Suchergebnis: Katalogdaten im Herbstsemester 2016

Mathematik Master Information
Kernfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3225-00LIntroduction to Lie GroupsW8 KP4GP. D. Nelson
KurzbeschreibungTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
LernzielThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteraturA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A.Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F.Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S.Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A.Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Voraussetzungen / BesonderesTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/introlg
  •  Seite  1  von  1