Suchergebnis: Katalogdaten im Herbstsemester 2016

Maschineningenieurwissenschaften Master Information
Kernfächer
Energy, Flows and Processes
NummerTitelTypECTSUmfangDozierende
151-0104-00LUncertainty Quantification for Engineering & Life Sciences Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Number of participants limited to 60.
W4 KP3GP. Koumoutsakos
KurzbeschreibungQuantification of uncertainties in computational models pertaining to applications in engineering and life sciences. Exploitation of massively available data to develop computational models with quantifiable predictive capabilities. Applications of Uncertainty Quantification and Propagation to problems in mechanics, control, systems and cell biology.
LernzielThe course will teach fundamental concept of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences. Emphasis will be placed on practical and computational aspects of UQ+P including the implementation of relevant algorithms in multicore architectures.
InhaltTopics that will be covered include: Uncertainty quantification under
parametric and non-parametric modelling uncertainty, Bayesian inference with model class assessment, Markov Chain Monte Carlo simulation, prior and posterior reliability analysis.
SkriptThe class will be largely based on the book: Data Analysis: A Bayesian Tutorial by Devinderjit Sivia as well as on class notes and related literature that will be distributed in class.
Literatur1. Data Analysis: A Bayesian Tutorial by Devinderjit Sivia
2. Probability Theory: The Logic of Science by E. T. Jaynes
3. Class Notes
Voraussetzungen / BesonderesFundamentals of Probability, Fundamentals of Computational Modeling
151-0105-00LQuantitative Flow VisualizationW4 KP2V + 1UT. Rösgen
KurzbeschreibungThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
LernzielIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
InhaltFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
Skriptavailable
Voraussetzungen / BesonderesPrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 KP4GM. Troyer, P. Chatzidoukas
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
LernzielIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
InhaltProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
SkriptLink
Class notes, handouts
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0113-00LApplied Fluid DynamicsW4 KP2V + 1UJ.‑P. Kunsch
KurzbeschreibungAngewandte Fluiddynamik
Die Methoden der Fluiddynamik spielen eine wichtige Rolle bei der Beschreibung einer Ereigniskette, welche die Freisetzung, Ausbreitung und Verdünnung gefährlicher Fluide in der Umgebung beinhaltet.
Tunnellüftungssysteme und -strategien werden vorgestellt, welche strengen Anforderungen während des Normalbetriebs und während eines Brandes genügen müssen.
LernzielAllgemein anwendbare Methoden der Strömungslehre und der Gasdynamik sollen hier an ausgewählten, aktuellen Fallbeispielen illustriert und geübt werden.
InhaltBei der Auslegung von umweltgerechten Prozess- und Verbrennungsanlagen sowie der Auswahl von sicheren Transport- und Lagerungsvarianten gefährlicher Stoffe wird häufig auf die Methoden der Fluiddynamik zurückgegriffen. Bei Unfällen, aber auch beim Normalbetrieb, können gefährliche Gase und Flüssigkeiten freigesetzt und durch den Wind oder Wasserströmungen weitertransportiert werden. Zu den vielfältigen möglichen Schadenseinwirkungen gehören z.B. Feuer und Explosionen bei zündfähigen Gemischen. Behandelte Themen sind u.a.: Ausströmen von flüssigen und gasförmigen Stoffen aus Behältern und Leitungen, Verdunstung aus Lachen und Verdampfung bei druckgelagerten Gasen, Ausbreitung und Verdünnung von Abgasfahnen im Windfeld, Deflagrations- und Detonationsvorgänge bei zündfähigen Gasen, Feuerbälle bei druckgelagerten Gasen, Schadstoff- und Rauchgasausbreitung in Tunnels (Tunnelbrände usw.).
Skriptnicht verfügbar
Voraussetzungen / BesonderesVoraussetzungen: Fluiddynamik I und II, Thermodynamik I und II
151-0163-00LNuclear Energy ConversionW4 KP2V + 1UH.‑M. Prasser
KurzbeschreibungPhysikalische Grundlagen der Kernspaltung und der Kettenreaktion, thermische Auslegung, Aufbau, Funktion, und Betrieb von Kernreaktoren und Kernkraftwerken, Leichtwasserreaktoren und andere Reaktortypen, Konversion und Brüten
LernzielDie Studierenden erhalten einen Überblick über die Energieerzeugung in Kernkraftwerken, über Aufbau und Funktion der wichtigsten Reaktortypen sowie über den Kernbrennstoffkreislauf mit Schwerpunkt auf Leichtwasserreaktoren. Sie erhalten die mathematisch-physikalischen Grundlagen für quantitave Abschätzungen zu den wichtigsten Aspekten der Auslegung, des dynamischen Verhaltens und der Stoff- und Energieströme.
InhaltNeutronenphysikalische Grundlagen von Kernspaltung und Kettenreaktion. Thermodynamische Grundlagen von Kernreaktoren. Auslegung des Reaktorkerns. Einführung in das dynamische Verhalten von Kernreaktoren. Überblick über die wichtigsten Reaktortypen, Unterschied zwischen thermischen Reaktoren und Brutreaktoren. Aufbau und Betrieb von Kernkraftwerken mit Druck- und Siedewasserreaktoren, Rolle und Funktion der wichtigsten Sicherheitssysteme, Besonderheiten des Energieumwandlungsprozesses. Entwicklungstendenzen in der Reaktortechnik.
SkriptVorlesungsunterlagen werden verteilt. Vielfältiges Angebot an zusätzlicher Literatur und Informationen unter Link
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-0182-00LFundamentals of CFD MethodsW4 KP3GA. Haselbacher
KurzbeschreibungThis course is focused on providing students with the knowledge and understanding required to develop simple computational fluid dynamics (CFD) codes to solve the incompressible Navier-Stokes equations and to critically assess the results produced by CFD codes. As part of the course, students will write their own codes and verify and validate them systematically.
Lernziel1. Students know and understand basic numerical methods used in CFD in terms of accuracy and stability.
2. Students have a basic understanding of a typical simple CFD code.
3. Students understand how to assess the numerical and physical accuracy of CFD results.
Inhalt1. Governing and model equations. Brief review of equations and properties
2. Overview of basic concepts: Overview of discretization process and its consequences
3. Overview of numerical methods: Finite-difference and finite-volume methods
4. Analysis of spatially discrete equations: Consistency, accuracy, stability, convergence of semi-discrete methods
5. Time-integration methods: LMS and RK methods, consistency, accuracy, stability, convergence
6. Analysis of fully discrete equations: Consistency, accuracy, stability, convergence of fully discrete methods
7. Solution of one-dimensional advection equation: Motivation for and consequences of upwinding, Godunov's theorem, TVD methods, DRP methods
8. Solution of two-dimensional advection equation: Dimension-by-dimension methods, dimensional splitting, multidimensional methods
9. Solution of one- and two-dimensional diffusion equations: Implicit methods, ADI methods
10. Solution of one-dimensional advection-diffusion equation: Numerical vs physical viscosity, boundary layers, non-uniform grids
11. Solution of incompressible Navier-Stokes equations: Incompressibility constraint and consequences, fractional-step and pressure-correction methods
12. Solution of incompressible Navier-Stokes equations on unstructured grids
SkriptThe course is based mostly on notes developed by the instructor.
LiteraturLiterature: There is no required textbook. Suggested references are:
1. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Prentice Hall, 2007
2. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed., Taylor & Francis, 2011
Voraussetzungen / BesonderesPrior knowledge of fluid dynamics, applied mathematics, basic numerical methods, and programming in Fortran and/or C++ (knowledge of MATLAB is *not* sufficient).
151-0185-00LRadiation Heat Transfer Information W4 KP2V + 1UA. Steinfeld, A. Z'Graggen
KurzbeschreibungAdvanced course in radiation heat transfer
LernzielFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Inhalt1. Einführung in die Wärmestrahlung: Elektromagnetisches Spektrum. Schwarzkörper und nicht-schwarze Oberflächen. Absorption. Emission. Reflektion. Kirchhoffsches Gesetz.

2. Strahlungsaustausch zwischen Oberflächen: Diffuse und spekulare Oberflächen. Graue und nicht-graue Oberflächen. Konfigurationsfaktoren. Hohlraumstrahlungstheorie.

3. Absorbierende, emittierende und streuende Medien: Extinktions-, Absorptions- und Streukoeffizienten. Optische Dicken. Gleichung für Strahlungsübertragung. Lösungsmethoden: z.B. "Monte-Carlo".

4. Anwendungen: Kavitäten. Selektive Oberflächen/Medien. Wärmestrahlung/Wärmeleitung/Konvektion.
SkriptCopy of the slides presented.
LiteraturR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0203-00LTurbomachinery Design Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 20
W4 KP2V + 1UR. S. Abhari, N. Chokani, B. Ribi
KurzbeschreibungDie Vorlesung bietet eine Einführung in die Grundlagen und das Design von Turbomaschinen.
LernzielGrundlagen verstehen, und Designprozesse und Verhalten von Turbomaschinen lernen.
InhaltDiese Vorlesung beschreibt die Grundlagen des Designs von Turbomaschinen (Turbinen und Verdichtern). Dazu werden zunächst die theoretischen Grundlagen vertieft erarbeitet. Ausgehend von den thermodynamischen Grundlagen werden Verlustkorrelationen und -Mechanismen behandelt. Diese Grundlagen führen zu einem Verständnis des 3D Design der Turbomaschinen.
Im zweiten Teil der Vorlesung wird das Verhalten der Turbomaschinen bei veränderten Betriebsbedingungen dargestellt. Ebenfalls behandelt werden mechanische Fragestellungen des Turbomaschinenbaus wie z.B. Vibrationen, Lagerbelastungen und auftretende Spannungen in den Bauteilen.
SkriptVorlesungsunterlagen
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0216-00LWind EnergyW4 KP2V + 1UN. Chokani
KurzbeschreibungThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.
LernzielThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.
InhaltThis mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.
151-0235-00LThermodynamics of Novel Energy Conversion TechnologiesW4 KP3GC. S. Sharma, D. Poulikakos, G. Sansavini
KurzbeschreibungIn the framework of this course we will look at a current electronic thermal and energy management strategies and novel energy conversion processes. The course will focus on component level fundamentals of these process and system level analysis of interactions among various energy conversion components.
LernzielThis course deals with liquid cooling based thermal management of electronics, reuse of waste heat and novel energy conversion and storage systems such as batteries, fuel cells and micro-fuel cells. The focus of the course is on the physics and basic understanding of those systems as well as their real-world applications. The course will also look at analysis of system level interactions between a range of energy conversion components.
InhaltPart 1: Fundamentals:
- Overview of exergy analysis, Single phase liquid cooling and micro-mixing;
- Thermodynamics of multi-component-systems (mixtures) and phase equilibrium;
- Electrochemistry;

Part 2: Applications:
- Basic principles of battery;
- Introduction to fuel cells;
- Reuse of waste heat from supercomputers
- Hotspot targeted cooling of microprocessors
- Microfluidic fuel cells

Part3: System- level analysis
- Integration of the components into the system: a case study
- Analysis of the coupled operations, identification of critical states
- Support to system-oriented design
SkriptLecture slides will be made available. Lecture notes will be available for some topics (in English).
Voraussetzungen / BesonderesThe course will be given in English:

1- Mid-term examination: Mid-term exam grade counts as 20% of the final grade.
2- Final exam: Written exam during the regular examination session. It counts as 80% of the final grade.
151-0243-00LNew Enterprises for Engineers Information
Findet dieses Semester nicht statt.
W4 KP3GR. S. Abhari
KurzbeschreibungTransforming Needs to opportunities for new technology enterprises.
- Links between entrepreneurship and product development/engineering.
- Sales, marketing, financing, and growth. Detailed Plans and execution.
- Survival through cash flow management.
- Human issues in new enterprise
- Alignment of interests.
- Transition of enterprises along growth path
- Link
LernzielTransforming Needs to Business Enterprises

Goals of the course:
- Propose the role of Needs-Driven Opportunities for new technology enterprises
- Explore links between entrepreneurship and engineering; such as problem solving, planning, system analysis, can-do attitude!
- Making it happen- through sales, marketing, planning, staffing, implementation, financing, and growth. Detailed Plans and execution
- Survival (and success) through cash flow management
- Explore the human issues in any new enterprise
- Alignment of interests between providers of value (founders and staff, VC’s) and the providers of capital (Angels, VC’s, Corporation)
- Transformations of enterprises along growth path
InhaltApproach:
Weekly lectures including discussions of international case studies
Exercises to develop and present modules of new plans
Extensive class interactions capped with presentation by each (group) student of new enterprise plan

Please see Link
SkriptCourse material will be communicated to the students prior to the start of each class for download.
Voraussetzungen / BesonderesThis course is primarily for engineering and natural science students at all levels who are interested in participating in the initiation or growth of a new enterprise. The new enterprise could be stand -alone start up or a new business unit for an existing enterprise.

The class is practical in nature but emphasizes the basic understanding of the parameters that significantly contribute to the success of a new enterprise. It will be highly interactive with special selected guests from Selected guests from; companies founder, venture capital and business angel, and large corporation executive. Class attendance and active participation is required.
151-0251-00LIC-Engines and Propulsion Systems I Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 60
W4 KP2V + 1UK. Boulouchos, G. Georges, P. Kyrtatos
KurzbeschreibungEinführung in die Basiskonzepte/Kennfelder und Arbeitsverfahren von internen Verbrennungsmotoren. Thermodynamische Analyse und Design, Spülungsmethoden, Wärmeübertragungsmechanismen, turbulente Ströme in Brennräumen, Aufladesysteme für Verbrennungsmotor. Energiesystemischer Kontext von Verbrennungsmotoren: konventionelle und elektrifizierte Fahrzeugantriebe sowie dezentrale Energieversorgung
LernzielDie Studierenden lernen die Basiskonzepte des Verbrennungsmotors anhand der in der Kurzbeschreibung aufgeführten Themen. Das Wissen wird angewandt in verschiedenen Rechenübungen und in die Praxis gebracht bei zwei Laborübungen am Motorenprüfstand. Die Studierenden kriegen einen Einblick in alternative Antriebskonzepte.
Skriptauf Englisch
LiteraturJ. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill
151-0368-00LAeroelastikW4 KP2V + 1UF. Campanile
KurzbeschreibungEinführung in die Grundlagen und Methoden der Aeroelastik. Überblick über die wichtigsten statischen und dynamischen Phänomene, die aus der Kopplung zwischen Strukturkräften und aerodynamischen Lasten entstehen.
LernzielDie Vorlesung soll ein physikalisches Grundverständnis für gekoppelte Strömung-Struktur-Phänomene vermitteln. Ausserdem soll den Teilnehmern ein Überblick über die wichtigsten Phänomene der statischen und der dynamischen Aeroelastik gegeben werden, sowie eine Einführung in die entsprechenden Methoden zur mathematischen Beschreibung und zur Formulierung quantitativen Voraussagen.
InhaltElemente der Profilaerodynamik. Aeroelastische Divergenz am starren Streifenmodell. Aeroelastische Divergenz eines kontinuierlichen Flügels. Allgemeines über statische Aeroelastik.
Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene.
Grundelemente der instationären Aerodynamik.
Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns.
Einführung in die Modalanalyse
Einfühung in weitere Phänomene der dynamischen Aeroelastik.
LiteraturY. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions.
151-0709-00LStochastic Methods for Engineers and Natural ScientistsW4 KP3GD. W. Meyer-Massetti, N. Noiray
KurzbeschreibungThe course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.
LernzielBy the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.
Inhalt- Probability theory, single and multiple random variables, mappings of random variables
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Polynomial chaos and other expansion methods
All topics are illustrated with application examples from engineering.
SkriptDetailed lecture notes will be provided.
LiteraturSome textbooks related to the material covered in the course:
Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010
The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996
Turbulent Flows, S.B. Pope, Cambridge University Press, 2000
Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010
151-0851-00LRobot Dynamics Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 1UM. Hutter, R. Siegwart, T. Stastny
KurzbeschreibungWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
LernzielThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
InhaltThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Voraussetzungen / BesonderesThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
151-0911-00LIntroduction to PlasmonicsW4 KP2V + 1UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
LernzielElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
InhaltFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
SkriptClass notes and handouts
LiteraturS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Voraussetzungen / BesonderesPhysics I, Physics II
151-0917-00LMass TransferW4 KP2V + 2UR. Büchel, S. E. Pratsinis
KurzbeschreibungDiese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt.
LernzielDiese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt.
InhaltFicksche Gesetze; Anwendungen und Bedeutung von Stofftransport; Vergleich von Fickschen Gesetzen mit Newtonschen und Fourierschen Gesetzen; Herleitung des zweiten Fickschen Gesetzes; Diffusion in verdünnten und konzentrierten Lösungen; Rotierende Scheibe; Dispersion; Diffusionskoeffizient, Gasviskosität und Leitfähigkeit (Pr und Sc); Brownsche Bewegung; Stokes-Einstein-Gleichung; Stofftransportkoeffizienten (Nu und Sh-Zahlen); Stoffaustausch über Grenzflächen; Reynolds- und Chilton-Colburn-Analogien für Impuls-, Wärme- und Stofftransport in turbulenten Strömungen; Film-, Penetrations- und Oberflächenerneuerungstheorien; Gleichzeitiger Transport von Stoff und Wärme oder Impuls (Grenzschichten); Homogene und heterogene, reversible und irreversible. Anwendungen Reaktionen; "Diffusionskontrollierte" Reaktionen; Stofftransport und heterogene Reaktion erster Ordnung.
LiteraturCussler, E.L.: "Diffusion", 2nd edition, Cambridge University Press, 1997.
Voraussetzungen / BesonderesEs werden 2 Tests zur Vertiefung des Lernstoffs angeboten. Die Teilnahme ist obligatorisch.
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle