Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Maschineningenieurwissenschaften Bachelor Information
6. Semester
Fokus-Vertiefung
Energy, Flows and Processes
Fokus-Koordinator: Prof. Christoph Müller
Für die erforderlichen 20 KP der Fokus-Vertiefung Energy, Flows and Processes müssen mindestens 2 Kernfächer (W+) (HS/FS) und mindestens 2 der Wahlfächer (HS/FS) gemäss der Präsentation der Fokus-Vertiefung Energy, Flows and Processes (siehe Link) gewählt werden. 1 Kurs kann frei aus dem gesamten Angebot aller D-MAVT Studiengänge (Bachelor und Master) gewählt werden.
NummerTitelTypECTSUmfangDozierende
151-0206-00LEnergy Systems and Power EngineeringW+4 KP2V + 2UR. S. Abhari, A. Steinfeld
KurzbeschreibungIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
LernzielIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
InhaltWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
SkriptVorlesungsunterlagen werden verteilt
151-0208-00LComputational Methods for Flow, Heat and Mass Transfer ProblemsW+4 KP4GD. W. Meyer-Massetti
KurzbeschreibungEs werden numerische Methoden zur Lösung von Problemen der Fluiddynamik, Energie- & Verfahrenstechnik dargestellt und anhand von analytischen & numerischen Beispielen illustriert.
LernzielKenntnisse und praktische Erfahrung mit der Anwendung von Diskretisierungs- und Lösungsverfahren für Problem der Fluiddynamik und der Energie- und Verfahrenstechnik
Inhalt- Einleitung mit Anwendungen, Schritte zur numerischen Lösung
- Klassifizierung partieller Differentialgleichungen, Beispiele aus Anwendungen
- Finite Differenzen
- Finite Volumen
- Methoden der gewichteten Residuen, Spektralmethoden, finite Elemente
- Stabilitätsanalyse, Konsistenz, Konvergenz
- Numerische Lösungsverfahren, lineare Löser
Der Stoff wird mit Beispielen aus der Praxis illustriert.
SkriptFolien zur Ergänzung während der Vorlesung werden ausgegeben.
LiteraturReferenzen werden in der Vorlesung angegeben. Notizen in guter Übereinstimmung mit der Vorlesung stehen zur Verfügung.
Voraussetzungen / BesonderesGrundlagen in Fluiddynamik, Thermodynamik und Programmieren (Vorlesung: "Models, Algorithms and Data: Introduction to Computing")
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 KP3GM. Mazzotti, A. Bardow, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter
KurzbeschreibungCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
LernzielThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
InhaltBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
SkriptPower Point slides and distributed handouts
LiteraturIPCC Special Report on Global Warming of 1.5°C, 2018.
Link

IPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Voraussetzungen / BesonderesExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0946-00LMacromolecular Engineering: Networks and GelsW4 KP4GM. Tibbitt
KurzbeschreibungThis course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery.
LernzielThe main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience.
SkriptClass notes and handouts.
LiteraturPolymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts.
Voraussetzungen / BesonderesPhysics I+II, Thermodynamics I+II
151-0966-00LIntroduction to Quantum Mechanics for EngineersW4 KP2V + 2UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering.
LernzielTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
InhaltFundamentals of Quantum Mechanics
- Historical Perspective
- Schrödinger Equation
- Postulates of Quantum Mechanics
- Operators
- Harmonic Oscillator
- Hydrogen atom
- Multielectron Atoms
- Crystalline Systems
- Spectroscopy
- Approximation Methods
- Applications in Engineering
SkriptClass Notes and Handouts
LiteraturText: David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3rd Edition, Cambridge University Press.
Voraussetzungen / BesonderesAnalysis III, Mechanics III, Physics I, Linear Algebra II
Mechatronics
Fokus-Koordinator: Prof. Marco Hutter
Für die erforderlichen 20 KP der Fokus-Vertiefung Mechatronics ist 151-0640-00L Studies on Mechatronics obligatorisch.
NummerTitelTypECTSUmfangDozierende
151-0640-00LStudies on Mechatronics
Die Professoren, die Studies on Mechatronics betreuen, sind im myStudies bei Belegung des Fachs wählbar.
Für Ausnahmen bitte den Fokus Koordinator und Link kontaktieren.
Dieser Kurs steht für Austauschstudierende nicht zur Verfügung.
O5 KP11ABetreuer/innen
KurzbeschreibungOverview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences.
LernzielThe goal of this class is to familiarize the students with this fascinating but rapidly evolving engineering discipline. The students learn to find, read and critically evaluate the pertinent literature and methods through in depth studying, presenting, debating of and writing about selected topics or case studies addressing mechatronics engineering.
InhaltOverview of Mechatronics topics and study subjects. Identification of minimum ten pertinent refereed articles or works in the literature in consultation with supervisor orinstructor. After four weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After detailed feedback on the substance and technical writing on the proposal by the instructor, project commences. Three to four weeks prior to the end of the semester, a 15 minute oral progress report (presentation) is given by the student that is critiqued by the instructor with detailed comments on substance and effectiveness of lecture and response on questions from audience. At the last day of the semester the student submits a written report that is no longer than 10-pages text following the format of a representative journal article. Throughout the semester the student attends and actively participates in the interactive class lectures given in the form of seminars and debates with active question and answer sessions inviting student and instructor participation.
LiteraturWill be available.
Voraussetzungen / BesonderesLanguage: English or German - depending on the lecturer.
151-0206-00LEnergy Systems and Power EngineeringW4 KP2V + 2UR. S. Abhari, A. Steinfeld
KurzbeschreibungIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
LernzielIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
InhaltWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
SkriptVorlesungsunterlagen werden verteilt
151-0516-00LNicht-glatte Dynamik
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W5 KP5GC. Glocker
KurzbeschreibungUngleichungsprobleme in der Dynamik, speziell Reib- und Stoßprobleme mit Geschwindigkeits- und Beschleunigungssprüngen. Modellierung von einseitigen Kontakten, Reibung, Freiläufen, vorgespannten Federn. Formulierung über mengenwertige Funktionen als lineare Komplementaritätsprobleme. Numerische Zeitintegration des kombinierten Reib-Stoss-Kontaktproblems.
LernzielDie Vorlesung vermittelt den Studierenden einen Einstieg in die moderne Behandlung von Ungleichungsproblemen in der Dynamik. Der Vorlesungsstoff ist speziell auf reibungsbehaftete Kontakte in der Mechanik zugeschnitten, läßt sich aber strukturell auf eine große Klasse von Ungleichungsproblemen in den technischen Wissenschaften übertragen. Ziel der Veranstaltung ist es, die Studierenden mit einer konsistenten Erweiterung der klassischen Mechanik auf Systeme mit Unstetigkeiten vertraut zu machen, und den Umgang mit Ungleichungen in der Form von mengenwertigen Stoffgesetzen zu erlernen.
Inhalt1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
SkriptEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Voraussetzungen / BesonderesKinematik und Statik & Dynamics
151-0540-00LExperimentelle MechanikW4 KP2V + 1UJ. Dual, T. Brack
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-0630-00LNanorobotics Information W4 KP2V + 1US. Pané Vidal
KurzbeschreibungNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
LernzielThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0641-00LIntroduction to Robotics and Mechatronics Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 45.

Enrollment is only valid through registration on the MSRL website (Link). Registrations per e-mail is no longer accepted!
W4 KP2V + 2UB. Nelson, N. Shamsudhin
KurzbeschreibungThe aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use.
LernzielAn ever-increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices.

The aim of this course is to practically and theoretically expose students to the fundamentals of mechatronic and robotic systems. Over the course of the semester, the lecture topics will include an overview of robotics, an introduction to different types of sensors and their use, the programming of microcontrollers and interfacing these embedded computers with the real world, signal filtering and processing, an introduction to different types of actuators and their use, an overview of computer vision, and forward and inverse kinematics. Throughout the course, students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. By the end of the course, you will be able to independently choose, design and integrate these different building blocks into a working mechatronic system.
InhaltThe course consists of weekly lectures and lab sessions. The weekly topics are the following:
0. Course Introduction
1. C Programming
2. Sensors
3. Data Acquisition
4. Signal Processing
5. Digital Filtering
6. Actuators
7. Computer Vision and Kinematics
8. Modeling and Control
9. Review and Outlook

The lecture schedule can be found on our course page on the MSRL website (Link)
Voraussetzungen / BesonderesThe students are expected to be familiar with C programming.
151-1224-00LÖlhydraulik und PneumatikW4 KP2V + 2UJ.  Lodewyks
KurzbeschreibungVermittlung der physikalischen und technischen Grundlagen ölhydraulischer und pneumatischer Systeme und ihrer Bauelemente wie Pumpen, Motoren, Zylinder und Ventile, mit Schwergewicht auf der Servo- und Proportionaltechnik und der Regelung fluidischer Antriebe. Überblick über Anwendungsbeispielen aus dem Maschinenbau.
LernzielDer Student
- kann die Funktionsweise eines ölhydraulischen oder pneumatischen Systems interpretieren und kann einfache Schaltungen entwerfen
- kann den Aufbau und die Funktionsweise der Bauelemente erklären und kann sie nach Anforderungen dimensionieren und auswählen
- kann das dynamische Verhalten eines servohydraulischen Zylinder- antriebes simulieren und kann eine optimale Zustandsregelung mit Beobachter auslegen.
InhaltBedeutung der Oelhydraulik und Pneumatik, Begriffe, Anwendungsbeispiele,
Repetitorium der wichtigsten strömungstechnischen Grundlagen u.a. Kompressibilität eines Fluides, Durchfluss durch Drosseln und Spalten und Reibungsverluste in Leitungen.
Aufbau und Elemente hydraulischer und pneumatischer Anlagen, Funktion und Bauformen von Pumpen, Motoren und Zylinder, Druck-, Mengen-, Sperr-, Wege-, Proportional- und Servoventile,
Grundschaltungen hydraulischer und pneumatischer Systeme.
Dynamisches Verhalten und Zustandsregelung hydraulischer und pneumatischer Servoantriebe.
Übungen
Rechenübungen zur Auslegung fluidischer Antriebe
Aufnahme der Kennlinien von Drosseln, Ventilen und Pumpen
Aufbau eines pneumatisch gesteuerten Antriebes
Simulation und experimentelle Untersuchung eines zustandsgeregelten servohydraulischen Zylinderantriebes.
SkriptAutographie Oelhydraulik
Manuskript Zustandsregelung eines Servohydraulischen Zylinderantriebes
Manuskript Elemente einer Druckluftversorgung
Manuskript Modellierung eines Servopneumatischen Zylinderantriebes
Voraussetzungen / BesonderesDie Vorlesung eignet sich für Studierende ab dem 5. Semester. Im FS2021 finden die Vorlesungen mindestens bis Ostern ausschliesslich digital statt. Alle notwendigen Informationen und Unterlagen befinden sich auf Moodle.
151-0135-00LErgänzendes Projekt für die Fokus-Vertiefung Belegung eingeschränkt - Details anzeigen
Nur für D-MAVT Bachelor-Studierende der Fokusvertiefung.
Für die Belegung der Lerneinheit kontaktieren Sie bitte die D-MAVT Studienadministration.
W1 KP2AProfessor/innen
KurzbeschreibungSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
LernzielSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
227-0518-10LDesign and Control of Electric MachinesW6 KP4GD. Bortis
KurzbeschreibungThis course covers modeling and control concepts of modern drive systems and provides a deeper understanding of the dynamic operation of electric machines. Different aspects arising in the design of electric drive systems are investigated. The exercises are used to consolidate the concepts discussed.
LernzielThe objective of this course is to convey knowledge on control strategies of different types of electric machines and on design principles of variable speed drive systems. A dynamic modeling of the electromechanical system is investigated, enabling the proper design of cascaded speed, torque/current controllers. Further objectives are the identification of machine parameters and a short insight into basic inverter circuits applied in advanced motor drive systems. Exercises are used to consolidate the presented theoretical concepts.
Inhalt1. Introduction to variable speed motor drive systems consisting of:
- Electromechanical system
- Power electronic system
- Control system
- Measurement system

2. Control structures and strategies of DC Machine/Synchronous machine/Asynchronous machine/Brushless DC machine.
- Cascaded control
- U/f Control
- Slip Control
- Field-oriented control

3. Dynamic Operation of electric machines
- Dynamic modeling of electromechanical system
- Controller types and design
- Current/torque control
- Speed control (Voltage control / Flux weakening)

4. Power electronic inverter circuits in variable speed drive systems
- Voltage and current source inverter systems
- Basic operation and pulse width modulation

5. Identification of machine parameters

6. Design principles of variable speed motor drives systems
SkriptLecture notes and associated exercises including correct answers
Voraussetzungen / BesonderesPrerequisites: Fundamentals of Electric Machines
Mikrosysteme und Nanotechnologie
Fokus-Koordinator: Prof. Christofer Hierold
NummerTitelTypECTSUmfangDozierende
151-0643-00LStudies on Micro and Nano Systems
Dieser Kurs steht für Austauschstudierende nicht zur Verfügung.
W+5 KP11ABetreuer/innen
KurzbeschreibungThe students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.
LernzielThe students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.
InhaltStudents work independently on a study of selected topics in the field of Micro- and Nanosystems. They start with a selection of scientific papers, and continue with an independent iterature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.
LiteraturLiterature will be provided
151-0060-00LThermodynamics and Transport Phenomena in NanotechnologyW4 KP2V + 2UT. Schutzius, D. Taylor
KurzbeschreibungThe lecture deals with thermodynamics and transport phenomena in nano- and microscale systems. Typical areas of applications are microelectronics manufacturing and cooling, manufacturing of novel materials and coatings, surface technologies, wetting phenomena and related technologies, and micro- and nanosystems and devices.
LernzielThe student will acquire fundamental knowledge of interfacial and micro-nanoscale thermofluidics including electric field and light interaction with surfaces. Furthermore, the student will be exposed to a host of applications ranging from superhydrophobic surfaces and microelectronics cooling to solar energy, all of which will be discussed in the context of the course. The student will also judge state-of-the-art scientific research in these areas.
InhaltThermodynamic aspects of intermolecular forces; Interfacial phenomena; Surface tension; Wettability and contact angle; Wettability of Micro/Nanoscale textured surfaces: superhydrophobicity and superhydrophilicity.

Physics of micro- and nanofluidics as well as heat and mass transport phenomena at the nanoscale.

Scientific communication and exposure to state-of-the-art scientific research in the areas of Nanotechnology and the Water-Energy Nexus.
Skriptyes
151-0172-00LMicrosystems II: Devices and Applications Information W6 KP3V + 3UC. Hierold, C. I. Roman
KurzbeschreibungThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.
LernzielThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.

During the weekly 3 hour module on Mondays dedicated to Übungen the students will learn the basics of Comsol Multiphysics and utilize this software to simulate MEMS devices to understand their operation more deeply and optimize their designs.
InhaltTransducer fundamentals and test structures
Pressure sensors and accelerometers
Resonators and gyroscopes
RF MEMS
Acoustic transducers and energy harvesters
Thermal transducers and energy harvesters
Optical and magnetic transducers
Chemical sensors and biosensors, microfluidics and bioMEMS
Nanosystem concepts
Basic electronic circuits for sensors and microsystems
SkriptHandouts (on-line)
151-0516-00LNicht-glatte Dynamik
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W5 KP5GC. Glocker
KurzbeschreibungUngleichungsprobleme in der Dynamik, speziell Reib- und Stoßprobleme mit Geschwindigkeits- und Beschleunigungssprüngen. Modellierung von einseitigen Kontakten, Reibung, Freiläufen, vorgespannten Federn. Formulierung über mengenwertige Funktionen als lineare Komplementaritätsprobleme. Numerische Zeitintegration des kombinierten Reib-Stoss-Kontaktproblems.
LernzielDie Vorlesung vermittelt den Studierenden einen Einstieg in die moderne Behandlung von Ungleichungsproblemen in der Dynamik. Der Vorlesungsstoff ist speziell auf reibungsbehaftete Kontakte in der Mechanik zugeschnitten, läßt sich aber strukturell auf eine große Klasse von Ungleichungsproblemen in den technischen Wissenschaften übertragen. Ziel der Veranstaltung ist es, die Studierenden mit einer konsistenten Erweiterung der klassischen Mechanik auf Systeme mit Unstetigkeiten vertraut zu machen, und den Umgang mit Ungleichungen in der Form von mengenwertigen Stoffgesetzen zu erlernen.
Inhalt1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
SkriptEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Voraussetzungen / BesonderesKinematik und Statik & Dynamics
151-0540-00LExperimentelle MechanikW4 KP2V + 1UJ. Dual, T. Brack
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-0622-00LMeasuring on the Nanometer ScaleW2 KP2GA. Stemmer
KurzbeschreibungIntroduction to theory and practical application of measuring techniques suitable for the nano domain.
LernzielIntroduction to theory and practical application of measuring techniques suitable for the nano domain.
InhaltConventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters.
SkriptSlides and recordings available via Moodle (registered participants only).
151-0630-00LNanorobotics Information W4 KP2V + 1US. Pané Vidal
KurzbeschreibungNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
LernzielThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0966-00LIntroduction to Quantum Mechanics for EngineersW4 KP2V + 2UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering.
LernzielTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
InhaltFundamentals of Quantum Mechanics
- Historical Perspective
- Schrödinger Equation
- Postulates of Quantum Mechanics
- Operators
- Harmonic Oscillator
- Hydrogen atom
- Multielectron Atoms
- Crystalline Systems
- Spectroscopy
- Approximation Methods
- Applications in Engineering
SkriptClass Notes and Handouts
LiteraturText: David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3rd Edition, Cambridge University Press.
Voraussetzungen / BesonderesAnalysis III, Mechanics III, Physics I, Linear Algebra II
151-0135-00LErgänzendes Projekt für die Fokus-Vertiefung Belegung eingeschränkt - Details anzeigen
Nur für D-MAVT Bachelor-Studierende der Fokusvertiefung.
Für die Belegung der Lerneinheit kontaktieren Sie bitte die D-MAVT Studienadministration.
W1 KP2AProfessor/innen
KurzbeschreibungSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
LernzielSelbständige Einarbeitung in ein umgrenztes Teilgebiet der gewählten Fokus-Vertiefung
Produktionstechnik
Fokus-Koordinator: Prof. Konrad Wegener
Für die erforderlichen 20 KP der Fokus-Vertiefung müssen die 3 obligatorischen Fächer im (HS/FS) absolviert werden. Die zusätzlich benötigten 8KP können mit den wählbaren Fächern (HS/FS) erworben werden.
NummerTitelTypECTSUmfangDozierende
151-0720-00LProduktionsmaschinen IO4 KP4GK. Wegener, S. Weikert
KurzbeschreibungErster Teil zur Vorlesung über Produktionsmaschinen. Einführung in die Besonderheiten von Produktionsmaschinen anhand von spanenden und umformenden Werkzeugmaschinen. Auslegung und Gestaltung sowie spezielle Funktionsträger.
LernzielErarbeiten der speziellen Anforderungen an Werkzeugmaschinen wie Genauigkeit, Dynamik und Langlebigkeit und ihrer Realisierung. Ausbildung bzw. Auswahl der wichtigsten Komponenten.
InhaltDie Grundlagen des Maschinenaufbaus, Sechspunkte-Theorie, Komponenten der Werkzeugmaschinen (Fundamentierung, Gestelle, Lagerungen, Führungen, Messsysteme, Antriebe und ihre Regelung) und Maschinenbauformen. Begriffe, Klassifikation und Qualitätsmerkmale. Spezielle Komponenten und ausgewählte Bauformen von Umformmaschinen sowie deren Gestaltung und Auslegung. Einblick in Maschinensicherheit und Automation.
Skriptja
151-0306-00LVisualization, Simulation and Interaction - Virtual Reality I Information W+4 KP4GA. Kunz
KurzbeschreibungTechnologie der virtuellen Realität. Menschliche Faktoren, Erzeugung virtueller Welten, Beleuchtungsmodelle, Display- und Beschallungssysteme, Tracking, haptische/taktile Interaktion, Motion Platforms, virtuelle Prototypen, Datenaustausch, VR-Komplettsysteme, Augmented Reality; Kollaborationssysteme; VR und Design; Umsetzung der VR in der Industrie; Human COmputer Interfaces (HCI).
LernzielDie Studierenden erhalten einen Überblick über die virtuelle Realität, sowohl aus technischer als auch aus informationstechnologischer Sicht. Sie lernen unterschiedliche Software- und Hardwareelemente kennen sowie deren Einsatzmöglichkeiten im Geschäftsprozess. Die Studierenden entwickeln eine Kenntnis darüber, wo sich heute die virtuelle Realität nutzbringend einsetzen lässt und wo noch weiterer Forschungsbedarf besteht. Anhand konkreter Programme und Systeme erfahren die Teilnehmer den Umgang mit den erlernten neuen Technologien.
Studierende sind in der Lage:
• gängige VR-Technologien zu evaluieren und die geeignetste für eine gegebene Aufgabe auszuwählen bezüglich der folgenden Gesichtspunkte:
o Visualisierungsmöglichkeiten: Monitore, Projektionssysteme, Datenbrillen
o Positionserfassungssystemen (optisch/elektromagnetisch/mechanisch)
o Interaktionstechnologien: Datenhandschuhe, Möglichkeit des echten Laufens/Erfassung der Augenbewegung/manuelle Interaktion, usw.
• eine VR-Anwendung selbstständig zu entwickeln,
• die VR-Technologie auf industrielle Anforderungen anzuwenden,
• das erlernte Wissen in einer praktischen Anwendung zu vertiefen.
• grundlegende Unterschiede in Anwendung digitaler Welten zu vergleichen (VR/AR/MR/XR)
InhaltDiese Vorlesung gibt eine Einführung in die Technologie der virtuellen Realität als neues Tool zur Bewältigung komplexer Geschäftsprozesse. Es sind die folgenden Themen vorgesehen: Einführung und Geschichte der VR; Eingliederung der VR in die Produktentwicklung; Nutzen von VR für die Industrie; menschliche Faktoren als Grundlage der virtuellen Realität; Einführung in die Erzeugung (Modellierung) virtueller Welten; Beleuchtungsmodelle; Kollisionserkennung; Displaysysteme; Projektionssysteme; Beschallungssysteme; Trackingssysteme; Interaktionsgeräte für die virtuelle Umgebung; haptische und taktile Interaktion; Motion Platforms; Datenhandschuh; physikalisch basierte Simulation; virtuelle Prototypen; Datenaustausch und Datenkommunikation; VR-Komplettsysteme; Augmented Reality; Kollaborationssysteme; VR zur Unterstützung von Designaufgaben; Umsetzung der VR in der Industrie; Ausblick in die laufende Forschung im Bereich VR.

Lehrmodule:
- Geschichte der VR und Definition der wichtigsten Begriffe
- Einordnung der VR in Geschäftsprozesse
- Die Erzeugung virtueller Welten
- Geräte und Technologien für die immersive virtuelle Realität
- Anwendungen der VR in unterschiedlichsten Gebieten
SkriptDie Durchführung der Lehrveranstaltung erfolgt gemischt mit Vorlesungs- und Übungsanteilen.
Die Vorlesung kann auf Wunsch in Englisch erfolgen. Das Skript ist ebenfalls in Englisch verfügbar.
Skript, Handout; Kosten SFr.30.-
Voraussetzungen / BesonderesVoraussetzungen:
keine
Vorlesung geeignet für D-MAVT, D-ITET, D-MTEC und D-INF

Testat/ Kredit-Bedingungen/ Prüfung:
– Teilnahme an Vorlesung und Kolloquien
– Erfolgreiche Durchführung von Übungen in Teams
– Mündliche Einzelprüfung 30 Minuten
151-0516-00LNicht-glatte Dynamik
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W+5 KP5GC. Glocker
KurzbeschreibungUngleichungsprobleme in der Dynamik, speziell Reib- und Stoßprobleme mit Geschwindigkeits- und Beschleunigungssprüngen. Modellierung von einseitigen Kontakten, Reibung, Freiläufen, vorgespannten Federn. Formulierung über mengenwertige Funktionen als lineare Komplementaritätsprobleme. Numerische Zeitintegration des kombinierten Reib-Stoss-Kontaktproblems.
LernzielDie Vorlesung vermittelt den Studierenden einen Einstieg in die moderne Behandlung von Ungleichungsproblemen in der Dynamik. Der Vorlesungsstoff ist speziell auf reibungsbehaftete Kontakte in der Mechanik zugeschnitten, läßt sich aber strukturell auf eine große Klasse von Ungleichungsproblemen in den technischen Wissenschaften übertragen. Ziel der Veranstaltung ist es, die Studierenden mit einer konsistenten Erweiterung der klassischen Mechanik auf Systeme mit Unstetigkeiten vertraut zu machen, und den Umgang mit Ungleichungen in der Form von mengenwertigen Stoffgesetzen zu erlernen.
Inhalt1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
SkriptEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Voraussetzungen / BesonderesKinematik und Statik & Dynamics
151-0718-00LQualitätssicherung - WerkstückmesstechnikW+4 KP2V + 2UA. Günther
KurzbeschreibungDie Werkstückmesstechnik umfasst Definition und Bestimmung von Abweichungen von Mass, Lage, Form und Rauheit von Werkstücken, typische Messgeräte mit ihren Messunsicherheiten einschliesslich Koordinatenmessgeräten und Visionssystemen, QS nach ISO 9001, statistische Prozesskontrolle, sowie die thermischen Einflüsse auf geometrische Messungen.
LernzielKenntnis der
- Grundlagen geometrischer Messtechnik,
- Bestimmung von Mass, Lage, Form und Rauheit an Werkstücken
- typischen Messgeräte mit ihren Messunsicherheiten
- Koordinatenmesstechnik
- Visionssysteme
- Qualitätssicherungssystem nach ISO 9001
- statistische Prozesskontrolle
- Anwendung im Fertigungsprozess und zur Fähigkeitsuntersuchung
InhaltFertigungsmesstechnik - Werkstückmesstechnik
- Grundlagen, wie 6-Punkte-Theorie und kinematische Vorrichtung
- Definition und Bestimmung von Mass, Lage, Form, Rauheit
- thermische Einflüsse auf Mass, Lage, Form
- Messunsicherheit
- Koordinatenmesstechnik und 3D Koordinatenmessgeräte
- flächenhafte Messtechnik (Visionssysteme)
- Qualitätssicherungssystem nach ISO 9001
- statistische Prozesskontrolle
- Messen im Fertigungsprozess
- statistische Prozesskontrolle, Prozess- und Maschinenfähigkeit
SkriptArbeitsunterlagen werden in der Vorlesung verteilt.
Voraussetzungen / BesonderesPraktische Übungen in den Labors und an Messgeräten des IWF vertiefen den Stoff der Vorlesung
151-0740-00LMetal Additive Manufacturing – Fundamentals and Process TechnologyW+4 KP2V + 2UM. Bambach, L. Deillon, A. K. Eissing
KurzbeschreibungThis lecture gives an introduction to the fundamentals and process technology of additive manufacturing processes with a focus on metals. The principles and technologies of laser powder bed fusion, directed energy deposition as well as sintering processes will be introduced.
LernzielThe students will learn
- the physics of the most important metal additive manufacturing processes including the interaction of energy sources (laser, electron beams, arc/plasma) and metals, the phenomena occurring during melting and solidification, the generation of stresses and defects
- the capabilities and limits of these processes
- the digital aspects of the process chains including preparation of geometries, slicing, hatching etc. including assessment of printability of a design
- working principles of machines, equipment and technology
- basics of sensors and process control
- post processing steps and interaction with AM material
- future trends in metal AM
InhaltSynopsis

1. Introduction / motivation

2. From fusion welding to AM (Basics of fusion welding, moving heat sources, melt pool dynamics, solidification of weld beads, part properties)

3. Wire-arc Additive Manufacturing (Process technology, Digital process chain: Slicing and process definition, Overlapping weld beads, Sensors and control, materials for WAAM)

4. Laser-based metal additive manufacturing I – Basics of laser technology (Laser principles, Gaussian beams and beam quality, Inteaction laser-material / laser-plasma)

5. Laser-based metal additive manufacturing II – Laser powder bed fusion (Process technology, digital process chain, parameters and properties, support structures, process control, applications & trends)

6. Laser-based metal additive manufacturing III – Laser-based directed Energy deposition (Process technology, digital process chain, Sensors & control, materials, applications & trends)

7. Electron beam based AM (Process technology, b. Interaction electron beams – matter, sensors & control, materials, applications & trends)

8. Binder Jetting / Sintering based AM (Process technology, Sinter theory, compensation of shrinkage, applications)

9. Post-processing (removal of supports, hot isostatic pressing, Machining / Finishing)

10. Materials for AM (Alloy systems for AM, Production and quality of powder, Computational materials design)

11. Future trends (Multi-material AM, Hybrid AM processes, ...)
SkriptThe lecture slides will be distributed.
LiteraturA list of references be given in the lecture.
Voraussetzungen / BesonderesWerkstoffe und Fertigung or a similar course
151-0802-00LAutomation TechnologyW+4 KP2V + 1UH. Wild, K. Wegener
KurzbeschreibungDie Automatisierungstechnik von Fertigungsanlagen wird als interdisziplinäres Fachgebiet behandelt. Die Vorlesung enthält:
- Elementarbausteine automatisierter Anlagen,
- Wirkkette: Sensorik, Signalisation, Steuerung und Regelung, Leistungsverstärkung, Aktorik
- Konzeption, Beschreibung, Berechnung, Auslegung, Simulation
- Verfügbarkeit, Zuverlässigkeit
- moderne Konzepte.
LernzielDie Studierenden sollen herangeführt werden an die Projektierung und Realisierung von hochautomatisierten Produktionssystemen. Sie sollen in der Lage sein, die gesamte Leistungserstellungskette von der Aufgabenstellung / Pflichtenheft über die Konzeption und Projektierung, die Detailrealisierung und Inbetriebnahme zu überblicken und zu verstehen. Sie sollen heutige Realisierungsmöglichkeiten kennen und die in der Forschung und Entwicklung befindlichen Konzepte verstehen und beurteilen lernen.
InhaltHochentwickelte Industrieländer sind auf die Automatisierung von Fertigungsprozessen für deren Wettbewerbsfähigkeit zwingend angewiesen. Automatisierte Anlagen zu konzipieren, zu realisieren und in Betrieb zu nehmen, „ihnen Leben einzuhauchen“, gehört zu den spannensten Tätigkeiten des Ingenieurs. Dabei ist vor allem bei der Gestaltung automatisierter Systeme mechatronische Herangehensweise unabdingbar. Aufs engste sind elektronische und mechanische Subsysteme miteinander zu verzahnen, um zu einer optimalen und insgesamt sinnvollen Lösung zu gelangen. Diese Vorlesung stellt den interdisziplinären Lösungsraum aus Maschinenbau, Prozesstechnik, Elektronik / Elektrik, Informatik und Optik in den Mittelpunkt. Dabei wird die gesamte Wirkkette über Sensorik, Aktorik, Signalisation, Steuerung und Regelung sowie Leistungsverstärkung betrachtet.

Elementarbausteine wie Sensoren und Aktoren, welche den Übergang zur Elektronik darstellen, sowie Steuerungen und Schnittstellen werden behandelt. In der Produktionstechnik werden diese Elementarbausteine in verschiedenen Automatisierungsgeräten eingesetzt, und schliesslich zu Gesamtanlagen verdichtet.


Unterschiedliche Konzepte zur Automatisierung, Auslegung, Beschreibung und Simulation der Anlagen werden diskutiert, die Sicherstellung der Personensicherheit behandelt. Die wirtschaftlichen Randbedingungen werden ebenfalls berücksichtigt. Dies führt auf die Diskussion der Zuverlässigkeit und Verfügbarkeit von komplexen Anlagen und auf heute in der Forschung befindliche Konzepte zur Fehlertoleranz, Autodiagnose und Selbstreparatur, kognitive Systeme und Agentensysteme.
In theoretischen und Laborübungen können die Studierenden selbst Erfahrung gewinnen, die sie zur Konzeption, Berechnung und Inbetriebnahme von automatisierten Systemen qualifizieren.
Skriptwird schriftlich themenweise ausgegeben.
151-0840-00LOptimization and Machine Learning
Note: previous course title until FS20 "Principles of FEM-Based Optimization and Robustness Analysis".
W+4 KP2V + 2UB. Berisha, D. Mohr
KurzbeschreibungThe course teaches the basics of nonlinear optimization and concepts of machine learning. An introduction to the finite element method allows an extension of the application area to real engineering problems such as structural optimization and modeling of material behavior on different length scales.
LernzielStudents will learn mathematical optimization methods including gradient based and gradient free methods as well as established algorithms in the context of machine learning to solve real engineering problems, which are generally non-linear in nature. Strategies to ensure efficient training of machine learning models based on large data sets define another teaching goal of the course.

Optimization tools (MATLAB, LS-Opt, Python) and the finite element program ABAQUS are presented to solve both general and real engineering problems.
Inhalt- Introduction into Nonlinear Optimization
- Design of Experiments DoE
- Introduction into Nonlinear Finite Element Analysis
- Optimization based on Meta Modeling Techniques
- Shape and Topology Optimization
- Robustness and Sensitivity Analysis
- Fundamentals of Machine Learning
- Generalized methods for regression and classification, Neural Networks, Support Vector machines
- Supervised and unsupervised learning
SkriptLecture slides and literature
151-0304-00LDimensionieren IIW4 KP4GK. Wegener
KurzbeschreibungDimensionieren (Festigkeitsrechnung) von Bauteilen und Maschinenelementen. Welle-Nabeverbindung, Schweiss- und Lötverbindungen, Federn, Schrauben, Wälz - und Gleitlager, Getriebe, Verzahnungen, Kupplungen und Bremsen sowie deren praktische Anwendung.
LernzielDie Studierenden erweitern in dieser Lehrveranstaltung ihr Wissen über das Dimensionieren von Bauteilen und Maschinen-Elementen. Es wird grossen Wert auf die Anwendung des Wissens zum Aufbau einer Handlungskompetenz gelegt. Die Studierenden sollen in der Lage sein, selbständig Einsatzfälle aufgrund von verschiedenen Randbedingungen, Funktions - und Festigkeitsberechnungen zu entscheiden.
InhaltEs werden die Maschinen-Elemente Löt - und Schweissverbindungen, Federn, Welle-Nabeverbindung, Getriebe, Verzahnungen und Kupplungen behandelt. Zu allen Maschinenelementen wird deren Funktionsweise und Einsatz bzw. Anwendungsgrenzen sowie die Auslegung behandelt. In den Übungen werden praktische Anwendungsfälle z.T. gemeinsam z.T. eigenständig gelöst.
SkriptScript vorhanden. Kosten: SFr. 40.-
Voraussetzungen / BesonderesVoraussetzungen:
Grundlagen der Produkt-Entwicklung
Dimensionieren 1

Kredit-Bedingungen/ Prüfung:
Innerhalb der Lehrveranstaltung dimensionieren die Studierenden einige Beispiele selbständig. Das Lehrfach wird in der darauffolgenden Prüfungssession geprüft. Kredite werden erteilt, wenn die Prüfung bestanden ist.
151-0515-00LContinuum Mechanics 2W4 KP2V + 1UE. Mazza, R. Hopf
KurzbeschreibungAn introduction to finite deformation continuum mechanics and nonlinear material behavior. Coverage of basic tensor- manipulations and calculus, descriptions of kinematics, and balance laws . Discussion of invariance principles and mechanical response functions for elastic materials.
LernzielTo provide a modern introduction to the foundations of continuum mechanics and prepare students for further studies in solid
mechanics and related disciplines.
Inhalt1. Tensors: algebra, linear operators
2. Tensors: calculus
3. Kinematics: motion, gradient, polar decomposition
4. Kinematics: strain
5. Kinematics: rates
6. Global Balance: mass, momentum
7. Stress: Cauchy's theorem
8. Stress: alternative measures
9. Invariance: observer
10. Material Response: elasticity
SkriptNone.
LiteraturRecommended texts:
(1) Nonlinear solid mechanics, G.A. Holzapfel (2000).
(2) An introduction to continuum mechanics, M.B. Rubin (2003).
151-0540-00LExperimentelle MechanikW4 KP2V + 1UJ. Dual, T. Brack
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-0630-00LNanorobotics Information W4 KP2V + 1US. Pané Vidal
KurzbeschreibungNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
LernzielThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0641-00LIntroduction to Robotics and Mechatronics Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 45.

Enrollment is only valid through registration on the MSRL website (Link). Registrations per e-mail is no longer accepted!
W4 KP2V + 2UB. Nelson, N. Shamsudhin
KurzbeschreibungThe aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use.
LernzielAn ever-increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices.

The aim of this course is to practically and theoretically expose students to the fundamentals of mechatronic and robotic systems. Over the course of the semester, the lecture topics will include an overview of robotics, an introduction to different types of sensors and their use, the programming of microcontrollers and interfacing these embedded computers with the real world, signal filtering and processing, an introduction to different types of actuators and their use, an overview of computer vision, and forward and inverse kinematics. Throughout the course, students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. By the end of the course, you will be able to independently choose, design and integrate these different building blocks into a working mechatronic system.
InhaltThe course consists of weekly lectures and lab sessions. The weekly topics are the following:
0. Course Introduction
1. C Programming
2. Sensors
3. Data Acquisition
4. Signal Processing
5. Digital Filtering
6. Actuators
7. Computer Vision and Kinematics
8. Modeling and Control
9. Review and Outlook

The lecture schedule can be found on our course page on the MSRL website (Link)
Voraussetzungen / BesonderesThe students are expected to be familiar with C programming.
151-1224-00LÖlhydraulik und PneumatikW4 KP2V + 2UJ.  Lodewyks
KurzbeschreibungVermittlung der physikalischen und technischen Grundlagen ölhydraulischer und pneumatischer Systeme und ihrer Bauelemente wie Pumpen, Motoren, Zylinder und Ventile, mit Schwergewicht auf der Servo- und Proportionaltechnik und der Regelung fluidischer Antriebe. Überblick über Anwendungsbeispielen aus dem Maschinenbau.
LernzielDer Student
- kann die Funktionsweise eines ölhydraulischen oder pneumatischen Systems interpretieren und kann einfache Schaltungen entwerfen
- kann den Aufbau und die Funktionsweise der Bauelemente erklären und kann sie nach Anforderungen dimensionieren und auswählen
- kann das dynamische Verhalten eines servohydraulischen Zylinder- antriebes simulieren und kann eine optimale Zustandsregelung mit Beobachter auslegen.
InhaltBedeutung der Oelhydraulik und Pneumatik, Begriffe, Anwendungsbeispiele,
Repetitorium der wichtigsten strömungstechnischen Grundlagen u.a. Kompressibilität eines Fluides, Durchfluss durch Drosseln und Spalten und Reibungsverluste in Leitungen.
Aufbau und Elemente hydraulischer und pneumatischer Anlagen, Funktion und Bauformen von Pumpen, Motoren und Zylinder, Druck-, Mengen-, Sperr-, Wege-, Proportional- und Servoventile,
Grundschaltungen hydraulischer und pneumatischer Systeme.
Dynamisches Verhalten und Zustandsregelung hydraulischer und pneumatischer Servoantriebe.
Übungen
Rechenübungen zur Auslegung fluidischer Antriebe
Aufnahme der Kennlinien von Drosseln, Ventilen und Pumpen
Aufbau eines pneumatisch gesteuerten Antriebes
Simulation und experimentelle Untersuchung eines zustandsgeregelten servohydraulischen Zylinderantriebes.
SkriptAutographie Oelhydraulik
Manuskript Zustandsregelung eines Servohydraulischen Zylinderantriebes
Manuskript Elemente einer Druckluftversorgung
Manuskript Modellierung eines Servopneumatischen Zylinderantriebes
Voraussetzungen / BesonderesDie Vorlesung eignet sich für Studierende ab dem 5. Semester. Im FS2021 finden die Vorlesungen mindestens bis Ostern ausschliesslich digital statt. Alle notwendigen Informationen und Unterlagen befinden sich auf Moodle.
Biomedizinische Technik
Fokus-Koordinator: Prof. Bradley Nelson
NummerTitelTypECTSUmfangDozierende
151-0515-00LContinuum Mechanics 2W4 KP2V + 1UE. Mazza, R. Hopf
KurzbeschreibungAn introduction to finite deformation continuum mechanics and nonlinear material behavior. Coverage of basic tensor- manipulations and calculus, descriptions of kinematics, and balance laws . Discussion of invariance principles and mechanical response functions for elastic materials.
LernzielTo provide a modern introduction to the foundations of continuum mechanics and prepare students for further studies in solid
mechanics and related disciplines.
Inhalt1. Tensors: algebra, linear operators
2. Tensors: calculus
3. Kinematics: motion, gradient, polar decomposition
4. Kinematics: strain
5. Kinematics: rates
6. Global Balance: mass, momentum
7. Stress: Cauchy's theorem
8. Stress: alternative measures
9. Invariance: observer
10. Material Response: elasticity
SkriptNone.
LiteraturRecommended texts:
(1) Nonlinear solid mechanics, G.A. Holzapfel (2000).
(2) An introduction to continuum mechanics, M.B. Rubin (2003).
151-0540-00LExperimentelle MechanikW4 KP2V + 1UJ. Dual, T. Brack
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-0630-00LNanorobotics Information W4 KP2V + 1US. Pané Vidal
KurzbeschreibungNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
LernzielThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0641-00LIntroduction to Robotics and Mechatronics Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 45.

Enrollment is only valid through registration on the MSRL website (Link). Registrations per e-mail is no longer accepted!
W4 KP2V + 2UB. Nelson, N. Shamsudhin
KurzbeschreibungThe aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use.
LernzielAn ever-increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices.

The aim of this course is to practically and theoretically expose students to the fundamentals of mechatronic and robotic systems. Over the course of the semester, the lecture topics will include an overview of robotics, an introduction to different types of sensors and their use, the programming of microcontrollers and interfacing these embedded computers with the real world, signal filtering and processing, an introduction to different types of actuators and their use, an overview of computer vision, and forward and inverse kinematics. Throughout the course, students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. By the end of the course, you will be able to independently choose, design and integrate these different building blocks into a working mechatronic system.
InhaltThe course consists of weekly lectures and lab sessions. The weekly topics are the following:
0. Course Introduction
1. C Programming
2. Sensors
3. Data Acquisition
4. Signal Processing
5. Digital Filtering
6. Actuators
7. Computer Vision and Kinematics
8. Modeling and Control
9. Review and Outlook

The lecture schedule can be found on our course page on the MSRL website (Link)
Voraussetzungen / BesonderesThe students are expected to be familiar with C programming.
151-0946-00LMacromolecular Engineering: Networks and GelsW4 KP4GM. Tibbitt
KurzbeschreibungThis course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery.
LernzielThe main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience.
SkriptClass notes and handouts.
LiteraturPolymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts.
Voraussetzungen / BesonderesPhysics I+II, Thermodynamics I+II
151-0980-00LBiofluiddynamicsW4 KP2V + 1UD. Obrist, P. Jenny
KurzbeschreibungIntroduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics).
LernzielA basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately.
InhaltThis lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear.
SkriptLecture notes are provided electronically.
LiteraturA list of books on selected topics of biofluiddynamics can be found on the course web page.
376-0022-00LImaging and Computing in Medicine Information Belegung eingeschränkt - Details anzeigen W4 KP3GR. Müller, C. J. Collins
KurzbeschreibungImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.
Lernziel1. Understanding and practical implementation of biosignal processes methods for imaging
2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging
3. Knowledge of computing, programming, modelling and simulation fundamentals
4. Computational and systems thinking as well as scripting and programming skills
5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity
6. Understanding of the emerging concept of personalised and in silico medicine
7. Encouragement of critical thinking and creating an environment for independent and self-directed studying
InhaltImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.
The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short video lectures on the online learning platform Moodle. At the end of this first part, students are able to post a number of questions in the Moodle forum or directly in the comments section of the video lecture that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturers may prepare additional teaching material to answer the posted questions and potentially discuss further questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, interactive activities or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments, to be completed during the flipped classroom portion.
SkriptStored on Moodle.
Voraussetzungen / BesonderesLectures will be given in English.
376-0210-00LBiomechatronics
Primär für Gesundheitswissenschaften und Technologie Studierende ausgelegt.

Die Biomechatronics Vorlesung ist nicht für Studierende geeignet, welche bereits die Vorlesung "Physical Human-Robot Interaction"(376-1504-00L) besucht haben, da sie ähnliche Themen abdeckt.

Matlab Kenntnisse sind vorteilhaft -> online Tutorial Link
W4 KP3GR. Gassert, N. Gerig, O. Lambercy, P. Wolf
KurzbeschreibungDevelopment of mechatronic systems (i.e. mechanics, electronics, computer science and system integration) with inspiration from biology and application in the living (human) organism.
LernzielThe objective of this course is to give an introduction to the fundamentals of biomechatronics, through lectures on the underlying theoretical/mechatronics aspects and application fields. In the exercises, these concepts will be intensified and trained on the basis of specific examples. The course will guide students through the design and evaluation process of such systems, and highlight a number of applications.

By the end of this course, you should understand the critical elements of biomechatronics and their interaction with biological systems, both in terms of engineering metrics and human factors. You will be able to apply the learned methods and principles to the design, improvement and evaluation of safe and efficient biomechatronics systems.
InhaltThe course will cover the interdisciplinary elements of biomechatronics, ranging from human factors to sensor and actuator technologies, real-time signal processing, system kinematics and dynamics, modeling and simulation, controls and graphical rendering as well as safety/ethical aspects, and provide an overview of the diverse applications of biomechatronics technology.
SkriptSlides will be distributed through moodle before the lectures.
LiteraturBrooker, G. (2012). Introduction to Biomechatronics. SciTech Publishing.
Riener, R., Harders, M. (2012) Virtual Reality in Medicine. Springer, London.
Voraussetzungen / BesonderesNone
Management, Technology and Economics
Fokus-Koordintor: Prof. Stefano Brusoni D-MTEC und Dr. Bastian Bergmann D-MTEC
NummerTitelTypECTSUmfangDozierende
363-0302-00LHuman Resource Management: Leading Teams Information W+3 KP2GG. Grote
KurzbeschreibungThe basic processes of human resource management are discussed (selection, reward systems, performance evaluation, career development) and embedded in the broader context of leadership in teams. Leadership concepts and group processes are presented. Practical instruments supporting leadership functions are introduced and applied in business settings through student projects.
Lernziel• Understand basic HRM functions and their relationship to leadership
• Know instruments for selection, performance appraisal, compensation, and development
• Understand leadership requirements and success factors in leadership
• Know fundamental processes in teams
• Apply and expand theoretical knowledge on a specific topic in self-guided learning
• Manage team processes and diversity
InhaltHuman Resource Management (HRM) concerns the policies, practices, and systems that influence employees' behavior, attitudes, and performance. HRM aims at applying human resources within organizations such that people succeed and organizational performance improves. HRM is of high strategic relevance as evidenced by strong links between good HRM practices and business outcomes.

In the course, concepts and instruments for employee selection, performance management, and personnel development are presented. Some instruments are also practically applied in small groups. Fundamentals of effective leadership and dynamics in teams are discussed, in particular in view of the increasing demands for balancing stability and flexibility in fast-changing organizations.

The course is taught from the perspective of team members' and team leaders' role in HRM, not from the perspective of HR managers. Thereby, students can directly relate their own experience to the HRM practices discussed. This applies to prior work experience, but also to any other teamwork experience, be it as a student or in a private role, for instance in sports clubs. Selecting the right team members, discussing and improving individual and team performance, managing task and relational conflicts, and sharing and building on each other's knowledge to solve problems are ubiquituous challenges that the course addresses.

As part of the course, students also apply HRM instruments in company contexts in a group semester project. Topics for these projects are determined prior to the course and in the past have concerned leadership assessment, performance-based pay, and working in virtual teams. Students are provided with background literature and specific tools to conduct the project and are accompanied by a project advisor who provides additional support.
SkriptThere is no script.
LiteraturA reading list and the respective documents are provided via moodle.
363-0302-02LHuman Resource Management: Leading Teams (Additional Cases) Belegung eingeschränkt - Details anzeigen
Nur für Maschineningenieurwissenschaften BSc Fokus MTEC
W+1 KP2AG. Grote
KurzbeschreibungStudents write a term paper based on a literature review in an HRM-reöated topic of their choice (e.g., employee selection, performance management, leadership, group dynamics).
LernzielStudents work through an HRM-related topic on their own and develop practical and research ideas around that topic.
Voraussetzungen / BesonderesThe lecture 363-0302-00L Human Resource Management: Leading Teams needs to be taken in order to participate in this module
151-0700-00LFertigungstechnikW4 KP2V + 2UK. Wegener
KurzbeschreibungGrundbegriffe der Produktionstechnik, Umformen, Spanen, Laserbearbeitung, Mechatronik im Produktionsmaschinenbau, Qualitätssicherung Prozesskettenplanung.
Lernziel- Kenntnis fertigungstechnischer Grundbegriffe
- Grundkenntnisse einiger Verfahren, deren Funktionsweise und Auslegung
(Umformtechnik, Trennende Verfahren, Lasertechnik)
- Wissen um produktdefinierende Eigenschaften und Anwendungsgrenzen
- im Wettbewerb der Verfahren die richtigen Entscheidungen treffen,
- Vorgehen zur Prozesskettenplanung
- Grundkenntnisse zur Qualitätssicherung
InhaltErläuterung produktionstechnischer Grundbegriffe und Einblick in die Funktionsweise eines Fertigungsbetriebs. Vorgestellt werden in unterschiedlicher Tiefe umformende und trennende Fertigungsverfahren, sowie die Laserbearbeitung (schweissen und schneiden), deren Auslegung, produktdefinierende Eigenschaften und Anwendungsgrenzen sowie die zugehörigen Fertigungsmittel. Behandelt werden weiter Grundbegriffe der industriellen Messtechnik und mechatronische Konzepte im Werkzeugmaschinenbau.
SkriptJa
LiteraturHerbert Fritz, Günter Schulze (Hrsg.) Fertigungstechnik. 6. Aufl. Springer Verlag 2003
Voraussetzungen / BesonderesEs ist eine Exkursion zu einem oder zwei fertigungstechnischen Betrieben geplant
351-0578-00LEinführung in die Wirtschaftspolitik Belegung eingeschränkt - Details anzeigen W2 KP2VH. Mikosch
KurzbeschreibungErster Zugang zur Theorie der Wirtschaftspolitik.
LernzielErster Zugang zur Theorie der Wirtschaftspolitik. Grundsätzliches Verständnis von wirtschaftspolitschen Mechanismen.
InhaltWirtschaftspolitik ist die Gesamtheit aller Massnahmen von staatlichen Institutionen mit denen das Wirtschaftsgeschehen geregelt und gestaltet wird. Die Vorlesung bietet einen ersten Zugang zur Theorie der Wirtschaftspolitik.

Gliederung der Vorlesung:

1.) Wohlfahrtsökonomische Grundlagen: Wohlfahrtsfunktion, Pareto-Optimalität, Wirtschaftspolitik als Mittel-Zweck-Analyse u.a.

2.) Wirtschaftsordnungen: Geplante und ungeplante Ordnung
3.) Wettbewerb und Effizienz: Hauptsätze der Wohlfahrtsökonomik, Effizienz von Wettbewerbsmärkten
4.) Wettbewerbspolitik: Sicherstellung einer wettbewerblichen Ordnung

Gründe für Marktversagen:
5.) Externe Effekte
6.) Öffentliche Güter
7.) Natürliche Monopole
8.) Informationsasymmetrien
9.) Anpassungskosten
10.) Irrationalität

11.) Wirtschaftspolitik und Politische Ökonomie

Die Vorlesung beinhaltet Anwendungsbeispiele und Exkurse, um eine Verbindung zwischen Theorie und Praxis der Wirtschaftspolitik herzustellen. Z. B. Verteilungseffekte von wirtschaftspolitischen Massnahmen, Kartellpolitik am Ölmarkt, Internalisierung externer Effekte durch Emissionshandel, moralisches Risiko am Finanzmarkt, Nudging, zeitinkonsistente Präferenzen im Bereich der Gesundheitspolitik
SkriptJa (in Form von Vorlesungsslides).
351-0778-00LDiscovering Management
Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC.
This course can be complemented with Discovering Management (Excercises) 351-0778-01L.
W3 KP3GL. De Cuyper, S. Brusoni, B. Clarysse, V. Hoffmann, T. Netland, G. von Krogh
KurzbeschreibungDiscovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. The module provides an overview of the principles of management, teaches knowledge about management that is highly complementary to the students' technical knowledge, and provides a basis for advancing the knowledge of the various subjects offered at D-MTEC.
LernzielThe objective of this course is to introduce the students to the relevant topics of the management literature and give them a good introduction in entrepreneurship topics too. The course is a series of lectures on the topics of strategy, innovation, marketing, corporate social responsibility, and productions and operations management. These different lectures provide the theoretical and conceptual foundations of management. In addition, students are required to work in teams on a project. The purpose of this project is to analyse the innovative needs of a large multinational company and develop a business case for the company to grow.
InhaltDiscovering Management aims to broaden the students' understanding of the principles of business management, emphasizing the interdependence of various topics in the development and management of a firm. The lectures introduce students not only to topics relevant for managing large corporations, but also touch upon the different aspects of starting up your own venture. The lectures will be presented by the respective area specialists at D-MTEC.
The course broadens the view and understanding of technology by linking it with its commercial applications and with society. The lectures are designed to introduce students to topics related to strategy, corporate innovation, corporate social responsibility, and business model innovation. Practical examples from industry will stimulate the students to critically assess these issues.
Voraussetzungen / BesonderesDiscovering Management is designed to suit the needs and expectations of Bachelor students at all levels as well as Master and PhD students not belonging to D-MTEC. By providing an overview of Business Management, this course is an ideal enrichment of the standard curriculum at ETH Zurich.
No prior knowledge of business or economics is required to successfully complete this course.
351-0778-01LDiscovering Management (Exercises)
Complementary exercises for the module Discovering Managment.

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.
W1 KP1UB. Clarysse
KurzbeschreibungThis course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise in the form of a project conducted in team.
LernzielThis course is offered to complement the course 351-0778-00L. The course offers an additional exercise to the more theoretical and conceptual content of Discovering Management.

While Discovering Management offers an introduction to various management topics, in this course, creative skills will be trained by the business game exercise. It is a participant-centered, team-based learning activity, which provides students with the opportunity to place themselves in the role of Chief Innovation Officer of a large multinational company.
InhaltAs the students learn more about the specific case and identify the challenge they are faced with, they will have to develop an innovative business case for this multinational corporation. Doing so, this exercise will provide an insight into the context of managerial problem-solving and corporate innovation, and enhance the students' appreciation for the complex tasks companies and managers deal with. The exercise presents a realistic model of a company and provides a valuable learning platform to integrate the increasingly important development of the skills and competences required to identify entrepreneurial opportunities, analyse the future business environment and successfully respond to it by taking systematic decisions, e.g. critical assessment of technological possibilities.
363-0764-00LProject ManagementW2 KP2VC. G. C. Marxt
KurzbeschreibungThe course gives a detailed introduction into various aspects of classic and agile project management. Established concepts and methods for initiating, planning and executing projects are introduced and major challenges discussed. Additionally the course covers different agile and hybrid project management concepts.
LernzielProjects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual but also for company wide success.

The goal of this course is to give a detailed introduction into project management, more specific participants
- will understand the basics of successful classic and agile project management
- are able to apply the concepts and methods of project management in their day to day work
- are able to identify different project management practices and are able to suggest improvements
- will contribute to projects in your organization in a positive way
- will be able to plan and execute projects successfully.
InhaltThe competitiveness of companies is driven by the development of a concise strategy and its successful implementation. Especially strategy execution poses several challenges to senior management: clear communication of goals, ongoing follow up of activities, a sound monitoring and control system. All these aspect are covered by successfully implementing and applying program and project management. As an introductory course we will focus mainly on project management.
In the last decade project management has become an important discipline in management and several internationally recognized project management methods can be found: PMBOK, IPMA ICB, PRINCE 2, etc. These frameworks have proven to be very useful in day-to-day work.
Unfortunately the environment companies are working in has changed parallel to the rise of PM as a discipline. Incremental but even more important fundamental changes happen more often and much faster than a decade ago. Experience has shown that the classic PM approaches lack the inherent dynamics to cope with these challenges. So overtime new methods have surfaced, such as SCRUM. These methods are called Agile Project Management methods and follow a dynamic model of reality, called complex adaptive systems perspective.
This course will cover both classic and agile project management topics. The first part of the semester will lay the basics by discussing the classic way of planning, organizing and executing a project based on its life cycle. Topics covered include: drafting project proposals, stake holder analysis, different aspects of project planning, project organization, project risk management, project execution, project control, leadership in projects incl. conflict mitigation strategies, termination and documentation. In the second part basic conceptual topics for agile project management such as the agile manifesto, SCRUM, Lean, Kanban, XP, rapid results are covered. The course tries to tap into pre-existing knowledge of the participants using a very interactive approach including in-class discussion, short exercises and case studies.
SkriptNo
The lecture slides and other additional material (papers, book chapters, case studies, etc.) will be available for download from Moodle before each class.
363-1017-00LRisk and Insurance EconomicsW3 KP2GI. Gemmo
KurzbeschreibungThe course covers the economics of risk and insurance, in particular the following topics will be discussed:
2) individual decision making under risk
3) fundamentals of insurance
4) information asymmetries in insurance markets
5) the macroeconomic role of insurers
LernzielThe goal is to introduce students to basic concepts of risk, risk management and economics of insurance.
Inhalt“The ability to define what may happen in the future and to choose among alternatives lies at the heart of contemporary societies. Risk management guides us over a vast range of decision-making from allocation of wealth to safeguarding public health, from waging war to planning a family, from paying insurance premiums to wearing a seatbelt, from planting corn to marketing cornflakes.” (Peter L. Bernstein)

Every member of society faces various decisions under uncertainty on a daily basis. Many individuals apply measures to manage these risks without even thinking about it; many are subject to behavioral biases when making these decisions. In the first part of this lecture, we discuss normative decision concepts, such as Expected Utility Theory, and contrast them with empirically observed behavior.

Students learn about the rationale for individuals to purchase insurance as part of a risk management strategy. In a theoretical framework, we then derive the optimal level of insurance demand and discuss how this result depends on the underlying assumptions. After learning the basics for understanding the specifications, particularities, and mechanisms of insurance markets, we discuss the consequences of information asymmetries in these markets.

Insurance companies do not only provide individuals with a way to decrease uncertainty of wealth, they also play a vital role for businesses that want to manage business risk, for the real economy by providing funds and pooling risks, and for the financial market by being important counterparties in numerous financial transactions. In the last part of this lecture, we shed light on these different roles of insurance companies. We compare the implications for different stakeholders and (insurance) markets in general.

Finally, course participants familiarize themselves with selected research papers that analyze individuals’ decision-making under risk or examine specific details about the different roles of insurance companies.
LiteraturMain literature:

- Eeckhoudt, L., Gollier, C., & Schlesinger, H. (2005). Economic and Financial Decisions under Risk. Princeton University Press.
- Zweifel, P., & Eisen, R. (2012). Insurance Economics. Springer.


Further readings:

- Dionne, G. (Ed.). (2013). Handbook of Insurance (2nd ed.). Springer.
- Hufeld, F., Koijen, R. S., & Thimann, C. (Eds.). (2017). The Economics, Regulation, and Systemic Risk of Insurance Markets. Oxford University Press.
- Niehaus, H., & Harrington, S. (2003). Risk Management and Insurance (2nd ed.). McGraw Hill.
- Rees, R., & Wambach, A. (2008). The Microeconomics of Insurance, Foundations and Trends® in Microeconomics, 4(1–2), 1-163.
363-1038-00LSustainability Start-Up Seminar Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.
W3 KP2GA. H. Sägesser
KurzbeschreibungExperts lead participants through a venturing process inspired by Lean and Design Thinking methodologies. The course contains problem identification, idea generation and evaluation, team formation, and the development of one entrepreneurial idea per team. A special focus is put on sustainability, in particular on climate change and biodiversity.
Lernziel1. Students have experienced and know how to take the first steps towards co-creating a venture and potentially company
2. Students reflect deeply on sustainability issues (with a focus on climate change & biodiversity) and can formulate a problem statement
3. Students believe in their ability to bring change to the world with their own ideas
4. Students are able to apply entrepreneurial practices such as the lean startup approach
5. Students have built a first network and know how to proceed and who to approach in case they would like to take their ventures further.
InhaltThis course is aimed at people with a keen interest to address sustainability issues (with a focus on climate change and biodiversity), with a curious mindset, and potentially first ideas for entrepreneurial action!

The seminar consists of a mix of lectures, workshops, individual working sessions, teamwork, and student presentations/pitches. This class is taught by a reflective practitioner of entrepreneurial action for societal transformation. Real-world climate entrepreneurs and experts from the Swiss start-up and sustainability community will be invited to support individual sessions.

All course content is based on latest international entrepreneurship practices.

The seminar starts with an introduction to sustainability (with a special focus on climate change & energy) and entrepreneurship. Students are asked to self-select into an area of their interest in which they will develop entrepreneurial ideas throughout the course.

The first part of the course then focuses on deeply understanding sustainability problems within the area of interest. Through workshops and self-study, students will identify key design challenges, generate ideas, as well as provide systematic and constructive feedback to their peers.

In the second part of the course, students will form teams around their generated ideas. In these teams they will develop a business model and, following the lean start-up process, conduct real-life testing, as well as pivoting of these business models.

In the final part of the course, students present their insights gained from the lean start-up process, as well as pitch their entrepreneurial ideas and business models to an expert jury. The course will conclude with a session that provides students with a network and resources to further pursue their entrepreneurial journey.
SkriptAll material will be made available to the participants.
LiteraturNo pre-reading required.

Recommended literature:
Voraussetzungen / BesonderesPrerequisite:
Interest in sustainability & entrepreneurship.

Notes:
1. It is not required that participants already have an idea for entrepreneurial action at the beginning of the course.
2. Focus is on entrepreneurial action which can take many forms. Eg. startup, SME, campaign, intrapreneurial action, non-profit, ...
2. No legal entities (e.g. GmbH, Association, AG) need to be founded for this course.

Target participants:
PhD students, Msc students and MAS students from all departments. The number of participants is limited to max.30.

Waiting list:
After subscribing you will be added to the waiting list.
The lecturer will contact you a few weeks before the start of the seminar to confirm your interest and to ensure a good mixture of study backgrounds, only then you're accepted to the course.
Design, Mechanics and Materials
Fokus-Koordinator: Prof. Kristina Shea
Für die erforderlichen 20 KPs der Fokus-Vertiefung Design, Mechanics and Materials sind alle aufgeführten Fächer frei wählbar. Empfohlene Fächer sind gekennzeichnet. Falls Sie einen Kurs auf Masterlevel besuchen möchten, müssen Sie dafür das Einverständnis des zuständigen Dozenten einholen.
NummerTitelTypECTSUmfangDozierende
151-0332-00LInterdisciplinary Product Development: Definition, Realisation and Validation of Product Concepts Belegung eingeschränkt - Details anzeigen
Number of participants limited to: 5 (ETHZ) + 20 (ZHdK)

To apply for the course please create a pdf of 2+ Pages describing yourself and your motivation for the course as well as one or more of your former development projects. Please add minimum one picture and your CV as well, send the pdf to Link.
W+4 KP2G + 4AM. Schütz
KurzbeschreibungThis course is offered by the Design and Technology Lab Zurich, a platform where students from the disciplines industrial design (ZHdK) and mechanical engineering (ETH) can learn, meet and perform projects together. In interdisciplinary teams the students develop a product by applying methods used in the different disciplines within the early stages of product development.
LernzielThis interdisciplinary course has the following learning objectives:
- to learn and apply methods of the early stages of product development from both fields: mechanical engineering and industrial design
- to use iterative and prototyping-based development (different types of prototypes and test scenarios)
- to run through a development process from product definition to final prototype and understand the mechanisms behind it
- to experience collaboration with the other discipline and learn how to approach and deal with any appearing challenge
- to understand and experience consequences which may result of decision taken within the development process
InhaltAt the end of the course each team should present an innovative product concept which convinces from both, the technical as well as the design perspective. The product concept should be presented as functioning prototype.

The learning objectives will be reached with the following repeating cycle:
1) input lectures
The relevant theoretical basics will be taught in short lectures by different lecturers from both disciplines, mechanical engineering an industrial design. The focus is laid on methods, processes and principles of product development.
2) team development
The students work on their projects individually and apply the taught methods. At the same time, they will be coached and supported by mentors to pass through the product development process successfully.
3) presentation
Important milestones are presented and discussed during the course, thus allowing teams to learn from each other.
4) reflection
The students deepen their understanding of the new knowledge and learn from failures. This is especially important if different disciplines work together and use methods from both fields.
SkriptHands out after input lectures
Voraussetzungen / BesonderesNumber of participants limited to: 5 (ETHZ) + 20 (ZHdK)

To apply for the course please create a pdf of 2+ Pages describing yourself and your motivation for the course as well as one or more of your former development projects. Please add minimum one picture and Your CV as well, send the pdf to Link.
151-0540-00LExperimentelle MechanikW+4 KP2V + 1UJ. Dual, T. Brack
Kurzbeschreibung1. Allgemeines: Messkette, Frequenzgang, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden 3. Piezoelektrizität 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer
LernzielVerständnis, quantitative Modellierung und praktische Anwendung von experimentellen Methoden zur Erzeugung und Messung von mechanischen Grössen (Bewegung, Deformation, Spannungen)
Inhalt1. Allgemeines: Messkette, Frequenzgang, Frequenzgangmessung, Schwingungen und Wellen in kontinuierlichen Systemen, Modalanalyse, Statistik, Digitale Signalanalyse, Phasenregelkreis 2. Optische Methoden (Akustooptische Modulation, Interferometrie, Holographie, Spannungsoptik, Schattenoptik, Moiré Methoden) 3. Piezoelektrische Materialien: Grundgleichungen, Anwendungen Beschleunigungsaufnehmer, Verschiebungsmessung) 4. Elektromagnetische Erzeugung und Messung von Schwingungen und Wellen 5. Kapazitive Messaufnehmer, Praktika und Uebungen
Skriptja
Voraussetzungen / BesonderesVoraussetzungen: Mechanik I bis III, Physik, Elektrotechnik
151-3202-00LProduct Development and Engineering Design Belegung eingeschränkt - Details anzeigen
Number of participants limited to 60.
W+4 KP2GK. Shea, T. Stankovic
KurzbeschreibungThe course introduces students to the product development process. In a team, you will explore the early phases of conceptual development and product design, from ideation and concept generation through to hands-on prototyping. This is an opportunity to gain product development experience and improve your skills in prototyping and presenting your product ideas. The project topic changes each year.
LernzielThe course introduces you to the product development process and methods in engineering design for: product planning, user-centered design, creating product specifications, ideation including concept generation and selection methods, material selection methods and prototyping. Further topics include design for manufacture and design for additive manufacture. You will actively apply the process and methods learned throughout the semester in a team on a product development project including prototyping.
InhaltWeekly topics accompanying the product development project include:
1 Introduction to Product Development and Engineering Design
2 Product Planning and Social-Economic-Technology (SET) Factors
3 User-Centered Design and Product Specifications
4 Concept Generation and Selection Methods
5 System Design and Embodiment Design
6 Prototyping and Prototype Planning
7 Material Selection in Engineering Design
8 Design for Manufacture and Design for Additive Manufacture
Skriptavailable on Moodle
LiteraturUlrich, Eppinger, and Yang, Product Design and Development. 7th ed., McGraw-Hill Education, 2020.

Cagan and Vogel, Creating Breakthrough Products: Revealing the Secrets that Drive Global Innovation, 2nd Edition, Pearson Education, 2013.
Voraussetzungen / BesonderesAlthough the course is offered to ME (BSc and MSc) and CS (BSc and MSc) students, priority will be given to ME BSc students in the Focus Design, Mechanics, and Materials if the course is full.
151-0304-00LDimensionieren IIW4 KP4GK. Wegener
KurzbeschreibungDimensionieren (Festigkeitsrechnung) von Bauteilen und Maschinenelementen. Welle-Nabeverbindung, Schweiss- und Lötverbindungen, Federn, Schrauben, Wälz - und Gleitlager, Getriebe, Verzahnungen, Kupplungen und Bremsen sowie deren praktische Anwendung.
LernzielDie Studierenden erweitern in dieser Lehrveranstaltung ihr Wissen über das Dimensionieren von Bauteilen und Maschinen-Elementen. Es wird grossen Wert auf die Anwendung des Wissens zum Aufbau einer Handlungskompetenz gelegt. Die Studierenden sollen in der Lage sein, selbständig Einsatzfälle aufgrund von verschiedenen Randbedingungen, Funktions - und Festigkeitsberechnungen zu entscheiden.
InhaltEs werden die Maschinen-Elemente Löt - und Schweissverbindungen, Federn, Welle-Nabeverbindung, Getriebe, Verzahnungen und Kupplungen behandelt. Zu allen Maschinenelementen wird deren Funktionsweise und Einsatz bzw. Anwendungsgrenzen sowie die Auslegung behandelt. In den Übungen werden praktische Anwendungsfälle z.T. gemeinsam z.T. eigenständig gelöst.
SkriptScript vorhanden. Kosten: SFr. 40.-
Voraussetzungen / BesonderesVoraussetzungen:
Grundlagen der Produkt-Entwicklung
Dimensionieren 1

Kredit-Bedingungen/ Prüfung:
Innerhalb der Lehrveranstaltung dimensionieren die Studierenden einige Beispiele selbständig. Das Lehrfach wird in der darauffolgenden Prüfungssession geprüft. Kredite werden erteilt, wenn die Prüfung bestanden ist.
151-0306-00LVisualization, Simulation and Interaction - Virtual Reality I Information W4 KP4GA. Kunz
KurzbeschreibungTechnologie der virtuellen Realität. Menschliche Faktoren, Erzeugung virtueller Welten, Beleuchtungsmodelle, Display- und Beschallungssysteme, Tracking, haptische/taktile Interaktion, Motion Platforms, virtuelle Prototypen, Datenaustausch, VR-Komplettsysteme, Augmented Reality; Kollaborationssysteme; VR und Design; Umsetzung der VR in der Industrie; Human COmputer Interfaces (HCI).
LernzielDie Studierenden erhalten einen Überblick über die virtuelle Realität, sowohl aus technischer als auch aus informationstechnologischer Sicht. Sie lernen unterschiedliche Software- und Hardwareelemente kennen sowie deren Einsatzmöglichkeiten im Geschäftsprozess. Die Studierenden entwickeln eine Kenntnis darüber, wo sich heute die virtuelle Realität nutzbringend einsetzen lässt und wo noch weiterer Forschungsbedarf besteht. Anhand konkreter Programme und Systeme erfahren die Teilnehmer den Umgang mit den erlernten neuen Technologien.
Studierende sind in der Lage:
• gängige VR-Technologien zu evaluieren und die geeignetste für eine gegebene Aufgabe auszuwählen bezüglich der folgenden Gesichtspunkte:
o Visualisierungsmöglichkeiten: Monitore, Projektionssysteme, Datenbrillen
o Positionserfassungssystemen (optisch/elektromagnetisch/mechanisch)
o Interaktionstechnologien: Datenhandschuhe, Möglichkeit des echten Laufens/Erfassung der Augenbewegung/manuelle Interaktion, usw.
• eine VR-Anwendung selbstständig zu entwickeln,
• die VR-Technologie auf industrielle Anforderungen anzuwenden,
• das erlernte Wissen in einer praktischen Anwendung zu vertiefen.
• grundlegende Unterschiede in Anwendung digitaler Welten zu vergleichen (VR/AR/MR/XR)
InhaltDiese Vorlesung gibt eine Einführung in die Technologie der virtuellen Realität als neues Tool zur Bewältigung komplexer Geschäftsprozesse. Es sind die folgenden Themen vorgesehen: Einführung und Geschichte der VR; Eingliederung der VR in die Produktentwicklung; Nutzen von VR für die Industrie; menschliche Faktoren als Grundlage der virtuellen Realität; Einführung in die Erzeugung (Modellierung) virtueller Welten; Beleuchtungsmodelle; Kollisionserkennung; Displaysysteme; Projektionssysteme; Beschallungssysteme; Trackingssysteme; Interaktionsgeräte für die virtuelle Umgebung; haptische und taktile Interaktion; Motion Platforms; Datenhandschuh; physikalisch basierte Simulation; virtuelle Prototypen; Datenaustausch und Datenkommunikation; VR-Komplettsysteme; Augmented Reality; Kollaborationssysteme; VR zur Unterstützung von Designaufgaben; Umsetzung der VR in der Industrie; Ausblick in die laufende Forschung im Bereich VR.

Lehrmodule:
- Geschichte der VR und Definition der wichtigsten Begriffe
- Einordnung der VR in Geschäftsprozesse
- Die Erzeugung virtueller Welten
- Geräte und Technologien für die immersive virtuelle Realität
- Anwendungen der VR in unterschiedlichsten Gebieten
SkriptDie Durchführung der Lehrveranstaltung erfolgt gemischt mit Vorlesungs- und Übungsanteilen.
Die Vorlesung kann auf Wunsch in Englisch erfolgen. Das Skript ist ebenfalls in Englisch verfügbar.
Skript, Handout; Kosten SFr.30.-
Voraussetzungen / BesonderesVoraussetzungen:
keine
Vorlesung geeignet für D-MAVT, D-ITET, D-MTEC und D-INF

Testat/ Kredit-Bedingungen/ Prüfung:
– Teilnahme an Vorlesung und Kolloquien
– Erfolgreiche Durchführung von Übungen in Teams
– Mündliche Einzelprüfung 30 Minuten
151-0324-00LGL zum Bemessen von Kunststoffbauteilen Information W4 KP2V + 1UG. P. Terrasi
KurzbeschreibungUnverstärkte und faserverstärkte Kunststoffe (FVWS) für tragende Anwendungen. Bemessungsansätze für unverstärkte Kunststoffe unter ruhender, kombinierter und schwingender Belastung. Stabilität und Bruchmechanik. Processing. Zusammensetzung von FVWS. Eigenschaften von Faser- und Matrixwerkstoffen. Verarbeitung und Bemessung von FVWS: Kontinuums- und Netztheorie, Stabilität und Langzeitverhalten.
LernzielVermitteln der Grundlagen bezüglich Ingenieurbemessung mit unverstärkten und faserverstärkten Kunststoffen (FVWS) für tragende Anwendungen. Parallel zu der Präsentation der Grundlagen werden viele praktische Anwendungen behandelt.
151-0515-00LContinuum Mechanics 2W4 KP2V + 1UE. Mazza, R. Hopf
KurzbeschreibungAn introduction to finite deformation continuum mechanics and nonlinear material behavior. Coverage of basic tensor- manipulations and calculus, descriptions of kinematics, and balance laws . Discussion of invariance principles and mechanical response functions for elastic materials.
LernzielTo provide a modern introduction to the foundations of continuum mechanics and prepare students for further studies in solid
mechanics and related disciplines.
Inhalt1. Tensors: algebra, linear operators
2. Tensors: calculus
3. Kinematics: motion, gradient, polar decomposition
4. Kinematics: strain
5. Kinematics: rates
6. Global Balance: mass, momentum
7. Stress: Cauchy's theorem
8. Stress: alternative measures
9. Invariance: observer
10. Material Response: elasticity
SkriptNone.
LiteraturRecommended texts:
(1) Nonlinear solid mechanics, G.A. Holzapfel (2000).
(2) An introduction to continuum mechanics, M.B. Rubin (2003).
151-0516-00LNicht-glatte Dynamik
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W5 KP5GC. Glocker
KurzbeschreibungUngleichungsprobleme in der Dynamik, speziell Reib- und Stoßprobleme mit Geschwindigkeits- und Beschleunigungssprüngen. Modellierung von einseitigen Kontakten, Reibung, Freiläufen, vorgespannten Federn. Formulierung über mengenwertige Funktionen als lineare Komplementaritätsprobleme. Numerische Zeitintegration des kombinierten Reib-Stoss-Kontaktproblems.
LernzielDie Vorlesung vermittelt den Studierenden einen Einstieg in die moderne Behandlung von Ungleichungsproblemen in der Dynamik. Der Vorlesungsstoff ist speziell auf reibungsbehaftete Kontakte in der Mechanik zugeschnitten, läßt sich aber strukturell auf eine große Klasse von Ungleichungsproblemen in den technischen Wissenschaften übertragen. Ziel der Veranstaltung ist es, die Studierenden mit einer konsistenten Erweiterung der klassischen Mechanik auf Systeme mit Unstetigkeiten vertraut zu machen, und den Umgang mit Ungleichungen in der Form von mengenwertigen Stoffgesetzen zu erlernen.
Inhalt1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
SkriptEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Voraussetzungen / BesonderesKinematik und Statik & Dynamics
151-0518-00LComputational Mechanics I: Intro to FEAW4 KP4GD. Kochmann
KurzbeschreibungNumerical methods and techniques for solving initial boundary value problems in solid mechanics (heat conduction, static and dynamic mechanics problems of solids and structures). Finite difference methods, indirect and direct techniques, variational methods, finite element (FE) method, FE analysis in small strains for applications in structural mechanics and solid mechanics.
LernzielTo understand the concepts and application of numerical techniques for the solution of initial boundary value problems in solid and structural mechanics, particularly including the finite element method for static and dynamic problems.
Inhalt1. Introduction, direct and indirect numerical methods. 2. Finite differences, stability analysis. 3. Variational methods. 4. Finite element method. 5. Structural elements (bars and beams). 6. 2D and 3D solid elements (isoparametric and simplicial elements), numerical quadrature. 7. Assembly, solvers, finite element technology. 8. Dynamics, vibrations. 9. Selected topics in finite element analysis.
SkriptLecture notes will be provided. Students are strongly encouraged to take their own notes during class.
LiteraturNo textbook required; relevant reference material will be suggested.
Voraussetzungen / BesonderesMechanics 1 & 2 and Dynamics.
151-0544-00LMetal Additive Manufacturing - Mechanical Integrity and Numerical Analysis
Findet dieses Semester nicht statt.
W4 KP3G
KurzbeschreibungAn introduction to Metal Additive Manufacturing (MAM) (e.g. different techniques, the metallurgy of common alloy-systems, existing challenges) will be given. The focus of the lecture will be on the employment of different simulation approaches to address MAM challenges and to enable exploiting the full advantage of MAM for the manufacture of structures with desired property and functionality.
LernzielThe main objectives of this lecture are:
- Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects),
- Understanding the importance of material science and metallurgical considerations in MAM,
- Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology,
- Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process.
InhaltPreliminary lecture schedule:
- Introduction to MAM (concept, application examples, pros & cons),
- 2x Powder-bed and powder-blown metal additive manufacturing,
- Thermo-fluid analysis of additive manufacturing,
- Continuum-based thermal modelling and experimental validation techniques,
- Residual stress and distortion simulation and verification methods,
- 2x Microstructural simulation (basics, analytical, kinetic Monte Carlo, cellular automata, phase-field),
- Mechanical property prediction for MAM,
- 3x Microstructure and mechanical response of MAM material (steels, Ti6Al4V, Inconel, Al alloys),
- Design for additive manufacturing
- Artificial intelligence for AM
Exercise sessions use COMSOL, ANSYS, ABAQUS packages for analysis of MAM process. Detailed video-instructions will be provided to enable students setting up their own simulations. COMSOL, ANSYS and ABAQUS agreed to support the course by providing licenses for the course attendees and therefore the students can install the packages on their own systems.
SkriptHandouts of the presented slides.
LiteraturNo textbook is available for the course (unfortunately), since it is a dynamic and relatively new topic. In addition to the material presented in the course slides, suggestions/recommendations for additional literature/publications will be given (for each individual topic).
Voraussetzungen / BesonderesA basic knowledge of mechanical analysis, metallurgy, thermodynamics is recommended.
151-0552-00LFracture MechanicsW4 KP3GL. De Lorenzis
KurzbeschreibungThe course provides an introduction to the concepts of fracture mechanics and covers theoretical concepts as well as the basics of experimental and computational methods. Both linear and non-linear fracture mechanics are covered, adopting the stress and the energetic viewpoints. A basic overview of fatigue and dynamic fracture is also given.
LernzielTo acquire the basic concepts of fracture mechanics in theory, numerics and experiments, and to be able to apply them to the solution of relevant problems in solid and structural mechanics.
Inhalt1. Introduction: damage and fracture mechanisms, brittle and ductile fracture, stress concentrations, weak and strong singularities. 2. Linear elastic fracture mechanics: the stress approach, the energy approach, mixed-mode fracture, size effects. 3. Elasto-plastic fracture mechanics: small-scale yielding, crack tip opening displacement, J integral. 4. Basics of experimental methods in fracture mechanics. 5. Basics of computational methods in fracture mechanics: finite element techniques, cohesive zone models, phase field modeling. 6. Overview of additional topics: fatigue, dynamic fracture, environmental cracking.
SkriptLecture notes will be provided. However, students are encouraged to take their own notes.
Voraussetzungen / BesonderesMechanics 1, 2, and Dynamics.
151-3204-00LCoaching Innovations-ProjekteW2 KP2VR. P. Haas
KurzbeschreibungErfahrungen im coachen von Ingenieur-Teams lernen und einüben. Jeder Kursteilnehmende coacht selbst mehrere Teams der Innovationsprojekte (151-300-00L). Damit werden Coaching-Fähigkeiten und Wissen im Bereich der Produktentwicklung-Methoden professionalisiert.
Lernziel- Kritisches Denken und begründetes Beurteilen
- Grundkenntnisse der Rolle und Denkweise eines Coaches
- Erfahrung der Herausfoderungen in technischen Projekten und Design-Teams
- Entwicklung der persönlichen Fertigkeiten zur Anwendung und Schulen von Produktentwicklungsmethoden
- Kenntnisse und Fachwissen über anzuwendende Methoden
- Reflektion und Erfahrungsaustausch über persönliche Coaching-Situationen
- Inspiration und Lernen aus guten Beispielen bezüglich Organisation und Team Management
- Handeln unter Unsicherheit
InhaltHier sind die Themen und Daten für die Live Sessions
jeweils Montags, 16:15-18:00 Uhr.
Zoom-Link wird auf der Moodle-Kursseite publiziert:
Link

22.02.2021: Base Camp, Experience exchange
01.03.2021: Course intro, Coaching roles & Virtual coaching
08.03.2021: Active listening & Giving and receiving feedback
15.03.2021: Coaching model GROW & Asking questions
22.03.2021: Working with hypothesis & Motivation
29.03.2021: Reflection on individual coaching sessions 1
12.04.2021: 1:1 Coaching
26.04.2021: Team building & Psychological safety
03.05.2021: Facilitating conflicts
10.05.2021: Reflection on individual coaching sessions 2
17.05.2021: Reflexivity & Reviews of your interventions

Für jede Live Session wird auf Moodle vorbereitendes Material zur Verfügung gestellt. Dies ermöglicht den Teilnemer*innen gut vorbereitet zu den Live-Sessions zu erscheinen.
Voraussetzungen / BesonderesNur für Teilnehmer (Bachelor-Studenten, Master-Studenten) , die Hilfsassistenten im Innovationsprojekt sind.
327-3002-00LMaterials for Mechanical EngineersW4 KP2V + 1UR. Spolenak, A. R. Studart, R. Style
KurzbeschreibungThis course provides a basic foundation in materials science for mechanical engineers. Students learns how to select the right material for the application at hand. In addition, the appropriate processing-microstructure-property relationship will lead to the fundamental understanding of concepts that determines the mechanical and functional properties.
LernzielAt the end of the course, the student will able to:
• choose the appropriate material for mechanical engineering applications
• find the optimal compromise between materials property, cost and ecological impact
• understand the most important concepts that allow for the tuning of mechanical and functional properties of materials
InhaltBlock A: Materials Selection
• Principles of Materials Selection
• Introduction to the Cambridge Engineering Selector
• Cost optimization and penalty functions
• Ecoselection

Block B: Mechanical properties across materials classes
• Young's modulus from 1 Pa to 1 TPa
• Failure: yield strength, toughness, fracture toughness, and fracture energy
• Strategies to toughen materials from gels to metals.

Block C: Structural Light Weight Materials
• Aluminum and magnesium alloys
• Engineering and fiber-reinforced polymers

Block D: Structural Materials in the Body
• Strength, stiffness and wear resistance
• Processing, structure and properties of load-bearing implants

Block E: Structural High Temperature Materials
• Superalloys and refractory metals
• Structural high-temperature ceramics

Block F: Materials for Sensors
• Semiconductors
• Piezoelectrica

Block G: Dissipative dynamics and bonding
• Frequency dependent materials properties (from rheology of soft materials to vibration damping in structural materials)
• Adhesion energy and contact mechanics
• Peeling and delamination

Block H: Materials for 3D Printing
• Deposition methods and their consequences for materials (deposition by sintering, direct ink writing, fused deposition modeling, stereolithography)
• Additive manufacturing of structural and active Materials
Literatur• Kalpakjian, Schmid, Werner, Werkstofftechnik
• Ashby, Materials Selection in Mechanical Design
• Meyers, Chawla, Mechanical Behavior of Materials
• Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe