.


Selected Journal Articles and Web Links:

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432
Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and
Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.

The vOICe. http://www.seeingwithsound.com.

VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
401-0647-00LIntroduction to Mathematical Optimization Information W5 credits2V + 1UD. Adjiashvili
AbstractIntroduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.
ObjectiveThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
ContentTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteratureInformation about relevant literature will be given in the lecture.
Prerequisites / NoticeThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.
Robotics, Systems and Control
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture noteshttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0323-00LAutonomous Mobility on Demand: From Car to Fleet Information Restricted registration - show details
Number of participants limited to 20.
W4 credits4GE. Frazzoli, A. Censi
AbstractAutonomous Mobility on Demand systems based on self-driving cars will make a huge impact in the world. This class describes the basics of modeling, perception, learning, planning, and control for fleets of self-driving cars. We focus particular regard to the problem of integration and co-design of components and behaviors. The course has a heavy experimental component.
ObjectiveThe students will learn how to create all parts of an architecture for a complex multi-robot system performing a nontrivial task (an autonomous taxi service).
ContentPart 1: Single car functionalities (perception-planning-control loop, based on vision data); Part 2: Multiple cars (formal methods for safety, platooning, coordination, fleet-level policy optimization)
Lecture notesCourse notes will be provided for free in an electronic form.
LiteratureCourse notes will be provided for free in an electronic form. These are some books that can be used to provide background information or consulted as references: (1) Siegwart, Nourbakhsh, Scaramuzza - Introduction to autonomous mobile robots; (2) Norvig, Russell - Artificial Intelligent, a modern approach. (3) Peter Corke - Robotics Vision and Control (4) Oussama Khatib, Bruno Siciliano - Handbook of Robotics
Prerequisites / NoticeStudents should have taken a basic course in probability. Students should be familiar with basic programming and Linux use.
151-0532-00LNonlinear Dynamics and Chaos I Information W4 credits2V + 2UF. Kogelbauer
AbstractBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
ObjectiveThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Content(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
Lecture notesThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Prerequisites / Notice- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
151-0563-01LDynamic Programming and Optimal Control Information W4 credits2V + 1UR. D'Andrea
AbstractIntroduction to Dynamic Programming and Optimal Control.
ObjectiveCovers the fundamental concepts of Dynamic Programming & Optimal Control.
ContentDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteratureDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Prerequisites / NoticeRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
151-0567-00LEngine Systems Information W4 credits3GC. Onder
AbstractIntroduction to current and future engine systems and their control systems
ObjectiveIntroduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions.
ContentPhysical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.).
Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions.
Lecture notesIntroduction to Modeling and Control of Internal Combustion Engine Systems
Guzzella Lino, Onder Christopher H.
2010, Second Edition, 354 p., hardbound
ISBN: 978-3-642-10774-0
Prerequisites / NoticeCombined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups
151-0569-00LVehicle Propulsion Systems Information W4 credits3GC. Onder, P. Elbert
AbstractIntroduction to current and future propulsion systems and the electronic control of their longitudinal behavior
ObjectiveIntroduction to methods of system optimization and controller design for vehicles. Understanding the structure and working principles of conventional and new propulsion systems. Quantitative descriptions of propulsion systems
ContentUnderstanding of physical phenomena and mathematical models of components and subsystems (manual, automatic and continuously variable transmissions, energy storage systems, electric drive trains, batteries, hybrid systems, fuel cells, road/wheel interaction, automatic braking systems, etc.).

Presentation of mathematical methods, CAE tools and case studies for the model-based design and control of propulsion systems with the goal of minimizing fuel consumption and emissions.
Lecture notesVehicle Propulsion Systems --
Introduction to Modeling and Optimization
Guzzella Lino, Sciarretta Antonio
2013, X, 409 p. 202 illus., Geb.
ISBN: 978-3-642-35912-5
Prerequisites / NoticeLectures of Prof. Dr. Ch. Onder and Dr. Ph. Elbert are also possible to be held in German.
151-0573-00LSystem Modeling Information W4 credits2V + 2UG. Ducard
AbstractIntroduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.
ObjectiveLearn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.
ContentThis class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.
Lecture notesThe handouts in English will be sold in the first lecture.
LiteratureA list of references is included in the handouts.
151-0593-00LEmbedded Control SystemsW4 credits6GJ. S. Freudenberg, M. Schmid Daners
AbstractThis course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.
ObjectiveFamiliarize students with main architectural principles and concepts of embedded control systems.
ContentAn embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping
Lecture notesLecture notes, lab instructions, supplemental material
Prerequisites / NoticePrerequisite courses are Control Systems I and Informatics I.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid (E-Mail: marischm@ethz.ch)
After your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Detailed information can be found on the course website
http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html
151-0601-00LTheory of Robotics and Mechatronics Information W4 credits3GP. Korba, S. Stoeter
AbstractThis course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. It’s a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
ObjectiveRobotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. This course is a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
ContentAn introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Lecture notesavailable.
Prerequisites / NoticeThe course will be taught in English.
151-0604-00LMicrorobotics Information W4 credits3GB. Nelson
AbstractMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
ObjectiveThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
ContentMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
Lecture notesThe powerpoint slides presented in the lectures will be mad available as pdf files. Several readings will also be made available electronically.
Prerequisites / NoticeThe lecture will be taught in English.
151-0623-00LETH Zurich Distinguished Seminar in Robotics, Systems and Controls Information
Does not take place this semester.
Does not take place this semester.
This couse will be offered in Spring Semester 2018 again.

Students for other Master's programmes in Department Mechanical and Process Engineering cannot use the credit in the category Core Courses
W1 credit1SB. Nelson, J. Buchli, M. Chli, M. Hutter, W. Karlen, R. Riener, R. Siegwart
AbstractThis course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls.
ObjectiveObtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see Link for a list of upcoming lectures.
ContentThis course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see Link for a suggestion of other lectures.
Prerequisites / NoticeStudents are required to attend all seven lectures to obtain credit. If a student must miss a lecture then attendance at a related special lecture will be accepted that is reported in a one page summary of the attended lecture. No exceptions to this rule are allowed.
151-0632-00LVision Algorithms for Mobile Robotics Information Restricted registration - show details
Number of participants limited to 55
Registration is on a first come, first served basis and SPACE IS LIMITED!
W4 credits2V + 2UD. Scaramuzza
AbstractFor a robot to be autonomous, it has to perceive and understand the world around it. This course introduces you to the key computer vision algorithms used in mobile robotics, such as feature extraction, multiple view geometry, dense reconstruction, tracking, image retrieval, event-based vision, and visual-inertial odometry (the algorithms behind Google Tango, Ms Hololens, and the Mars rovers).
ObjectiveLearn the fundamental computer vision algorithms used in mobile robotics, in particular: feature extraction, multiple view geometry, dense reconstruction, object tracking, image retrieval, event-based vision, and visual-inertial odometry (the algorithm behind Google Tango).
ContentEach lecture will be followed by a lab session where you will learn to implement the building block of a visual odometry algorithm in Matlab. By the end of the course, you will integrate all these building blocks into a working visual odometry algorithm.
Lecture notesLecture slides will be made available on the course official website: http://rpg.ifi.uzh.ch/teaching.html
Literature[1] Computer Vision: Algorithms and Applications, by Richard Szeliski, Springer, 2010.
[2] Robotics Vision and Control: Fundamental Algorithms, by Peter Corke 2011.
[3] An Invitation to 3D Vision, by Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry.
[4] Multiple view Geometry, by R. Hartley and A. Zisserman.
[5] Introduction to autonomous mobile robots 2nd Edition, by R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, February, 2011
Prerequisites / NoticeFundamentals of algebra, geomertry, matrix calculus, and Matlab programming.
151-0655-00LSkills for Creativity and InnovationW4 credits3GI. Goller, C. Kobe
AbstractThis lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.
Objective- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams
ContentBasic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer
Lecture notesSlides, script and other documents will be distributed via moodle.ethz.ch
(access only for students registered to this course)
LiteratureGoller, I. & Bessant, J. (2017). Creativity for Innovation Management. Routledge. (ISBN-13: 978-1138641327)
As well as material handed out in the lecture
151-0727-00LColloquium on Manufacturing TechnologyW4 credits3KK. Wegener, F. Kuster
AbstractFuture training on selected current topics of the manufacturing technology. Per afternoon a selected topic is presented in several lectures, by the majority by experts from the industry. The students prepare a summary of the lectures given and prepare themselves on the basis of these lectures and own information search.
ObjectiveContious further training to current topics of the manufacturing technique. Exchange of experience and knowledge with the industry and other universities.
ContentSelected actual topics on manufacturing methods and tools, machine tools, NC-control and drives, components and measuring methods and devices. Topics are changing every year.
Lecture notesno Script
Prerequisites / Notice- Students must have participated and passed the courses Manufacturing, Production Machines I and Forming Technology III - Forming Processes.

- Further training with specialized lectures and large participation from the industry.
Language: Help for English speaking students on request.
151-0851-00LRobot Dynamics Information Restricted registration - show details W4 credits2V + 1UM. Hutter, R. Siegwart
AbstractWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
ObjectiveThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
ContentThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Prerequisites / NoticeThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, K. Wegner, M. Eggersdorfer
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
151-1116-00LIntroduction to Aircraft and Car AerodynamicsW4 credits3GJ. Wildi
AbstractAircraft aerodynamics: Atmosphere; aerodynamic forces (lift, drag); thrust.
Vehicle aerodynamics: Aerodynamic and mass forces, drag, lift, car aerodynamics and performence. Passenger cars, trucks, racing cars.
ObjectiveAn introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics.
To understand the basic relations of the origin of aerodynamic forces (ie lift, drag). To quantify the aerodynamic forces for basic configurations of aercraft and car components.
Illustration of the intrinsic problems and results using examples.
Using experimental and theoretical methods to illustrate possibilities and limits.
ContentAircraft aerodynamics: atmosphere, aerodynamic forces (ascending force: profile, wings. Resistance, residual resistance, induced resistance); thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

Automobile aerodynamics: Basic principles: aerodynamic force and the force of inertia, resistance, drive, aerodynamic and driving performance. Cars commercial vehicles, racing cars.
Lecture notes1.) Grundlagen der Flugtechnik (Basics of flight science, script in german language)
2.) Einführung in die Fahrzeugaerodynamik (Introduction in car aerodynamics, script in german language)
LiteratureEnglish literature covering the content of the course:
- Anderson Jr, John D: Introduction to Flight, Mc Graw Hill, Ed 06, 2007; ISBN: 9780073529394
- Mc Cormick, B.W.: Aerodynamics, Aeronautics and Flight Mechanics, John Wiley and Sons, 1979
- Hucho, Wolf-Heinrich: Aerodynamics of Road Vehicles, SAE International, 1998
227-0225-00LLinear System TheoryW6 credits5GM. Kamgarpour
AbstractThe class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems.
ObjectiveStudents should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.
Content- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.
Lecture notesAvailable online on course website.
Prerequisites / Notice1) Sufficient mathematical maturity with special focus on linear algebra, analysis, and basic logic.
2) Control Systems I (227-0103-00) or equivalent.
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0517-00LElectrical Drive Systems IIW6 credits4GP. Steimer, G. Scheuer, C. A. Stulz
AbstractIn the course "Drive System II" the power semiconductors are repeated. The creation of converters based on the combination of switches/cells and based topologies is explained. Another main focus is on the 3-level inverter with its switching and transfer functions. Further topics are the control of the synchronous machine, of line-side converters and issues with converter-fed machines
ObjectiveThe students establish a deeper understanding in regards of the design of the main components of an electrical drive system. They establish knowledge on the most important interaction with the grid and the machine and their related high dynamic control.
ContentConverter topologies (switch or cell based), multi-pulse diode rectifiers, system aspects of transfomer and electrical machines, 3-level inverter with its switching and transfer functions, grid side harmonics, modeling and control of synchronous machines (including permanent magnet machines), control of line-side converters, reflection effects with power cables, winding isolation and bearing stress. Field trip to ABB Semionductors.
Lecture notesSkript is sold at the beginning of the lectures or can be downloaded from Ilias
LiteratureSkript of lecture; References in skript to related technical publications and books
Prerequisites / NoticePrerequisites: Electrical Drive Systems I (recommended), Basics in electrical engineering, power electronics, automation and mechatronics
227-0689-00LSystem IdentificationW4 credits2V + 1UR. Smith
AbstractTheory and techniques for the identification of dynamic models from experimentally obtained system input-output data.
ObjectiveTo provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.
ContentIntroduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.
Literature"System Identification; Theory for the User" Lennart Ljung, Prentice Hall (2nd Ed), 1999.

"Dynamic system identification: Experimental design and data analysis", GC Goodwin and RL Payne, Academic Press, 1977.
Prerequisites / NoticeControl systems (227-0216-00L) or equivalent.
227-0920-00LSeminar in Systems and ControlZ0 credits1SF. Dörfler, R. D'Andrea, J. Lygeros, R. Smith
AbstractCurrent topics in Systems and Control presented mostly by external speakers from academia and industry
Objectivesee above
252-3110-00LHuman Computer Interaction Information W4 credits2V + 1UO. Hilliges, M. Norrie
AbstractThe course provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.
ObjectiveThe goal of the course is that students should understand the principles of user-centred design and be able to apply these in practice.
ContentThe course will introduce students to various methods of analysing the user experience, showing how these can be used at different stages of system development from requirements analysis through to usability testing. Students will get experience of designing and carrying out user studies as well as analysing results. The course will also cover the basic principles of interaction design. Practical exercises related to touch and gesture-based interaction will be used to reinforce the concepts introduced in the lecture. To get students to further think beyond traditional system design, we will discuss issues related to ambient information and awareness.
263-5210-00LProbabilistic Artificial Intelligence Information W4 credits2V + 1UA. Krause
AbstractThis course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet.
ObjectiveHow can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students.
ContentTopics covered:
- Search (BFS, DFS, A*), constraint satisfaction and optimization
- Tutorial in logic (propositional, first-order)
- Probability
- Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks)
- Probabilistic palnning (MDPs, POMPDPs)
- Reinforcement learning
- Combining logic and probability
Prerequisites / NoticeSolid basic knowledge in statistics, algorithms and programming
263-5902-00LComputer Vision Information W6 credits3V + 1U + 1AL. Van Gool, V. Ferrari, A. Geiger
AbstractThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
ObjectiveThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
ContentCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Prerequisites / NoticeIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
376-1219-00LRehabilitation Engineering II: Rehabilitation of Sensory and Vegetative FunctionsW3 credits2VR. Riener, O. Lambercy
AbstractRehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.
ObjectiveProvide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
ContentIntroduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
LiteratureIntroductory Books:

An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007.

Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000.

Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS).

Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008.

The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.


Selected Journal Articles and Web Links:

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432
Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and
Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.

The vOICe. http://www.seeingwithsound.com.

VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
376-1279-00LVirtual Reality in Medicine Restricted registration - show details
Does not take place this semester.
W3 credits2VR. Riener
AbstractVirtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions.
ObjectiveProvide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation.
ContentVirtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment.

Target Group:
Students of higher semesters and PhD students of
- D-HEST, D-MAVT, D-ITET, D-INFK, D-PHYS
- Robotics, Systems and Control Master
- Biomedical Engineering/Movement Science and Sport
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome!
LiteratureBook: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer.
Prerequisites / NoticeThe course language is English.
Basic experience in Information Technology and Computer Science will be of advantage
More details will be announced in the lecture.
376-1504-00LPhysical Human Robot Interaction (pHRI) Restricted registration - show details
Number of participants limited to 26.
W4 credits2V + 2UR. Gassert, O. Lambercy
AbstractThis course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.
ObjectiveThe objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components
into a functional system;
4) design control hardware and software and implement and
test human-interactive control strategies on the physical
setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.
ContentThis course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.
Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (Link), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.
Lecture notesWill be distributed through the document repository before the lectures.
http://www.relab.ethz.ch/education/courses/phri.html
LiteratureAbbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964.
Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474.
Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244.
Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY.
Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4.
Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268.
Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406.
Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10.
Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419.
Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer.
Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104.
Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25.
MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119.
Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3.
Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262.
Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350.
O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454.
Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2.
Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32.
Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175.
Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162.
Prerequisites / NoticeNotice:
The registration is limited to 26 students
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
http://www.relab.ethz.ch/education/courses/phri.html
Micro & Nanosystems
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture noteshttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0237-00LAdvanced Optical Methods in Nanotechnology Information W4 credits2V + 1UH. Eghlidi
AbstractThe course covers both fundamental optical concepts which are necessary for understanding nano-optical studies, and the principles and design rules of the most common and emerging optical techniques and systems. This course benefits students who want to pursue nanoscopic non-invasive characterizations in various fields such as material sciences, mechanical engineering, micro- and nanofluidics.
ObjectiveIn the first part, students will learn about the necessary topics in optics, basic optical components and their important properties. In the second part, different optical characterization techniques, including optical imaging, spectroscopy and time-correlation measurements, and their applications in nanoscale systems will be studied. Upon completion of the course, students will be able to understand, modify and design optical systems for various nanoscopic characterizations and studies.
ContentPrinciples of optics (ray optics, beam optics, Fourier optics); Optical devices and components (light sources, fiber, lens, mirror, objective, grating, beam splitter, filter, etc.); Characterization techniques and systems: microscopy (confocal, dark-field, fluorescence, interferrometric scattering, super-resolution, etc.), spectroscopy, time-correlation measurements.
LiteratureDifferent book chapters and articles which will be announced/provided during the course.
151-0604-00LMicrorobotics Information W4 credits3GB. Nelson
AbstractMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
ObjectiveThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
ContentMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
Lecture notesThe powerpoint slides presented in the lectures will be mad available as pdf files. Several readings will also be made available electronically.
Prerequisites / NoticeThe lecture will be taught in English.
151-0605-00LNanosystemsW4 credits4GA. Stemmer
AbstractFrom atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.
Special emphasis on the emerging field of molecular electronic devices.
ObjectiveFamiliarize students with basic science and engineering principles governing the nano domain.
ContentThe course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.
Literature- Kuhn, Hans; Försterling, H.D.: Principles of Physical Chemistry. Understanding Molecules, Molecular Assemblies, Supramolecular Machines. 1999, Wiley, ISBN: 0-471-95902-2
- Chen, Gang: Nanoscale Energy Transport and Conversion. 2005, Oxford University Press, ISBN: 978-0-19-515942-4
- Ouisse, Thierry: Electron Transport in Nanostructures and Mesoscopic Devices. 2008, Wiley, ISBN: 978-1-84821-050-9
- Wolf, Edward L.: Nanophysics and Nanotechnology. 2004, Wiley-VCH, ISBN: 3-527-40407-4

- Israelachvili, Jacob N.: Intermolecular and Surface Forces. 2nd ed., 1992, Academic Press,ISBN: 0-12-375181-0
- Evans, D.F.; Wennerstrom, H.: The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering Series. 2nd ed., 1999, Wiley, ISBN: 0-471-24247-0
- Hunter, Robert J.: Foundations of Colloid Science. 2nd ed., 2001, Oxford, ISBN: 0-19-850502-7
Prerequisites / NoticeCourse format:

Lectures and Mini-Review presentations: Thursday 10-13, ML F 36

Homework: Mini-Reviews
Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper.
151-0620-00LEmbedded MEMS Lab Information W5 credits3PC. Hierold, S. Blunier, M. Haluska
AbstractPractical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access
ObjectiveStudents learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.
ContentWith guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization
Lecture notesA document containing theory, background and practical course content is distributed at the first meeting of the course.
LiteratureThe document provides sufficient information for the participants to successfully participate in the course.
Prerequisites / NoticeParticipating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

This master's level course is limited to 15 students per semester for safety and efficiency reasons.
If there are more than 15 students registered, we regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Daraio, Dual, Hierold, Koumoutsakos, Nelson, Norris, Park, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.
Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
151-0621-00LMicrosystems I: Process Technology and Integration Information W6 credits3V + 3UM. Haluska, C. Hierold
AbstractStudents are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow).
ObjectiveStudents are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow).
Content- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.
Application of selected technologies will be demonstrated on case studies.
Lecture notesHandouts (available online)
Literature- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed.
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications
Prerequisites / NoticePrerequisites: Physics I and II
151-0642-00LSeminar on Micro and Nanosystems Information Z0 credits1SC. Hierold
AbstractScientific presentations from the field of Micro- and Nanosystems
ObjectiveIn particular, the seminar addresses students, who are interested in scientific work in the field of Micro- and Nanosystem technologies, or who have started already with it. Respectively, current examples in the research will be discussed.
ContentCurrent themes in the field of Micro- and Nanosystem technologies using the examples of intern and extern research groups, as well as ongoing themes of study-, diplom- and doctoral thesis will be introduced and discussed. The scope of the seminar is broadened by occasional guest speakers.
Lecture notes-
Literature-
Prerequisites / NoticeMaster of MNS, MAVT, ITET, Physics
151-0911-00LIntroduction to PlasmonicsW4 credits2V + 1UD. J. Norris
AbstractThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
ObjectiveElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
ContentFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
Lecture notesClass notes and handouts
LiteratureS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Prerequisites / NoticePhysics I, Physics II
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, K. Wegner, M. Eggersdorfer
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
151-0931-00LSeminar on Particle TechnologyZ0 credits3SR. Büchel
AbstractThe goal of the lecture is to convey a basic knowledge in the area of FV materials as well as their construction and production processes and to empower the students to apply the knowledge gained to address current problems in research and practice.
ObjectiveStudents attend and give research presentations for the research they plan to do and at the end of the semester they defend their results and answer questions from research scientists. Familiarize the students with the latest in this field.
227-0377-00LPhysics of Failure and Failure Analysis of Electronic Devices and EquipmentW3 credits2VU. Sennhauser
AbstractFailures have to be avoided by proper design, material selection and manufacturing. Properties, degradation mechanisms, and expected lifetime of materials are introduced and the basics of failure analysis and analysis equipment are presented. Failures will be demonstrated experimentally and the opportunity is offered to perform a failure analysis with advanced equipment in the laboratory.
ObjectiveIntroduction to the degradation and failure mechanisms and causes of electronic components, devices and systems as well as to methods and tools of reliability testing, characterization and failure analysis.
ContentSummary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis of ICs, PCBs, opto-electronics, discrete and other components and devices; basics and properties of instruments; application in circuit design and reliability analysis
Lecture notesComprehensive copy of transparencies
227-0455-00LTerahertz: Technology & Applications
Does not take place this semester.
W3 credits2VK. Sankaran
AbstractThis course will provide a solid foundation for understanding physical principles of THz applications. We will discuss various building blocks of THz technology - components dealing with generation, manipulation, and detection of THz electromagnetic radiation. We will introduce THz applications in the domain of imaging, communications, and energy harvesting.
ObjectiveThis is an introductory course on Terahertz (THz) technology and applications. Devices operating in THz frequency range (0.1 to 10 THz) have been increasingly studied in the recent years. Progress in nonlinear optical materials, ultrafast optical and electronic techniques has strengthened research in THz application developments. Due to unique interaction of THz waves with materials, applications with new capabilities can be developed. In theory, they can penetrate somewhat like X-rays, but are not considered harmful radiation, because THz energy level is low. They should be able to provide resolution as good or better than magnetic resonance imaging (MRI), possibly with simpler equipment. Imaging, very-high bandwidth communication, and energy harvesting are the most widely explored THz application areas. We will study the basics of THz generation, manipulation, and detection. Our emphasis will be on the physical principles and applications of THz in the domain of imaging, communication and energy harvesting.
ContentINTRODUCTION
Chapter 1: Introduction to THz Physics
Chapter 2: Components of THz Technology

THz TECHNOLOGY MODULES
Chapter 3: THz Generation
Chapter 4: THz Detection
Chapter 5: THz Manipulation

APPLICATIONS
Chapter 6: THz Imaging
Chapter 7: THz Communication
Chapter 8: THz Energy Harvesting
Literature- Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer 2009
- Ali Rostami, Hassan Rasooli, and Hamed Baghban, Terahertz Technology: Fundamentals and Applications, Springer 2010

Whenever we deviate from the main material discussed in these books, softcopy of lectures notes will be provided.
Prerequisites / NoticeGood foundation in electromagnetics & knowledge of microwave or optical communication is helpful.
Bioengineering
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture noteshttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0255-00LEnergy Conversion and Transport in BiosystemsW4 credits2V + 1UA. Ferrari
AbstractTheory and application of thermodynamics and energy conversion in biological systems with focus on the cellular level.
ObjectiveTheory and application of energy conversion at the cellular level. Understanding of the basic features governing solutes transport in the principal systems of the human cell. Connection of characteristics and patterns from other fields of engineering to biofluidics. Heat and mass transport processes in the cell, generation of forces, work and relation to biomedical technologies.
ContentMass transfer models for the transport of chemical species in the human cell. Organization and function of the cell membrane and of the cell cytoskeleton. The role of molecular motors in cellular force generation and their function in cell migration. Description of the functionality of these systems and of analytical experimental and computational techniques for understanding of their operation. Introduction to cell metabolism, cellular energy transport and cellular thermodynamics.
Lecture notesMaterial in the form of hand-outs will be distributed.
LiteratureLecture notes and references therein.
151-0237-00LAdvanced Optical Methods in Nanotechnology Information W4 credits2V + 1UH. Eghlidi
AbstractThe course covers both fundamental optical concepts which are necessary for understanding nano-optical studies, and the principles and design rules of the most common and emerging optical techniques and systems. This course benefits students who want to pursue nanoscopic non-invasive characterizations in various fields such as material sciences, mechanical engineering, micro- and nanofluidics.
ObjectiveIn the first part, students will learn about the necessary topics in optics, basic optical components and their important properties. In the second part, different optical characterization techniques, including optical imaging, spectroscopy and time-correlation measurements, and their applications in nanoscale systems will be studied. Upon completion of the course, students will be able to understand, modify and design optical systems for various nanoscopic characterizations and studies.
ContentPrinciples of optics (ray optics, beam optics, Fourier optics); Optical devices and components (light sources, fiber, lens, mirror, objective, grating, beam splitter, filter, etc.); Characterization techniques and systems: microscopy (confocal, dark-field, fluorescence, interferrometric scattering, super-resolution, etc.), spectroscopy, time-correlation measurements.
LiteratureDifferent book chapters and articles which will be announced/provided during the course.
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 credits3GA. Kunz
AbstractThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
ObjectiveVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
ContentIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
Lecture notesThe handout is available in German and English.
Prerequisites / NoticePrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, K. Wegner, M. Eggersdorfer
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
227-0385-10LBiomedical ImagingW6 credits5GS. Kozerke, K. P. Prüssmann
AbstractIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
ObjectiveTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Content- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
Lecture notesLecture notes and handouts
LiteratureWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Prerequisites / NoticeAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0386-00LBiomedical Engineering Information W4 credits3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
AbstractIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
ObjectiveIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
ContentIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
Lecture notesIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
227-0393-10LBioelectronics and BiosensorsW6 credits2V + 2UJ. Vörös, M. F. Yanik, T. Zambelli
AbstractThe course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
ObjectiveDuring this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
ContentL1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning
LiteraturePlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Prerequisites / NoticeSupervised exercises solving real-world problems. Some Matlab based exercises in groups.
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
227-0455-00LTerahertz: Technology & Applications
Does not take place this semester.
W3 credits2VK. Sankaran
AbstractThis course will provide a solid foundation for understanding physical principles of THz applications. We will discuss various building blocks of THz technology - components dealing with generation, manipulation, and detection of THz electromagnetic radiation. We will introduce THz applications in the domain of imaging, communications, and energy harvesting.
ObjectiveThis is an introductory course on Terahertz (THz) technology and applications. Devices operating in THz frequency range (0.1 to 10 THz) have been increasingly studied in the recent years. Progress in nonlinear optical materials, ultrafast optical and electronic techniques has strengthened research in THz application developments. Due to unique interaction of THz waves with materials, applications with new capabilities can be developed. In theory, they can penetrate somewhat like X-rays, but are not considered harmful radiation, because THz energy level is low. They should be able to provide resolution as good or better than magnetic resonance imaging (MRI), possibly with simpler equipment. Imaging, very-high bandwidth communication, and energy harvesting are the most widely explored THz application areas. We will study the basics of THz generation, manipulation, and detection. Our emphasis will be on the physical principles and applications of THz in the domain of imaging, communication and energy harvesting.
ContentINTRODUCTION
Chapter 1: Introduction to THz Physics
Chapter 2: Components of THz Technology

THz TECHNOLOGY MODULES
Chapter 3: THz Generation
Chapter 4: THz Detection
Chapter 5: THz Manipulation

APPLICATIONS
Chapter 6: THz Imaging
Chapter 7: THz Communication
Chapter 8: THz Energy Harvesting
Literature- Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer 2009
- Ali Rostami, Hassan Rasooli, and Hamed Baghban, Terahertz Technology: Fundamentals and Applications, Springer 2010

Whenever we deviate from the main material discussed in these books, softcopy of lectures notes will be provided.
Prerequisites / NoticeGood foundation in electromagnetics & knowledge of microwave or optical communication is helpful.
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 credits3GC. Frei
AbstractThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
ObjectiveAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
ContentLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade.
Lecture notesScripts of all lectures will be available.
Literature"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 credits3GM. Stampanoni, P. A. Kaestner
AbstractThe lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.
ObjectiveIntroduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications
ContentSynchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.
Lecture notesAvailable online
LiteratureWill be indicated during the lecture.
227-0981-00LCross-Disciplinary Research and Development in Medicine and Engineering Restricted registration - show details
A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal.
W4 credits2V + 2AV. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich
AbstractCross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.
ObjectiveThe main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.
ContentAfter a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.
Lecture notesHandouts and relevant literature will be provided.
376-0121-00LMultiscale Bone Biomechanics Restricted registration - show details
Number of participants limited to 25.
W6 credits4SR. Müller
AbstractThe seminar provides state-of-the-art insight to the biomechanical function of bone from molecules, to cells, tissue and up to the organ. Multiscale imaging and simulation allows linking different levels of hierarchy, where systems biology helps understanding the mechanobiological response of bone to loading and injury in scenarios relevant for personalized health and translational medicine.
ObjectiveThe learning objectives include 1. advanced knowledge of the state-of-the-are in multiscale bone biomechanics; 2. basic understanding of the biological principles governing bone in health, disease and treatment from molecules, to cells, tissue and up to the organ; 3. good understanding of the prevalent biomechanical testing and imaging techniques on the various levels of bone hierarchy; 4. practical implementation of state-of-the-art multiscale simulation techniques; 5. improved programing skills through the use of 4th generation scripting language; 6. hands on experience in designing solutions for clinical and industrial problems; 7. encouragement of critical thinking and creating an environment for independent and self-directed studying.
ContentBone is one of the most investigated biological materials due to its primary function of providing skeletal stability. Bone is susceptible to different local stimuli including mechanical forces and has great capabilities in adapting its mechanical properties to the changes in its environment. Nevertheless, aging or hormonal changes can make bone lose its ability to remodel appropriately, with loss of strength and increased fracture risk as a result, leading to devastating diseases such as osteoporosis. To better understand the biomechanical function of bone, one has to understand the hierarchical organization of this fascinating material down from the molecules, to the cells, tissue and up to the organ. Multiscale imaging and simulation allows to link these different levels of hierarchy. Incorporating systems biology approaches, not only biomechanical strength of the material can be assessed but also the mechanobiological response of the bone triggered by loading and injury in scenarios relevant for personalized health and translational medicine. Watching cells working together to build and repair bone in a coordinated fashion is a spectacle, which will need dynamic image content and deep discussions in the lecture room to probe the imagination of the individual student interested in the topic.

For the seminar, concepts of video lectures will be used in a flipped class room setup, where students can study the basic biology, engineering and mathematical concepts in video tutorials online. All videos and animations will be incorporated in an eSkript (eskript.ethz.ch) allowing studying and eventually even interactive course participation online. It is anticipated that the students need to prepare 2x45 minutes for the study of the actual lecture material. The Friday morning time slots will be used for students, who want to complete these assignments in a classroom setting. The student will have to study independently or in groups, but lecturer will be available for questions and answers during that time. In the Friday afternoon time slots, short clips with video/animation content will be used to introduce problems and discuss specific scientific findings using multiscale imaging and simulation technology. The students will have to form small groups to try to solve such problems and to present their solutions for advanced multiscale investigation of bone ranging from basic science to personalized health and onto translational medicine.
Lecture notesMaterial will be provided in Moodle and eScript (eskript.ethz.ch).
Prerequisites / NoticeSeminar will be held in English.
376-1177-00LHuman Factors IW3 credits2VM. Menozzi Jäckli, R. Huang, M. Siegrist
AbstractEvery day humans interact with various systems. Strategies of interaction, individual needs, physical & mental abilities, and system properties are important factors in controlling the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's satisfaction & overall performance.
ObjectiveThe goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.
Content- Physiological, physical, and cognitive factors in sensation and perception
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance and well-being
- Human factors and ergonomics in system designs, product development and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks
Literature- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
376-1219-00LRehabilitation Engineering II: Rehabilitation of Sensory and Vegetative FunctionsW3 credits2VR. Riener, O. Lambercy
AbstractRehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.
ObjectiveProvide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
ContentIntroduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
LiteratureIntroductory Books:

An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007.

Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000.

Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS).

Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008.

The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.


Selected Journal Articles and Web Links:

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432
Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and
Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.

The vOICe. http://www.seeingwithsound.com.

VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
376-1279-00LVirtual Reality in Medicine Restricted registration - show details
Does not take place this semester.
W3 credits2VR. Riener
AbstractVirtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions.
ObjectiveProvide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation.
ContentVirtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment.

Target Group:
Students of higher semesters and PhD students of
- D-HEST, D-MAVT, D-ITET, D-INFK, D-PHYS
- Robotics, Systems and Control Master
- Biomedical Engineering/Movement Science and Sport
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome!
LiteratureBook: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer.
Prerequisites / NoticeThe course language is English.
Basic experience in Information Technology and Computer Science will be of advantage
More details will be announced in the lecture.
376-1504-00LPhysical Human Robot Interaction (pHRI) Restricted registration - show details
Number of participants limited to 26.
W4 credits2V + 2UR. Gassert, O. Lambercy
AbstractThis course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.
ObjectiveThe objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components
into a functional system;
4) design control hardware and software and implement and
test human-interactive control strategies on the physical
setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.
ContentThis course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.
Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (Link), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.
Lecture notesWill be distributed through the document repository before the lectures.
http://www.relab.ethz.ch/education/courses/phri.html
LiteratureAbbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964.
Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474.
Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244.
Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY.
Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4.
Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268.
Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406.
Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10.
Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419.
Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer.
Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104.
Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25.
MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119.
Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3.
Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262.
Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350.
O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454.
Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2.
Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32.
Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175.
Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162.
Prerequisites / NoticeNotice:
The registration is limited to 26 students
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
http://www.relab.ethz.ch/education/courses/phri.html
376-1651-00LClinical and Movement BiomechanicsW4 credits3GS. Lorenzetti, R. List, N. Singh
AbstractMeasurement and modeling of the human movement during daily activities and in a clinical environment.
ObjectiveThe students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.
ContentThis course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement.
376-1714-00LBiocompatible MaterialsW4 credits3GK. Maniura, J. Möller, M. Zenobi-Wong
AbstractIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
ObjectiveThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
ContentIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
Lecture notesHandouts can be accessed online.
LiteratureLiteratur
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
376-1985-00LTrauma BiomechanicsW4 credits2V + 1UK.‑U. Schmitt, M. H. Muser
AbstractTrauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics.
ObjectiveIntroduction to the basic principles of trauma biomechanics.
ContentThis lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material.
Lecture notesHandouts will be made available.
LiteratureSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics", Springer Verlag
402-0341-00LMedical Physics IW6 credits2V + 1UP. Manser
AbstractIntroduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.
ObjectiveUnderstanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.
ContentThe lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.
Lecture notesA script will be provided.
551-0319-00LCellular Biochemistry (Part I) Information W3 credits2VU. Kutay, R. I. Enchev, B. Kornmann, M. Peter, I. Zemp, further lecturers
AbstractConcepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.
ObjectiveThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.
ContentStructural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.
Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.
Lecture notesScripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)
LiteratureRecommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.
Design, Computation, Product Development & Manufacturing
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
NumberTitleTypeECTSHoursLecturers
151-3209-00LEngineering Design Optimization Restricted registration - show details
Number of participants limited to 35.
W4 credits4GK. Shea, T. Stankovic
AbstractThe course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them.
ObjectiveThe lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.
Content1. Optimization modeling and theory 2. Unconstrained optimization methods 2. Constrained optimization methods - linear and non-linear 4. Direct search methods 5. Stochastic and evolutionary search methods 6. Multi-objective optimization
Lecture notesavailable on Moodle
151-3213-00LIntegrative Ski Building Workshop Restricted registration - show details
Number of participants limited to 12.

To apply, please send the following information to luthet@ethz.ch by 31 July, 2017: Letter of Motivation (one page) , CV, Transcript of Records
W3 credits6PT. Luthe
AbstractThis course introduces students to the practical application of integrative or systemic design by building their own skis or snowboards. Theroretical and applied Engineering Design skills like CAD, calculation and engineering of mechanical properties, 3D printing, laser cutting and practical handcrafting skills are trained and acquired in this course.
ObjectiveThe growing necessity to consider eco-social aspects makes engineering design more complex. Integrative or systemic design combines systems thinking skills with design thinking and practice to address such complexity. The objectives of the course are to use the practical ski/board building exercise to inhabit engineering design thinking and practice with a focus on the interplay between technical, social, ecological and economic aspects. The built skis/boards will be tested together out in the field on a ski day and evaluated from various perspectives. Students can keep their built skis/boards for themselves.
ContentThis practical ski/board building workshop will consist of planning, designing, engineering and building your own alpine or nordic ski, or a snowboard. Students will learn and execute all the needed steps in the building process, such as functional design, creating the CAD file, additive manufacturing techniques, fabrication, routing wood cores, 3D printing of plastic protectors, milling side walls from wood or ABS plastic, selecting fibres from carbon, glas, basalt or flax, laminating with resins, sanding and finishing, as well as laser engraving and veneer wood inlays. Experienced lecturers will be on site to teach and help with these tasks. Students are asked to eco-optimize their products, actively evaluate their learning and decision making process, and participate in a final ski test day on the snow.
Lecture notesavailable on Moodle
Literaturee.g. Striebig, B. and Ogundipe, A. 2016. Engineering Applications in Sustainable Design and Development. ISBN-10: 8131529053.
Jones, P. 2014. Design research methods for systemic design: Perspectives from design education and practice. Proceedings of ISSS 2014, July 28 - Aug1, 2014, Washington, D.C.
Blizzard, J. L. and L. E. Klotz. 2012. A framework for sustainable whole systems design. Design Studies 33(5).
Brown, T. and J. Wyatt. 2010. Design thinking for social innovation. Stanford Social Innovation Review. Stanford University.
Fischer, M. 2015. Design it! Solving Sustainability problems by applying design thinking. GAIA 24/3:174-178.
Luthe, T., Kaegi, T. and J. Reger. 2013. A Systems Approach to Sustainable Technical Product Design. Combining life cycle assessment and virtual development in the case of skis. Journal of Industrial Ecology 17(4), 605-617. DOI: 10.1111/jiec.12000
Prerequisites / NoticePrior to the course start the literature has to be read as a preparation. Willingness to engage in the practical building part also beyond the course hours in the evening. Finishing an impact evaluation study within and outside of the contact lessons. An introductionary lecture will be held in the beginning of the semester to propose topics for the studies. Studies are carried out individually and can be the pre-study for a Bachelor thesis or a semester project.
151-3215-00LDesign for Additive Manufacturing Restricted registration - show details W4 credits2GM. Meboldt, C. Klahn
AbstractThis course is focusing on design, development and innovation with Additive Manufacturing (AM) production technologies. Part of the course is a project, where students design and produce their own functional AM part in metal, with selective laser melting (SLM). The different designs of the students will be analyzed and an the design will be optimized.
ObjectiveTo provide a fundamental knowledge of Additive Manufacturing (AM) and generate experience knowledge in the field of the design for AM (DfAM), product development and value creation with AM.
ContentParallel to the lectures the students design SLM prototypes in a project. Further, the prototypes going to be manufactured and possible optimizations will be discussed in the group.
The cours is addressing the following topics:
- AM-Processes including SLM, SLS and FDM
- AM-Principles
- Autofab-Introduction
- AM-Guidelines
- Value added chain of AM
- AM-Quality management
- Microstructures and materials for AM
- Industry cases of AM
Lecture notesScript and handouts are available in PDF-format.
Prerequisites / NoticeMaster's students
363-1065-00LDesign Thinking: Human-Centred Solutions to Real World Challenges Restricted registration - show details
Due to didactic reasons, the number of participants is limited to 30.

All interested students are invited to apply for this course by sending a by sending a short motivation letter until the 18 of September 2017 to Florian Rittiner (frittiner@ethz.ch).

Additionally please enroll via mystudies. Please note that all students are put on the waiting list and that your current position on the waiting list is irrelevant, as places will be assigned after the first lecture on the basis of your motivation letter and commitment for the class.
W5 credits5GA. Cabello Llamas, F. Rittiner, S. Brusoni, C. Hölscher, M. Meboldt
AbstractThe goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application: http://sparklabs.ch/
ObjectiveDuring the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
ContentThe purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/
Prerequisites / NoticeOpen mind, ability to manage uncertainty and to work with students from various background. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Florian Rittiner (frittiner@ethz.ch) to learn about the requirements of the class.
Multidisciplinary Courses
The students are free to choose individually from the entire course offer of ETH Zurich, ETH Lausanne and the Universities of Zurich and St. Gallen.
» Course Catalogue of ETH Zurich
Semester Project
NumberTitleTypeECTSHoursLecturers
151-1002-00LSemester Project Mechanical Engineering Restricted registration - show details
Only for Mechanical Engineering MSc.

The subject of the Semester Project and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.
O8 credits17AProfessors
AbstractThe semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.
ObjectiveThe semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program.
Industrial Internship
NumberTitleTypeECTSHoursLecturers
151-1003-00LIndustrial Internship Mechanical EngineeringO8 creditsexternal organisers
AbstractThe main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.
ObjectiveThe main objective of the 12-week internship is to expose master's students to the industrial work environment.
GESS Science in Perspective
» see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
» see GESS Science in Perspective: Language Courses ETH/UZH
» Recommended GESS Science in Perspective (Type B) for D-MAVT.
Master's Thesis
NumberTitleTypeECTSHoursLecturers
151-1001-00LMaster's Thesis Mechanical Engineering Restricted registration - show details
Students who fulfill the following criteria are allowed to begin with their Master's Thesis:
a. successful completion of the bachelor program;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. successful completion of the semester project and industrial internship;
d. achievement of 28 ECTS in the category "Core Courses".

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.
To choose a titular professor as a supervisor, please contact the D-MAVT Student Administration.
O30 credits64DProfessors
AbstractMaster's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.
ObjectiveThe thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.
NumberTitleTypeECTSHoursLecturers
406-0173-AALLinear Algebra I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RN. Hungerbühler
AbstractLinear algebra is an indispensable tool of engineering mathematics. The course is an introduction to basic methods and fundamental concepts of linear algebra and its applications to engineering sciences.
ObjectiveAfter completion of this course, students are able to recognize linear structures and to apply adequate tools from linear algebra in order to solve corresponding problems from theory and applications. In addition, students have a basic knowledge of the software package Matlab.
ContentSystems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications.
Linear maps, kernel and image, coordinates and matrices, coordinate transformations, norm of a matrix, orthogonal matrices, eigenvalues and eigenvectors, algebraic and geometric multiplicity, eigenbasis, diagonalizable matrices, symmetric matrices, orthonormal basis, condition number, linear differential equations, Jordan decomposition, singular value decomposition, examples in MATLAB, applications.

Reading:

Gilbert Strang "Introduction to linear algebra", Wellesley-Cambridge Press: Chapters 1-6, 7.1-7.3, 8.1, 8.2, 8.6

A Practical Introduction to MATLAB: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/intro.pdf

Matlab Primer: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/primer.pdf
Literature- Gilbert Strang: Introduction to linear algebra. Wellesley-Cambridge Press

- A Practical Introduction to MATLAB: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/intro.pdf

- Matlab Primer: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/primer.pdf
406-0353-AALAnalysis III Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RF. Da Lio
AbstractIntroduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.
ObjectiveMathematical treatment of problems in science and engineering. To understand the properties of the different types of partlial differentail equations.
ContentLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
LiteratureE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.
Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics).

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Prerequisites / NoticeUp-to-date information about this course can be found at:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet