Suchergebnis: Katalogdaten im Herbstsemester 2016

Biomedical Engineering Master Information
Vertiefungsfächer
Molecular Bioengineering
Wahlfächer der Vertiefung
Diese Fächer sind für die Vertiefung in Molecular Bioengineering besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser.
NummerTitelTypECTSUmfangDozierende
151-0604-00LMicrorobotics Information
Findet dieses Semester nicht statt.
W4 KP3GB. Nelson
KurzbeschreibungMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
LernzielThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
InhaltMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
SkriptThe powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically.
Voraussetzungen / BesonderesThe lecture will be taught in English.
227-0385-10LBiomedical ImagingW6 KP5GS. Kozerke, K. P. Prüssmann, M. Rudin
KurzbeschreibungIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
LernzielTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Inhalt- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
SkriptLecture notes and handouts
LiteraturWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Voraussetzungen / BesonderesAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0386-00LBiomedical Engineering Information W4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
227-0393-10LBioelectronics and Biosensors
New course. Not to be confounded with 227-0393-00L last offered in the Spring Semester 2015.
W6 KP2V + 2UJ. Vörös, M. F. Yanik, T. Zambelli
KurzbeschreibungThe course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
LernzielDuring this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
InhaltL1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning
LiteraturPlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Voraussetzungen / BesonderesSupervised exercises solving real-world problems. Some Matlab based exercises in groups.
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
227-0981-00LCross-Disciplinary Research and Development in Medicine and Engineering Belegung eingeschränkt - Details anzeigen
A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal.
W4 KP2V + 2AV. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich
KurzbeschreibungCross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.
LernzielThe main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.
InhaltAfter a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.
SkriptHandouts and relevant literature will be provided.
327-0505-00LSurfaces, Interfaces and their Applications I Information W3 KP2V + 1UN. Spencer, M. P. Heuberger, L. Isa
KurzbeschreibungAfter being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion.
LernzielTo gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems.
InhaltIntroduction to Surface Science
Physical Structure of Surfaces
Surface Forces (static and dynamic)
Adsorbates on Surfaces
Surface Thermodynamics and Kinetics
The Solid-Liquid Interface
Electron Spectroscopy
Vibrational Spectroscopy on Surfaces
Scanning Probe Microscopy
Introduction to Tribology
Introduction to Corrosion Science
SkriptScript Download:
Link
LiteraturScript (20 CHF)
Book: "Surface Analysis--The Principal Techniques", Ed. J.C. Vickerman, Wiley, ISBN 0-471-97292
Voraussetzungen / BesonderesChemistry:
General undergraduate chemistry
including basic chemical kinetics and thermodynamics

Physics:
General undergraduate physics
including basic theory of diffraction and basic knowledge of crystal structures
327-1101-00LBiomineralization Information W2 KP2GK.‑H. Ernst
KurzbeschreibungThe course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.
LernzielThe course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.
InhaltBiomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization
SkriptScript with more than 600 pages with many illustrations will be distributed free of charge.
Literatur1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York
2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford
3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003
Voraussetzungen / BesonderesEach attendee is required to present a publication from the field. The selection of key papers is provided by the lecturer.
No special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.
376-1622-00LPractical Methods in Tissue Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.
W5 KP4PK. Würtz-Kozak, M. Zenobi-Wong
KurzbeschreibungThe goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.
LernzielPractical exercises and demonstrations on topics including sterile cell culture, light microscopy and histology, protein and gene expression analysis, and viability assays are covered. The advantages of 3D cell cultures will be discussed and practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.
402-0341-00LMedical Physics IW6 KP2V + 1UP. Manser
KurzbeschreibungIntroduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.
LernzielUnderstanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.
InhaltThe lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.
SkriptA script will be provided.
535-0423-00LDrug Delivery and Drug TargetingW2 KP2VJ.‑C. Leroux, D. Brambilla
KurzbeschreibungDie Studierenden erwerben einen Überblick über derzeit aktuelle Prinzipien, Methoden und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Damit sind die Studierenden in der Lage, das Gebiet gemäss wissenschaftlichen Kriterien zu verstehen und zu beurteilen.
LernzielDie Studierenden verfügen über einen Überblick über derzeit aktuelle Prinzipien und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Im Vordergrund der Lehrveranstaltung steht die Entwicklung von Fähigkeiten zum Verständnis der betreffenden Technologien und Methoden, ebenso wie der Möglichkeiten und Grenzen ihres therapeutischen Einsatzes. Im Zentrum stehen therapeutische Peptide, Proteine, Nukleinsäuren und Impfstoffe.
InhaltDer Kurs behandelt folgende Themen: Arzneistoff-targeting und Freigabeprinzipien, Radiopharmaka, makromolekulare Arzneistofftransporter, Liposomen, Mizellen, Mikro/Nanopartikel, Gele und Implantate, Anwendung von Impfstoffen, Abgabe von Wirkstoffen im Rahmen von Tissue engineering, Abgabe im Gastrointestinaltrakt, synthetische Transporter für Arzneistoffe auf Nukleinsäurebasis, ophthalmische Vehikel und neue Trends in transdermaler und nasaler Arzneistofffreigabe.
SkriptAusgewählte Skripten, Vorlesungsunterlagen und unterstützendes Material werden entweder direkt an der Vorlesung ausgegeben oder sind über das Web zugänglich:

http://www.galenik.ethz.ch/teaching/drug_del_drug_targ

Diese Website enthält auch zusätzliche Unterlagen zu peroralen Abgabesystemen, zur gastrointestinalen Passage von Arzneiformen, transdermalen Systemen und über Abgabesysteme für alternative Absorptionswege. Diese Stoffgebiete werden speziell in der Vorlesung Galenische Pharmazie II behandelt.
LiteraturY. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012.

Weitere Literatur in der Vorlesung.
636-0507-00LSynthetic Biology II Belegung eingeschränkt - Details anzeigen W4 KP4AS. Panke, Y. Benenson, J. Stelling
Kurzbeschreibung7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).
LernzielThe students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.
InhaltPresentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external,) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).
SkriptHandouts during course
Voraussetzungen / BesonderesThe final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton Universtiy, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.
  •  Seite  1  von  1