Suchergebnis: Katalogdaten im Herbstsemester 2016

Mathematik Bachelor Information
Bachelor-Studium (Studienreglement 2016)
Basisjahr
» Obligatorische Fächer des Basisjahres
» Ergänzende Fächer
» GESS Wissenschaft im Kontext
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-1151-00LLineare Algebra IO7 KP4V + 2UM. Akveld
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen und Matrizen, Determinanten, Endomorphismen, Eigenwerte und Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
Literatur- H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: http://link.springer.com/book/10.1007/978-3-662-08375-8
- S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Skript. Siehe: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20150901.pdf
402-1701-00LPhysik IO7 KP4V + 2UA. Wallraff
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar. Der Schwerpunkt liegt auf klassischer Mechanik, zusammen mit einer Einführung in die Wärmelehre.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik und Waermelehre. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
252-0847-00LInformatik Information O5 KP2V + 2UB. Gärtner
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
LernzielDas Ziel der Vorlesung ist eine algorithmisch orientierte Einführung ins Programmieren.
InhaltDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache sowie Handouts in deutscher Sprache werden semesterbegleitend elektronisch herausgegeben.
LiteraturAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis IO10 KP6V + 3UM. Einsiedler
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturK. Koenigsberger: Analysis I, Springer-Verlag
http://link.springer.com/book/10.1007/978-3-642-18490-1

R. Courant: Vorlesungen ueber Differential- und Integralrechnung.
Springer Verlag
http://link.springer.com/book/10.1007/978-3-642-61988-5

V. Zorich: Analysis I. Springer Verlag 2006
http://link.springer.com/book/10.1007/3-540-33278-2

Chr. Blatter: Analysis. https://people.math.ethz.ch/%7eblatter/

Struwe: Analysis I/II, siehe
https://people.math.ethz.ch/%7estruwe/skripten.html

H. Heuser: Lehrbuch der Analysis. Teubner Verlag
W. Walter: Analysis 1. Springer Verlag
O. Forster: Analysis I. Vieweg Verlag

J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag
Link

Schichl u. Steinbauer, Einführung in das mathematische Arbeiten
http://link.springer.com/book/10.1007/978-3-642-28646-9

Beutelspacher, Das ist o.B.d.A. trivial
http://link.springer.com/book/10.1007/978-3-8348-9599-8
Bachelor-Studium (Studienreglement 2010)
Basisjahr
Lerneinheiten des Basisjahres sind im Abschnitt Bachelor-Studium (Studienreglement 2016) - Basisjahr zu finden.
Obligatorische Fächer
Prüfungsblock I
Im Prüfungsblock I muss entweder die Lerneinheit 402-2883-00L Physik III oder die Lerneinheit 402-2203-01L Allgemeine Mechanik gewählt und zur Prüfung angemeldet werden. (Die andere der beiden Lerneinheiten kann im ETH Bachelor-Studiengang Mathematik belegt, aber weder in myStudies zur Prüfung angemeldet noch für den Studiengang angerechnet werden.)
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Information O6 KP3V + 2UR. Pandharipande
KurzbeschreibungKomplexe Funktionen einer komplexen Veränderlichen, Cauchy-Riemann Gleichungen, Cauchyscher Integralsatz, Singularitäten, Residuensatz, Umlaufzahl, analytische Fortsetzung, spezielle Funktionen, konforme Abbildungen. Riemannscher Abbildungssatz.
LernzielFähigkeit zum Umgang mit analytischen Funktion; insbesondre Anwendungen des Residuensatzes
LiteraturTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethoden der mathematischen Physik IO6 KP3V + 2UC. A. Keller
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
Voraussetzungen / BesonderesDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-2883-00LPhysik IIIW7 KP4V + 2UJ. Home
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen.

Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin.

Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER.

Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer.

Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz.
SkriptIm Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt.
LiteraturQuantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211

Optik: "Optik", E. Hecht, ISBN 978-3486588613

Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7
402-2203-01LAllgemeine Mechanik Information W7 KP4V + 2UG. M. Graf
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung.
Lernziel
252-0851-00LAlgorithmen und KomplexitätO4 KP2V + 1UA. Steger
KurzbeschreibungEinführung: RAM-Maschine, Datenstrukturen; Algorithmen: Sortieren, Medianbest., Matrixmultiplikation, kürzeste Pfade, min. spann. Bäume; Paradigmen: Divide&Conquer, dynam. Programmierung, Greedy; Datenstrukturen: Suchbäume, Wörterbücher, Priority Queues; Komplexitätstheorie: Klassen P und NP, NP-vollständig, Satz von Cook, Beispiele für Reduktionen.
LernzielNach dieser Vorlesung kennen die Studierenden einige Algorithmen und übliche Werkzeuge. Sie kennen die Grundlagen der Komplexitätstheorie und können diese verwenden um Probleme zu klassifizieren.
InhaltDie Vorlesung behandelt den Entwurf und die Analyse von Algorithmen und Datenstrukturen. Die zentralen Themengebiete sind: Sortieralgorithmen, Effiziente Datenstrukturen, Algorithmen für Graphen und Netzwerke, Paradigmen des Algorithmenentwurfs, Klassen P und NP, NP-Vollständigkeit, Approximationsalgorithmen.
SkriptJa. Wird zu Beginn des Semesters verteilt.
Prüfungsblock II
NummerTitelTypECTSUmfangDozierende
401-2003-00LAlgebra IO7 KP4V + 2UL. Halbeisen
KurzbeschreibungEinführung in die grundlegenden Begriffe und Resultate der Gruppentheorie, der Ringtheorie und der Körpertheorie.
LernzielEinführung in grundlegende Begriffe und Resultate aus der Theorie der Gruppen, der Ringe und der Körper.
InhaltGruppentheorie: grundlegende Begriffe und Beispiele von Gruppen; Untergruppen, Quotientengruppen und Homomorphismen, Sylow Theoreme, Gruppenwirkungen und Anwendungen

Ringtheorie: grundlegende Begriffe und Beispiele von Ringen;
Ringhomomorphismen, Ideale und Quotientenringe, Anwendungen

Körpertheorie: grundlegende Begriffe und Beispiele von Körpern; endliche Körper, Anwendungen

Zum Schluss wird Mordells Theorem fuer spezielle elliptische Kurven bewiesen.
LiteraturJ.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)
R. Lidl and H. Niederreiter: Introduction to Finite Fields and their Applications (Cambridge University Press)
B.L. van der Waerden: Algebra I & II (Springer Verlag)
Kernfächer
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3531-00LDifferentialgeometrie I
Das Bachelor-Kernfach 401-3531-00L Differentialgeometrie I / Differential Geometry I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3531-00L Differentialgeometrie I / Differential Geometry I noch 401-3532-00L Differentialgeometrie II / Differential Geometry II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.
W10 KP4V + 1UU. Lang
KurzbeschreibungKurven im R^n, innere Geometrie von Hyperflächen im R^n, Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet. Der hyperbolische Raum. Differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen, Satz von Sard, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LernzielEinführung in die elementare Differentialgeometrie und Differentialtopologie.
Inhalt- Differentialgeometrie im R^n: Kurventheorie, Untermannigfaltigkeiten und Immersionen, innere Geometrie von Hyperflächen, Gauss-Abbildung und -Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet, Indexsatz von Poincaré.
- Der hyperbolische Raum.
- Differentialtopologie: differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen in den R^n, Satz von Sard, Transversalität, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LiteraturDifferentialgeometrie im R^n:
- Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differentialtopologie:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology
401-3461-00LFunktionalanalysis I
Das Bachelor-Kernfach 401-3461-00L Funktionalanalysis I / Functional Analysis I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3461-00L Funktionalanalysis I / Functional Analysis I noch 401-3462-00L Funktionalanalysis II / Functional Analysis II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.
W10 KP4V + 1UM. Struwe
KurzbeschreibungBaire-Kategorie; Banach- and Hilberträume, stetige lineare Abbildungen; Prinzipien: Gleichmässige Beschränktheit, Sätze von der offenen Abbildung/vom abgeschlossenen Graphen; Hahn-Banach; Dualraum; Konvexität; schwache/schwach*-Topologie; Banach-Alaoglu; reflexive Räume; Operatoren mit abgeschlossenem Bild; kompakte Operatoren; Fredholmtheorie; Spektraltheorie selbst-adjungierter Operatoren.
Lernziel
SkriptSkript zur "Funktionalanalysis I" von Michael Struwe
401-3371-00LDynamical Systems IW10 KP4V + 1UW. Merry
KurzbeschreibungThis course is a broad introduction to dynamical systems. Topic covered include topological dynamics, ergodic theory and low-dimensional dynamics.
LernzielMastery of the basic methods and principal themes of some aspects of dynamical systems.
InhaltTopics covered include:

1. Topological dynamics
(transitivity, attractors, chaos, structural stability)

2. Ergodic theory
(Poincare recurrence theorem, Birkhoff ergodic theorem, existence of invariant measures)

3. Low-dimensional dynamics
(Poincare rotation number, dynamical systems on [0,1])
LiteraturThe most relevant textbook for this course is

Introduction to Dynamical Systems, Brin and Stuck, CUP, 2002.

I will also produce full lecture notes.
Voraussetzungen / BesonderesThe material of the basic courses of the first two years of the program at ETH is assumed. In particular, you should be familiar with metric spaces and elementary measure theory.
401-3001-61LAlgebraic Topology IW8 KP4GP. S. Jossen
KurzbeschreibungThis is an introductory course in algebraic topology. The course will cover the following main topics: introduction to homotopy theory, homology and cohomology of spaces.
Lernziel
Literatur1) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.

2) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

Book can be downloaded for free at:
http://www.math.cornell.edu/%7ehatcher/AT/ATpage.html

See also:
http://www.math.cornell.edu/%7eehatcher/#anchor1772800

3) E. Spanier, "Algebraic topology", Springer-Verlag
Voraussetzungen / BesonderesGeneral topology, linear algebra.

Some knowledge of differential geometry and differential topology is useful but not absolutely necessary.
401-3132-00LCommutative Algebra Information W10 KP4V + 1UR. Pink
KurzbeschreibungThis course provides an introduction to commutative algebra as a foundation for and first steps towards algebraic geometry. The material in this course will be assumed in the lecture course "Algebraic Geometry" in the spring semester 2017.
LernzielWe shall cover approximately the material from
--- most of the textbook by Atiyah-MacDonald, or
--- the first half of the textbook by Bosch.
Topics include:
* Basics about rings, ideals and modules
* Localization
* Primary decomposition
* Integral dependence and valuations
* Noetherian rings
* Completions
* Basic dimension theory
LiteraturPrimary Reference:
1. "Introduction to Commutative Algebra" by M. F. Atiyah and I. G. Macdonald (Addison-Wesley Publ., 1969)
Secondary Reference:
2. "Algebraic Geometry and Commutative Algebra" by S. Bosch (Springer 2013)
Tertiary References:
3. "Commutative algebra. With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995)
4. "Commutative ring theory" by H. Matsumura (Cambridge University Press 1989)
5. "Commutative Algebra" by N. Bourbaki (Hermann, Masson, Springer)
Voraussetzungen / BesonderesPrerequisites: Algebra I (or a similar introduction to the basic concepts of ring theory).
» Kernfächer aus Bereichen der reinen Mathematik (Mathematik Master)
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3651-00LNumerical Methods for Elliptic and Parabolic Partial Differential Equations Information
Course audience at ETH: 3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course "Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.
W10 KP4V + 1UC. Schwab
KurzbeschreibungThis course gives a comprehensive introduction into the numerical treatment of linear and non-linear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.
LernzielParticipants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method
InhaltA selection of the following topics will be covered:

* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems
SkriptCourse slides will be made available to the audience.
LiteraturS. C. Brenner and L. Ridgway Scott: The mathematical theory of Finite Element Methods. New York, Berlin [etc]: Springer-Verl, cop.1994.

A. Ern and J.L. Guermond: Theory and Practice of Finite Element Methods,
Springer Applied Mathematical Sciences Vol. 159, Springer,
1st Ed. 2004, 2nd Ed. 2015.

R. Verfürth: A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007).
(Also available in German.)

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 SMAI Mathématiques et Applications,
Springer, 2012 [DOI: 10.1007/978-3-642-22980-0]

V. Thomee: Galerkin Finite Element Methods for Parabolic Problems,
SECOND Ed., Springer Verlag (2006).
Voraussetzungen / BesonderesPractical exercises based on MATLAB
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle