Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Katalogdaten im Herbstsemester 2016

Doktorat Departement Physik Information
Mehr Informationen unter: https://www.ethz.ch/de/doktorat.html
Lehrangebot Doktorat und Postdoktorat
Achtung: Die hier angegebene Auswahl an Lehrveranstaltungen ist UNVOLLSTÄNDIG.
402-0317-00LSemiconductor Materials: Fundamentals and FabricationW6 KP2V + 1US. Schön, W. Wegscheider
KurzbeschreibungThis course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications.
LernzielBasic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing
InhaltFundamentals of Solid State Physics: Semiconductor materials, band structures, carrier statistics in intrinsic and doped seminconductors, p-n junctions, low-dimensional structures;
Bulk Material growth of Semiconductors: Czochralski method, floating zone method, high pressure synthesis;
Semiconductor Epitaxy: Fundamentals, MBE, MOCVD, LPE;
In situ characterization: RHEED, LEED, AES, XPS, process control (temperature, thickness)
402-0521-66LModern Aspects in Surface Science Research: Techniques and ApplicationsW6 KP2V + 1UO. Gürlü
KurzbeschreibungThe Course will treat the subjects of the crystal structure of bulk and surfaces, imaging surfaces with electrons and ions, general scanning probe microscopy methods, Scanning Tunnelling Microscopy, Atomic force microscopy, Electronic structure of the bulk and surfaces, Photoelectric emission, STM and AFM spectroscopy. The various techniques will be illustrated with examples from modern research.
LernzielIt is the aim of this course to provide a review of modern aspects in surface science research.
InhaltCourse description
The course will start with an overview of the fundamentals of bulk crystals and a reminder on the x-ray diffraction from crystals. We will continue with the extension of the alphabet of bulk crystal structure to surfaces and the nomenclature of surface reconstructions and interesting structures like moiré patterns will be introduced. Following the two introductory weeks, we will dwell in to the realm of imaging the surfaces. We will start with electron beam based imaging and analysis techniques of surfaces. Scanning Electron Microscopy (SEM), Low Energy Electron Diffraction (LEED) and Low Energy Electron Microscopy (LEEM) will be discussed. Imaging with ion beam based techniques like Low Energy Ion Scattering (LEIS) and He-ion microscopy will be touched upon. Following these, probe microscopy techniques will be explored starting with the topografiner and continuing with Scanning Tunnelling Microscopy (STM). Basics of Atomic Force Microscopy (AFM) will follow. Imaging is a fundamental part of efforts on understanding surfaces. Yet, a through understanding and capability of generating and manipulating novel surface and interface systems can only be achieved by studying the electronic structure of surfaces. In order to investigate the electronic structure of surface and interface systems, a basic knowledge of the bulk electronic structure is necessary. So, introductory concepts on the electronic structure of the bulk and low dimensional systems will be discussed. Then, the basics of photoelectron emission form surfaces will be given. In the final two weeks of the course an overview of the spectroscopic modes of scanning probes and atomic scale electron spectroscopy will be introduced.

Course contents
1) Introduction and reminder of bulk crystals (week 1):
Reminder of the crystal structure, x-ray diffraction and determination of the crystal structure.

2) Crystal surfaces (weeks 2 and 3):
Definitions, description of surfaces, and reconstructions; Moire patterns; quasi-crystals.

3) Imaging surfaces with electrons (week 4):

4) Imaging surfaces with ions (week 5):
LEIS, He ion microscopy

5) Introduction to probe microscopy (week 6):
General problems , field ion microscope, topografiner

6) Scanning Tunnelling Microscopy (weeks 6, 7 and 8):
Tunnelling problem (reminder), work function derivation and measurement with STM, imaging surfaces in real space, surface reconstructions, examples form metals and semiconductors and hybrid surface systems

7) Atomic force microscopy (week 9):
Technique, basics, examples.

8) Electronic structure of the bulk (week 10):
Reminders: density of states, band structure, low dimensional systems

9) Electronic structure of surfaces (week 11):
Bulk derived states, image states, examples from STM research

10) Photoelectric emission (week 12):
Basics of spectroscopy with x-rays and electrons.

11) STM and AFM derived spectroscopy techniques (weeks 13 and 14):
Comparative studies of Scanning Tunnelling spectroscopy (STS) to other integral spectroscopic methods.
Literatur1) John A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press (2000)
2) Hans Lüth, Solid Surfaces, Interfaces and Thin Films (6th ed.), Springer (2010)
3) Andrew Zangwill , Physics at Surfaces, Cambridge University Press (1988)
4) Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press (2016)
5) Bert Voigtlaender, Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy, Springer (2015)
6) Charles Kittel, Introduction to Solid State Physics (8th Ed.)
7) Neil W. Ashcroft and N. David Mermin, Solid State Physics
8) Harald Ibach and Hans Lüth, Solid-State Physics: An Introduction to Principles of Materials Science
9) Further reading material will be supplied.
Voraussetzungen / BesonderesAt least, 4 homework will be assigned.
402-0526-00LUltrafast Processes in SolidsW6 KP2V + 1UY. M. Acremann, A. Vaterlaus
KurzbeschreibungUltrafast processes in solids are of fundamental interest as well as relevant for modern technological applications. The dynamics of the lattice, the electron gas as well as the spin system of a solid are discussed. The focus is on time resolved experiments which provide insight into pico- and femtosecond dynamics.
LernzielAfter attending this course you understand the dynamics of essential excitation processes which occur in solids and you have an overview over state of the art experimental techniques used to study fast processes.
Inhalt1. Experimental techniques, an overview

2. Dynamics of the electron gas
2.1 First experiments on electron dynamics and lattice heating
2.2 The finite lifetime of excited states
2.3 Detection of lifetime effects
2.4 Dynamical properties of reactions and adsorbents

3. Dynamics of the lattice
3.1 Phonons
3.2 Non-thermal melting

4. Dynamics of the spin system
4.1 Laser induced ultrafast demagnetization
4.2 Ultrafast spin currents generated by lasers
4.3 Landau-Lifschitz-Dynamics
4.4 Laser induced switching

5. Correlated materials
Skriptwill be distributed
Literaturrelevant publications will be cited
Voraussetzungen / BesonderesThe lecture can also be followed by interested non-physics students as basic concepts will be introduced.

This lecture is complementary to the lecture on "ultrafast methods for solid state physics" of the spring semester. Both lectures can be attended independently. The focus of this lecture is on the physical processes whereas the focus of the "ultrafast methods for solid state physics" lecture is on the experimental techniques.
402-0464-00LOptical Properties of SemiconductorsW8 KP2V + 2UA. Imamoglu, G. Scalari
KurzbeschreibungThis course presents a comprehensive discussion of optical processes in semiconductors.
LernzielThe rich physics of the optical properties of semiconductors, as well as the advanced processing available on these material, enabled numerous applications (lasers, LEDs and solar cells) as well as the realization of new physical concepts. Systems that will be covered include quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.
InhaltElectronic states in III-V materials and quantum structures, optical transitions, excitons and polaritons, novel two dimensional semiconductors, spin-orbit interaction and magneto-optics.
Voraussetzungen / BesonderesPrerequisites: Quantum Mechanics I, Introduction to Solid State Physics
402-0535-00LIntroduction to MagnetismW6 KP2V + 1UA. Vindigni
KurzbeschreibungAtomic paramagnetism and diamagnetism, intinerant and local-moment magnetism, Ising and Heisenberg models, the mean-field approximation, spin waves, magnetic phase transition, domains and domain walls, magnetization dynamics from picoseconds to human time scales.
InhaltThe lecture ''Introduction to Magnetism'' is the regular course on Magnetism for the Master curriculum of the Department of Physics of ETH Zurich. With respect to specialized courses related to Magnetism (such as the one held by R. Allenspach in FS16) this lecture addresses more fundamental aspects -- quantum and statistical physics of magnetism -- which are often not comprehensively spelled out in conventional lectures on solid state physics.
Preliminary contents for the HS16:
- Magnetism in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction)
- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field).
- Magnetic order at finite temperatures (Ising and Heisenberg models, mean-field approximation, low-dimensional magnetism)
- Dipolar interaction in ferromagnets (shape anisotropy, frustration and modulated phases of magnetic domains)
- Spin physics in the time domain (Larmor precession, resonance phenomena, Bloch equation, Landau-Lifshitz-Gilbert equation, superparamagnetism)
SkriptLecture notes and slides are made available during the course, through the Moodle portal.
Voraussetzungen / BesonderesThe former title of this course unit was "Fundamental Aspects of Magnetism". This lecture insists on the fundamental aspects -- quantum physics and statistical physics of magnetism.
Applications to nanoscale magnetism will be considered from the perspective of basic underlying principles.
402-0595-00LSemiconductor Nanostructures Information W6 KP2V + 1UT. M. Ihn
KurzbeschreibungDer Kurs umfasst die Grundlagen der Halbleiternanostrukturen, z.B. Materialherstellung, Bandstrukturen, 'bandgap engineering' und Dotierung, Feldeffekttransistoren. Aufbauend auf zweidimensionalen Elektronengasen wird dann der Quantenhalleffekt besprochen, sowie die Physik der gängigen Halbleiternanostrukturen, d.h. Quantenpunktkontakte, Aharonov-Bohm Ringe und Quantendots, behandelt.
LernzielZiel der Vorlesung ist das Verständnis von vier Schlüsselphänomenen des Elektronentransports in Halbleiter-Nanostrukturen. Dazu zählen
1. der ganzzahlige Quantenhalleffekt
2. die Quantisierung des Leitwerts in Quantenpunktkontakten
3. der Aharonov-Bohm Effekt
4. der Coulomb-Blockade Effekt in Quantendots
Inhalt1. Einführung und Überblick
2. Halbleiterkristalle: Herstellung und Bandstrukturen
3. k.p-Theorie, Elektronendynamik in der Näherung der effektiven Masse
4. Envelope Funktionen, Näherung der effektiven Masse, Heterostrukturen und 'band engineering'
5. Herstellung von Nanostrukturen
6. Elektrostatik und Quantenmechanik von Halbleiternanostrukturen
7. Heterostrukturen und zweidimensionale Elektronengase
8. Drude Transport
9. Elektronentransport in Quantenpunktkontakten; Landauer-Büttiker Beschreibung
10. Ballistische Transportexperimente
11. Interferenzeffekte in Aharonov-Bohm Ringen
12. Elektron im Magnetfeld, Shubnikov-de Haas Effekt
13. Ganzzahliger Quantenhalleffekt
14. Quantendots, Coulombblockade
SkriptT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteraturNeben dem Vorlesungsskript können folgende Bücher empfohlen werden:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Voraussetzungen / BesonderesDie Vorlesung richtet sich an alle Physikstudenten nach dem Bachelorabschluss. Grundlagen in der Festkörperphysik sind von Vorteil, ambitionierte Studenten im fünften Semester können der Vorlesung aber auch folgen. Die Vorlesung eignet sich auch für das Doktoratsstudium. Üblicherweise wird der Kurs auf Englisch gehalten werden.
402-0415-62LModern Topics in Terahertz Science Information W6 KP2V + 1US. Johnson
KurzbeschreibungThis course reviews current research topics in Terahertz Science with a strong focus on scientific applications in physics, chemistry and biology, as well as the emerging field of nonlinear THz optics.
LernzielTerahertz frequency electromagnetic radiation lies at the border between electronics and optics, and as such has many unique properties that make it well-suited to study the electronic, magnetic and structural properties of many materials. The course objective is to give students the ability to identify problems of current interest in physics, chemistry, materials science and biology that can be potentially addressed using terahertz photonics and to design potential experimental solutions.

The course will focus predominantly on understanding research conducted over the last 4-5 years at the forefront of this developing field, with a strong emphasis on nonlinear THz science which has only recently become possible. This in particular has generated excitement as it offers potential new ways to control chemical reactions and/or phase transitons in materials.
InhaltTopics to be discussed in the class include:

1) Overview of THz & interactions with matter
2) THz generation and detection
3) Linear THz spectroscopies
4) Imaging
5) Nonlinear THz interactions
SkriptScripts will be distributed via moodle.
LiteraturThe readings for the course will draw mostly on current journal articles that will be distributed in class/via moodle. There is also a general textbook listed below available electronically via the ETH library system. You can also order a black-and-white paperback via an "on-demand" system for a pretty reasonable price.

Principles of Terahertz Science and Technology, Yun-Shick Lee (Springer, 2008).
Voraussetzungen / BesonderesPrerequqisites: Quantum electronics.

The former course title of this course is "Terahertz Technology and Applications".
402-0715-00LLow Energy Particle PhysicsW6 KP2V + 1UA. S. Antognini, P. A. Schmidt-Wellenburg
KurzbeschreibungLow energy particle physics provides complementary information to high energy physics with colliders. In this lecture, we will concentrate on selected experiments, using mainly neutrons and muons, which have significantly improved our understanding of particle physics today.
LernzielThe course aims to provide an introduction to selected advanced topics in low energy particle physics with neutrons and muons.
InhaltLow energy particle physics provides complementary information to high energy physics with colliders. At the Large Hadron Collider one directly searches for new particles at energies up to the TeV range. In a complementary way, low energy particle physics indirectly probes the existence of such particles and provides constraints for "new physics", making use of precision and high intensities.

Besides the sensitivity to effects related with new physics (e.g. lepton flavor violation, symmetry violations, CPT tests, search for electric dipole moments, new low mass exchange bosons etc.), low energy physics provides the best test of QED (electron g-2), the best tests of bound-state QED (atomic physics and exotic atoms), precise determinations of fundamental constants, information about the CKM matrix, precise information on the weak and strong force even in the non-perturbative regime etc.

In this lecture, we will concentrate on selected experiments, using mainly neutrons and muons, which have significantly improved our understanding of particle physics today. Starting from a general introduction on high intensity/high precision particle physics and the main characteristics of muons and neutrons and their production, we will then focus on the discussion of fundamental problems and ground-breaking experiments:

- Production and characteristics of muon and neutron beams
- Ultracold neutron production
- Measurement of the neutron lifetime and electric dipole moment
- The neutron in the gravitational field and its electric charge
- Muon and neutron decay correlations
- Lepton flavour violations with muons to search for new physics
- What atomic physics can do for particle physics and vice versa
- Laser experiments at accelerators
- From myonic hydrogen to the proton structure and bound-state QED
- From pionic hydrogen to the strong interaction and effective field theories
- etc.
LiteraturGolub, Richardson & Lamoreaux: "Ultra-Cold Neutrons"
Rauch & Werner: "Neutron Interferometry"
Carlile & Willis: "Experimental Neutron Scattering"
Byrne: "Neutrons, Nuclei and Matter"
Klapdor-Kleingrothaus: "Non Accelerator Particle Physics"
Voraussetzungen / BesonderesEinführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics
402-0767-00LNeutrino Physics Information W6 KP2V + 1UA. Rubbia
KurzbeschreibungTheoretical basis and selected experiments to determine the properties of neutrinos and their interactions (mass, spin, helicity, chirality, oscillations, interactions with leptons and quarks).
LernzielIntroduction to the physics of neutrinos with special consideration of phenomena connected with neutrino masses.
LiteraturB. Kayser, F. Gibrat-Debu and F. Perrier, The Physics of Massive Neutrinos, World Scientific Lecture Notes in Physic, Vol. 25, 1989, and newer publications.

N. Schmitz, Neutrinophysik, Teubner-Studienbücher Physik, 1997.

D.O. Caldwell, Current Aspects of Neutrino Physics, Springer.

C. Giunti & C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford.
402-0883-63LSymmetries in PhysicsW6 KP2V + 1UM. Gaberdiel
KurzbeschreibungThe course gives an introduction to symmetry groups in physics. It explains the relevant mathematical background (finite groups, Lie groups and algebras as well as their representations), and illustrates their important role in modern physics.
LernzielThe aim of the course is to give a self-contained introduction into finite group theory as well as Lie theory from a physicists point of view. Abstract mathematical constructions will be illustrated with examples from physics.
402-0898-00LThe Physics of Electroweak Symmetry Breaking
Findet dieses Semester nicht statt.
W6 KP2V + 1Ukeine Angaben
KurzbeschreibungThe aim is to understand the need of physics beyond the Standard Model, the basic techniques of model building in theories BSM and the elements of collider physics required to analyze their phenomenological implications. After an introduction to the SM and alternative theories of electroweak symmetry breaking, we will investigate these issues in the context of models with warped extra dimensions.
LernzielAfter the course the student should have a good knowledge of some of the most relevant theories beyond the Standard Model and have the techniques to understand those theories that have not been surveyed in the course. He or she should be able to compute the constraints on any model of new physics, its successes explaining current experimental data and its main phenomenological implications at colliders.
Voraussetzungen / BesonderesThe former title of this course unit was "The Physics Beyond the Standard Model". If you already got credits for "The Physics Beyond the Standard Model" (402-0898-00L), you cannot get credits for "The Physics of Electroweak Symmetry Breaking" (402-0898-00L).
402-0845-60LQuantum Field Theory III: EFT and SUSYW6 KP2V + 1UG. Isidori
KurzbeschreibungThis course provides a comprehensive introduction to two advanced topics in Quantum Field Theory: Effective Field Theories (EFTs) and Supersymmetry (SUSY).
InhaltIn the first part we will discuss the basic concepts of EFTs, with particular attention to the concepts of decoupling of heavy degrees of freedom, matching and renormalization, chiral Lagrangians. The Standard Model viewed as an EFT will also be discussed as a specific application. The second part of the course is devoted to Supersymmetry, starting from the discussion of the SUSY algebra and its representations, to arrive, after the presentation of the superfield formalism, to the construction of the supersymmetric version of gauge field theories. A phenomenological discussion of the mechanisms of SUSY breaking and the construction of viable supersymmetric extensions of the Standard Model will also be presented.


- Introduction to Effective Field Theories
- The Appelquist-Carrazone theorem
- The matching procedure
- Chiral Lagrangians
- The SM as an EFTs
- The SUSY algebra
- Superspace and superfields
- Supersymmetric field theories
- Supersymmetric gauge theories
- Supersymmetry breaking
- The Minimal supersymmetric Standard Model
LiteraturA. Manohar, Effective field theories, Lect. Notes Phys. 479 (1997) 311 [hep-ph/9606222]
J. Wess and J. Bagger, "Supersymmetry and supergravity".
Mueller-Kirsten & Wiedemann, "Introduction to supersymmetry".
S. Weinberg, "The quantum theory of fields. Vol. 3: Supersymmetry".
Voraussetzungen / BesonderesQFT-I (mandatory) and QFT-II (highly recommended).
402-0899-65LHiggs Physics
Findet dieses Semester nicht statt.
W6 KP2V + 1UM. Grazzini
KurzbeschreibungThe course introduces the theory and phenomenology of the recently discovered Higgs boson.With this course the students will receive a detailed introduction to the physics of the Higgs boson in the Standard Model. They will acquire the necessary theoretical background to understand the main production and decay channels of the Higgs boson at high-energy colliders, and the corresponding experimenta
LernzielWith this course the students will receive a detailed introduction to the physics of the Higgs boson in the Standard Model. They will acquire the necessary theoretical background to understand the main production and decay channels of the Higgs boson at high-energy colliders, and the corresponding experimental signatures.
InhaltTheory part:
- the Standard Model and the mass problem: WW scattering and the no-lose theorem
- the Higgs mechanism and its implementation in the Standard Model
- radiative corrections and the screening theorem
- theoretical constraints on the Higgs mass; the hierarchy problem
- Higgs production in e+e- collisions
- Higgs production at hadron colliders
- Higgs decays to fermions and vector bosons
- Higgs differential distributions, rapidity distribution, pt spectrum and jet vetoes
- Higgs properties and beyond the Standard Model perspective
- Outlook: The Higgs sector in weakly coupled and strongly coupled new physics scenarios.

Experimental part:
* Introductory material:
- reminders of detectors/accelerators
- reminders of statistics: likelihoods, hypothesis testing
- reminders of multivariate techniques: Neural Networks, Decision Trees
* Main topics:
- pre-history (pre-LEP)
- LEP1: measurements at the Z-pole
- LEP2: towards the limit mH<114 GeV
- TeVatron searches
- LHC:
-- main channels overview
-- dissect on analysis
-- combine information from all channels
-- differential measurements
-- off-shell measurements
- Future:
-- pseudo-observables / EFT
-- Beyond Standard Model
Literatur- Higgs Hunter's Guide
(by S.Dawson, J. Gunion, H. Haber and G. Kane)
- A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys.Rept. 457 (2008) 1.
Voraussetzungen / BesonderesPrerequisites: Quantum Field Theory I, Phenomenology of Particle Physics I
402-0381-64LHot Topics in AstrophysicsW4 KP2VM. Carollo
KurzbeschreibungThe themes we will discuss this year are:
(1) How do baryons and dark matter interact?
(2) Where, and in what state, do baryons reside within dark matter halos?
LernzielThe goal of this course is to understand some of the phenomena that stand in the forefront of current research in astrophysics, the physical processes behind them, and how these phenomena are observed by state-of-the-art astronomical facilities. These goals will be achieved by communal discussions, led by the students and chaired by the teachers.
402-0353-63LObservational Techniques in AstrophysicsW6 KP2V + 1UK. Schawinski
KurzbeschreibungThe course introduces analysis techniques, the basics of astronomical instruments, real-world observational tools, data reduction strategy and software packages used in astrophysics research. The course will also include discussions of current topics in astrophysics with a focus on active galaxies. The course will include the reduction and analysis of real data from a variety of observatories.
LernzielThe goal is to acquaint students with the basics of a range of astrophysical observation techniques including the modern software tools needed to analyze data.
InhaltMajor topics include:
-Scientific programming and analysis tools
How to set up your computing environment, data management, catalog generation and the Virtual Observatory, collaborative tools
-Optical imaging and spectroscopy:
Basics of observatories (ground vs space), multi-wavelength data, detector types, reduction and analysis strategies for imaging and spectroscopic data, types of spectrographs, interpreting spectra including stellar and galaxy evolution models
-X-ray, IR and radio astronomy
Basics of X-ray and high energy detectors and telescopes, spectral fitting, basics of radio astronomy, interferometric observations, aperture synthesis, source confusion and decomposition
-Planning of observations and proposal writing.
-Analysis of real-world data
Various examples from across the spectrum (ground and space-based)
Voraussetzungen / BesonderesAstrophysics I is required and Astrophysics II is recommended. Some programming skills in Python or similar languages are necessary.
402-0375-63LStatistical Methods in Cosmology and AstrophysicsW6 KP2V + 1UA. Amara
KurzbeschreibungStatistical methods play a vital role in modern cosmology and astrophysics studies. This course will give an overview of the statistical principles and tools that are used in these fields. Topics covered will include basic probability theory, Bayesian inference, hypothesis testing, sampling and estimators.
LernzielDevelop an understanding of basic probability and statistical theory. Gain practical knowledge of statistical methods commonly used in cosmology and astrophysics.
Voraussetzungen / BesonderesCredit or current enrollment in Astrophysics I is recommended but not required
151-0906-00LFrontiers in Energy Research
This course is only for doctoral students.
W2 KP2SM. Mazzotti, R. S. Abhari, J. Carmeliet, M. Filippini
KurzbeschreibungPhD students at ETH Zurich working in the broad area of energy present their research to their colleagues, to their advisors and to the scientific community.
LernzielKnowledge of advanced research in the area of energy.
InhaltPhD students at ETH Zurich working in the broad area of energy present their research to their colleagues, to their advisors and to the scientific community. Every week there are two presentations, each structured as follows: 15 min introduction to the research topic, 15 min presentation of the results, 15 min discussion with the audience.
SkriptSlides will be distributed.
529-0477-00LZeitabhängige QuantendynamikW0 KP1VR. Marquardt
KurzbeschreibungIn dieser Vertiefungsvorlesung werden Spezialkenntnisse auf dem Gebiet der extrem Kurzzeitmolekularspektroskopie und -kinetik erarbeitet. Obwohl in erster Linie theoretisch ausgerichtet, und auf Quantenphänomene bezogen, behandelt der Stoff auch gewisse experimentelle Grundlagen.
LernzielLernziele sind: Grundlagenkenntnisse der modernen, extrem Kurzzeitspektroskopie und chemischer Kinetik erlangen; theoretische Methoden zur Interpretation experimenteller Daten kennenlernen; die Interpretation molekülquantendynamischer Rechenergebnisse anhand ausgewählter Beispiele schulen und ihre Problematik diskutieren.
InhaltDie Vorlesung bietet eine Einführung in Quantendynamik an: Sinn und Rolle der Disziplin, insbesondere im Bereich der Molekularphysik und der elementaren Schritte der Reaktionskinetik, welche Fragen werden angegangen, welche Lösungen werden vorgeschlagen. Gängige Techniken zur Lösung der zeitabhängigen Schrödingergleichung und deren Interpretation werden erörtert. Die Benutzung von Rechenprogrammen wird vorgestellt und ein praktischer Kurs am Computer wird angeboten.
SkriptProgramm und Skript liegen vor und sind entweder auf der angegebenen website abrufbar oder werden spätestens während der ersten Vorlesungsstunde verteilt. Das Skript ist auf Englisch verfasst.
LiteraturEin Kursprogramm und ein Skript auf Englisch mit Angaben zu Spezialliteratur werden vor der 1. Stunde verteilt. Sie enthalten eine umfangreiche Liste von Fachliteratur. Die in der Folge angegebenen Bücher bieten hilfreiches Lesematerial. Ein gängiges Computerprogramm wird in http://mctdh.uni-hd.de/ vorgestellt.

R. D. Levine and R. B. Bernstein. Molecular Reaction Dynamics and Chemical Reactivity. Oxford University Press, New York, Oxford, 1987.

D. J. Tannor. Introduction to Quantum Mechanics: A time dependent perspective. University Science Books, Sausalito (California), 2007.

H.-D. Meyer, F. Gatti, and G. A. Worth. Multidimensional Quantum Dynamics. Wiley-VCH, Weinheim, 2009.
Voraussetzungen / BesonderesGute Kenntnisse von Quantenmechanik sind nützlich, werden aber nicht vorausgesetzt.
376-1791-00LIntroductory Course in Neuroscience I (University of Zurich) Information Belegung eingeschränkt - Details anzeigen
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y005

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W2 KP2VJ.‑M. Fritschy, W. Knecht
KurzbeschreibungThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
LernzielThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
Inhalt1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Development I&II
4) Membran and Action Potential
5) Synaptic Transmission & Plasticity I&II
6) Glia and Blodd-Brain-Barrier
7) Somatosensory and Motor System
8) Visual System
9) Auditory System
10) Circuits underlying Emotion
11) Modeling of Neural Circuits
Voraussetzungen / BesonderesFor doctoral students of the Neuroscience Center Zurich (ZNZ).
376-1795-00LAdvanced Course in Neurobiology I (Functional Anatomy of the Rodent Brain) (University of Zurich) Information Belegung eingeschränkt - Details anzeigen
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y009

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W2 KP2VJ.‑M. Fritschy, H. U. Zeilhofer
KurzbeschreibungThe goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience.
LernzielThis credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology.
Voraussetzungen / BesonderesFür Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet.
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle