Suchergebnis: Katalogdaten im Herbstsemester 2016

Erdwissenschaften Master Information
Vertiefung in Geology
Wahlpflichtmodule Geology
Innerhalb der Majors Geology sind mindestens zwei Wahlpflichtmodule zu absolvieren.
Structural Geology
Structural Geology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4132-00LField Course IV: Non Alpine Field Course Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Maximale Teilnehmerzahl: 24
W+3 KP6PJ.‑P. Burg
KurzbeschreibungField Course to Oman. The students will produce a geological map write and a complementing field report.
Lernziel
Voraussetzungen / BesonderesSuccessful participation in Field Courses I-III.
Structural Geology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4003-00LNumerical Modelling of Rock DeformationW3 KP2GM. Frehner
KurzbeschreibungIntroduction to the programming software Matlab.
Learning and understanding the continuum mechanics equations describing rock deformation.
Mathematical equations describing rock rheology: elasticity + viscosity.
Introduction to the finite-element method for modeling rock deformation in 2D.
A small applied project-work at the end of the semester will be tailored to the student's interest.
LernzielAt the end of this course, the students should be able to
- Use Matlab for their future needs (e.g., for their MSc Thesis)
- Understand the fundamental concept of the finite-element method
- Apply the finite-element method to successfully work on a small project tailored to the student's interests.

In addition, innovative methods will be applied to mark the performance in the course, which includes self-evaluation and peer-evaluation among the students. Therefore, some soft-skills will be required and trained as well, such as
- honest self-evaluation and self-grading
- providing honest feedback to a colleague in a tone that is acceptable
- receiving feedback from a colleague without taking criticism personal
- learning the procedure of scientific peer-evaluation
InhaltIntroduction to Matlab
Continuum mechanics equations necessary to describe rock deformation
Rheological equations: elasticity + viscous materials
Introduction to the finite-element method (in 1D)
Numerical integration + isoparametric elements
Going to 2D finite elements
Finite-element method for 2D elasticity
Stress calculation + visualization
Finite-element method for 2D viscous materials
Heterogeneous media
Final project-based work tailored to the student's interest.

A substantial part of the lecture will take place in the computer-lab, where numerical finite element codes will be applied. The used software is Matlab. Students may bring their own laptop with a pre-installed copy of Matlab.
SkriptThe script is very diverse and ranges from PowerPoint-based pdf-files, to self-study tutorials. Also, the more theoretical and mathematical aspects will be explained on the black board without a proper script.

All lecture-presentations, as well as the numerical codes, will be made available to the students online.
LiteraturThere is no mandatory literature. The following literature is recomended:

Turcotte D.L. and Schubert G., 2002: Geodynamics, Cambridge University Press, ISBN 0-521-66624-4

Pollard D.D. and Fletcher R.C., 2005: Fundamentals of Structural Geology, Cambridge University Press, ISBN 978-0-521-83927-0

Ranalli G., 1995: Rheology of the Earth, Chapman & Hall, ISBN 0-412-54670-1

Smith I.M. and Griffiths D.V., 2004: Programming the Finite Element Method, John Wiley & Sons Ltd, ISBN 978-0-470-849-70-5

Zienkiewicz O.C. and Taylor R.L., 2000: The Finite Element Method - Volume 1: The Basis, Butterworth Heinemann, ISBN 0-7506-5049-4
Voraussetzungen / BesonderesA good knowledge of linear algebra is expected.

The used software is Matlab. So, knowledge of Matlab is advantageous. Students may bring their own laptop with a pre-installed copy of Matlab.
651-4111-00LRock Physics Information W3 KP2GA. S. Zappone, K. Kunze, C. Madonna
KurzbeschreibungThe modern discipline of Rock Physics serves as a bridge between traditional Rock Mechanics and traditional Rock Physical Property measurement. Through understanding the physics of the process, we strive to better understand other related fields such as structural geology and geophysics.
LernzielThe objective of this course is to introduce Rock Physics as a laboratory and interpretive tool.
InhaltThe course will consists of regular classes, with a small number of laboratory demonstrations made on an ad-hoc basis (depending on equipment and research objective schedules at the Rock Deformation Laboratory). The course will cover measurements of physical properties of rock such as density, porosity, permeability and elastic wave velocity, and will introduce the concept of seismic seismic anisotropy etc. Later we will cover rock deformation in the brittle field, earthquake physics and triggering. Finally we will discuss scale effects as we move from small scale laboratory environment to the scale of the geophysical investigation.
Voraussetzungen / BesonderesUndergraduate courses in the following subjects are highly recommended in order to get the most out of this specialist course:

- Basic structural Geology
- Geophysics
651-3521-00LTektonikW3 KP2VJ.‑P. Burg, E. Kissling
KurzbeschreibungUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss. Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
LernzielUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss.
Abschätzung der Mechanismen und Kräfte, welche für Plattenbewegungen im allgemeinen und für spezielle großräumige Strukturen (ozeanische Becken und Zyklus der ozeanischen Lithoshpäre, Gebirgssysteme und kontinentales Wachstum, usw.) verantwortlich sind, basierend auf theoretischen und experimentellen Informationen.
Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
InhaltPlattentektoniksysteme: System Mantel-Lithosphärenplatten, drei Arten von Plattengrenzen, ihre Rollen und Charakteristika, Zyklus der ozeanischen Lithosphäre, Kratone, Wachstum der Kontinente und Bildung der Superkontinente. Rheologie der geschichteten Lithosphäre und des oberen Mantels.
Obduktionssysteme
Kollisionssysteme
Extensionssysteme
Entwicklung der Becken
Passive and aktive Kontinentalränder
SkriptAusführliches Skriptum in digitaler Form und weitere Lernmodule (Link) auf dem intranet vorhanden.
LiteraturCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
  •  Seite  1  von  1