Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Katalogdaten im Herbstsemester 2016

Verfahrenstechnik Master Information
Kernfächer
NummerTitelTypECTSUmfangDozierende
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 KP4GM. Troyer, P. Chatzidoukas
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
LernzielIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
InhaltProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Skripthttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0293-00LCombustion and Reactive Processes in Energy and Materials TechnologyW4 KP2V + 1U + 2AK. Boulouchos, F.  Ernst, Y. M. Wright
KurzbeschreibungThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.
LernzielThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.
InhaltReaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis.
SkriptHANDOUTS are EXCLUSIVELY IN GERMAN ONLY, however
recommendations for English text books will be provided.

TEACHING LANGUAGE IN CLASS is German OR English (ON DEMAND).
LiteraturI. Glassman, Combustion, 3rd edition, Academic Press, 1996.

J. Warnatz, U. Maas, R.W. Dibble, Verbrennung, Springer-Verlag, 1997.
151-0911-00LIntroduction to PlasmonicsW4 KP2V + 1UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
LernzielElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
InhaltFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
SkriptClass notes and handouts
LiteraturS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Voraussetzungen / BesonderesPhysics I, Physics II
151-0917-00LMass TransferW4 KP2V + 2UR. Büchel, S. E. Pratsinis
KurzbeschreibungDiese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt.
LernzielDiese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt.
InhaltFicksche Gesetze; Anwendungen und Bedeutung von Stofftransport; Vergleich von Fickschen Gesetzen mit Newtonschen und Fourierschen Gesetzen; Herleitung des zweiten Fickschen Gesetzes; Diffusion in verdünnten und konzentrierten Lösungen; Rotierende Scheibe; Dispersion; Diffusionskoeffizient, Gasviskosität und Leitfähigkeit (Pr und Sc); Brownsche Bewegung; Stokes-Einstein-Gleichung; Stofftransportkoeffizienten (Nu und Sh-Zahlen); Stoffaustausch über Grenzflächen; Reynolds- und Chilton-Colburn-Analogien für Impuls-, Wärme- und Stofftransport in turbulenten Strömungen; Film-, Penetrations- und Oberflächenerneuerungstheorien; Gleichzeitiger Transport von Stoff und Wärme oder Impuls (Grenzschichten); Homogene und heterogene, reversible und irreversible. Anwendungen Reaktionen; "Diffusionskontrollierte" Reaktionen; Stofftransport und heterogene Reaktion erster Ordnung.
LiteraturCussler, E.L.: "Diffusion", 2nd edition, Cambridge University Press, 1997.
Voraussetzungen / BesonderesEs werden 2 Tests zur Vertiefung des Lernstoffs angeboten. Die Teilnahme ist obligatorisch.
151-0927-00LRate-Controlled Separations in Fine ChemistryW4 KP3GM. Mazzotti
KurzbeschreibungDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
LernzielDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
InhaltThe class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Liquid-liquid extraction; 2) Adsorption and chromatography; 3) Membrane processes; 4) Crystallization and precipitation.
SkriptBeilagen in der Vorlesung
LiteraturBücher werden in der Vorlesung besprochen
Voraussetzungen / BesonderesBesonderes: Teile der Vorlesung werden in Englisch gehalten.

Voraussetzungen: Thermische Verfahrenstechnik I (151-0926-00) und Mathematische Methoden in den Chemieingenieurwissenschaften (151-0940-00)
151-0951-00LProcess Design and SafetyW4 KP2V + 1UP. Rudolf von Rohr
KurzbeschreibungDesign von Verfahren und Sicherheit beinhaltet die Grundlagen der Konstruktion und des Baus verfahrenstechnischer Anlagen und Apparate
LernzielVermitteln der Grundlagen zur verfahrenstechnischen Dimensionierung von wichtigen Komponenten und Apparaten
InhaltGrundlagen des Anlagen-/Apparatebaus; Werkstoffe in der Verfahrenstechnik, Mechanische Dimensionierung und Vorschriften; Förderorgane; Rohrleitungen, Armaturen; Sicherheit bei verfahrenstechnischen Systemen
SkriptEnglisches Skript verfügbar
LiteraturCoulson and Richardson's: Chemical Engineering , Vol 6: Chemical Engineering Design, (1996)
151-0957-00LPractica in Process Engineering I Belegung eingeschränkt - Details anzeigen
Prerequisites: "Einführung in Verfahrenstechnik" (151-0973-00L) and further process engineering courses.
W2 KP2PP. Rudolf von Rohr, F. Prins
KurzbeschreibungPraktische Arbeiten mit grundlegenden Prozessystemen, Typische Labor- und Pilotanlageexperimente.
LernzielKennenlernen von Arbeitsprozessen, Messwerkzeugen und Meewertverarbeitung.
Inhalt5 practica in total (3 from Prof. Norris, 2 from Prof. Rudolf von Rohr), details on dates are available at the beginning of the semester in ML H 14 and on our website

Heat transfer
Rudolf von Rohr

Residence time distribution
Rudolf von Rohr

Thin-film deposition
Norris

Elemental analysis
Norris

Photovoltaics
Norris
SkriptPraktikumsanleitungen vorhanden
LiteraturAngaben in der Anleitung
529-0613-00LProcess Simulation and FlowsheetingW7 KP3GE. Capón García, K. Hungerbühler
KurzbeschreibungThis course encompasses the theoretical principles of chemical process simulation, as well as its practical application in process analysis and optimization. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages are presented as a key engineering tool for solving process flowsheeting and simulation problems.
LernzielThis course aims to develop the competency of chemical engineers in process flowsheeting and simulation. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students have to be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able develop criteria to correctly use commercial software packages and critically evaluate their results.
InhaltOverview of process simulation and flowsheeting
- Definition and fundamentals
- Classification: stationary (steady-state) versus dynamic (transient state) systems
- Fields of application
- Case studies

Process modeling
- Modeling strategies of process systems
- Mass conservation
- Species balance
- Energy conservation
- Momentum balance
- Multiphase-systems: equilibrium & non-equilibrium models
- Process system model

Process simulation
- Process specification
- Introduction to process specification
- Classification of mathematical models: AMS, DOE, DAE, PDE
- Model validation
- Software tools
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods
- Dynamic simulation
- Numerical solution: explicit and implicit methods
- Continuous-discrete simulation: handling of discontinuities

Process optimization and analysis
- Classification of optimization problems
- Linear programming
- Non-linear programming
- Dynamic programming
- Optimization methods in process flowsheeting
- Sequential methods
- Simultaneous methods

Commercial software for simulation: Aspen Plus
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence & debugging
LiteraturAn exemplary literature list is provided below:
- Biegler, L.T., Grossmann I.E., Westerberg A.W., 1997, systematic methods of chemical process design. Prentice Hall, Upper Saddle River, US.
- Boyadjiev, C., 2010, Theoretical chemical engineering: modeling and simulation. Springer Verlag, Berlin, Germany.
- Ingham, J., Dunn, I.J., Heinzle, E., Prenosil, J.E., Snape, J.B., 2007, Chemical engineering dynamics: an introduction to modelling and computer simulation. John Wiley & Sons, United States.
- Reklaitis, G.V., 1983, Introduction to material and energy balances. John Wiley & Sons, United States.
Voraussetzungen / BesonderesA basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.
636-0001-00LSeparations in Biotechnology and Bioprocess EconomyW6 KP3GS. Panke
KurzbeschreibungSeparations play an integral part of any biotechnological process. This course aims at enabling students specifically with a chemistry/biology background to select & roughly design suitable separation processes for typical biotechnological products such as monoclonal antibodies, antibiotics, and fine chemicals and at providing a basic set of purification operations & judge on process economy.
LernzielStudents should be able to select for a given biotechnological product a suitable set of purification operations and judge on process economy.
InhaltIntroduction – membrane operations – adsorption and chromatography – crystallization – overall process economics –
SkriptHandouts during course
151-0185-00LRadiation Heat Transfer Information W4 KP2V + 1UA. Steinfeld, A. Z'Graggen
KurzbeschreibungAdvanced course in radiation heat transfer
LernzielFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Inhalt1. Einführung in die Wärmestrahlung: Elektromagnetisches Spektrum. Schwarzkörper und nicht-schwarze Oberflächen. Absorption. Emission. Reflektion. Kirchhoffsches Gesetz.

2. Strahlungsaustausch zwischen Oberflächen: Diffuse und spekulare Oberflächen. Graue und nicht-graue Oberflächen. Konfigurationsfaktoren. Hohlraumstrahlungstheorie.

3. Absorbierende, emittierende und streuende Medien: Extinktions-, Absorptions- und Streukoeffizienten. Optische Dicken. Gleichung für Strahlungsübertragung. Lösungsmethoden: z.B. "Monte-Carlo".

4. Anwendungen: Kavitäten. Selektive Oberflächen/Medien. Wärmestrahlung/Wärmeleitung/Konvektion.
SkriptCopy of the slides presented.
LiteraturR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0104-00LUncertainty Quantification for Engineering & Life Sciences Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Number of participants limited to 60.
W4 KP3GP. Koumoutsakos
KurzbeschreibungQuantification of uncertainties in computational models pertaining to applications in engineering and life sciences. Exploitation of massively available data to develop computational models with quantifiable predictive capabilities. Applications of Uncertainty Quantification and Propagation to problems in mechanics, control, systems and cell biology.
LernzielThe course will teach fundamental concept of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences. Emphasis will be placed on practical and computational aspects of UQ+P including the implementation of relevant algorithms in multicore architectures.
InhaltTopics that will be covered include: Uncertainty quantification under
parametric and non-parametric modelling uncertainty, Bayesian inference with model class assessment, Markov Chain Monte Carlo simulation, prior and posterior reliability analysis.
SkriptThe class will be largely based on the book: Data Analysis: A Bayesian Tutorial by Devinderjit Sivia as well as on class notes and related literature that will be distributed in class.
Literatur1. Data Analysis: A Bayesian Tutorial by Devinderjit Sivia
2. Probability Theory: The Logic of Science by E. T. Jaynes
3. Class Notes
Voraussetzungen / BesonderesFundamentals of Probability, Fundamentals of Computational Modeling
151-0509-00LMicroscale Acoustofluidics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.
W4 KP3GJ. Dual
KurzbeschreibungIn this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.
LernzielUnderstanding acoustophoresis, the design of devices and potential applications
InhaltLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
SkriptYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteraturMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Voraussetzungen / BesonderesSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab session and hand in homework.
Multidisziplinfächer
Den Studierenden steht das gesamte Lehrangebot der ETH Zürich, der ETH Lausanne sowie der Universitäten Zürich und St. Gallen zur individuellen Auswahl offen.
» Gesamtes Lehrangebot der ETH Zürich
Studienarbeit
NummerTitelTypECTSUmfangDozierende
151-1008-00LSemester Project Process Engineering Belegung eingeschränkt - Details anzeigen
Only for Process Engineering MSc.

The subject of the Master Thesis and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.
O8 KP17AProfessor/innen
KurzbeschreibungDas Ziel der Studienarbeit ist es, dass Master-Studierende unter Anwendung der erworbenen Fach- und Sozialkompetenzen erste Erfahrungen in der selbständigen Lösung eines technischen Problems sammeln. Die Tutoren/Tutorinnen schlagen das Thema der Studienarbeit vor, arbeiten den Projekt- und Fahrplan zusammen mit den Studierenden aus und überwachen die gesamte Durchführung.
LernzielDas Ziel der Studienarbeit ist es, dass Master-Studierende unter Anwendung der erworbenen Fach- und Sozialkompetenzen erste Erfahrungen in der selbständigen Lösung eines technischen Problems sammeln.
Industrie-Praxis
NummerTitelTypECTSUmfangDozierende
151-1012-00LIndustrial Internship Process EngineeringO8 KPexterne Veranstalter
KurzbeschreibungEs ist das Ziel der 12-wöchigen Praxis, Master-Studierenden die industriellen Arbeitsumgebungen näher zu bringen. Während dieser Zeit bietet sich ihnen die Gelegenheit, in aktuelle Projekte der Gastinstitution involviert zu werden.
LernzielEs ist das Ziel der 12-wöchigen Praxis, Master-Studierenden die industriellen Arbeitsumgebungen näher zu bringen.
GESS Wissenschaft im Kontext
» Empfehlungen aus dem Bereich GESS Wissenschaft im Kontext (Typ B) für das D-MAVT.
» siehe Studiengang GESS Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
» siehe Studiengang GESS Wissenschaft im Kontext: Sprachkurse ETH/UZH
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
151-1005-00LMaster's Thesis Process Engineering Belegung eingeschränkt - Details anzeigen
Students who fulfill the following criteria are allowed to begin with their Master's Thesis:
a. successful completion of the bachelor program;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. successful completion of the semester project and industrial internship;
d. achievement of 28 ECTS in the category "Core Courses".

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.
To choose a titular professor as a supervisor, please contact the D-MAVT Student Administration.
O30 KP64DProfessor/innen
KurzbeschreibungDie Master-Arbeit schliesst das Master-Studium ab. Die Master-Arbeit fördert die Fähigkeit der Studierenden zur selbständigen und wissenschaftlich strukturierten Lösung eines theoretischen oder angewandten Problems. Thema und Projektplan werden vom Tutor vorgeschlagen und zusammen mit den Studierenden ausgearbeitet.
LernzielDie Master-Arbeit fördert die Fähigkeit der Studierenden zur selbständigen und wissenschaftlich strukturierten Lösung eines theoretischen oder angewandten Problems.
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle