Search result: Catalogue data in Autumn Semester 2016

Mechanical Engineering Bachelor Information
1. Semester
Registration for the exercises via the application https://echo.ethz.ch/ with your nETHz login (username, password).
First Year Examinations: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
401-0261-G0LAnalysis IO8 credits5V + 3UA. Steiger
AbstractDifferential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering.
ObjectiveIntroduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus.
LiteratureU. Stammbach: Analysis I/II
Prerequisites / NoticeDie Übungsaufgaben (inkl. Multiple Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung. Es wird erwartet, dass Sie mindestens 75% der wöchentlichen Serien bearbeiten und zur Korrektur einreichen.
401-0171-00LLinear Algebra IO3 credits2V + 1UN. Hungerbühler
AbstractLinear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear algebra II.
ObjectiveUpon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice.
ContentSystems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications
Literature* K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
* K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003
Prerequisites / NoticeActive participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control.
151-0501-00LMechanics 1: Kinematics and StaticsO5 credits3V + 2UE. Mazza
AbstractBasics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction
ObjectiveThe understanding of the fundamentals of statics for engineers and their application in simple settings.
ContentGrundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung

Statik: Aequivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment
Lecture notesÜbungsblätter
LiteratureSayir, M.B., Dual J., Kaufmann S., Ingenieurmechanik 1: Grundlagen und Statik, Teubner
Prerequisites / NoticeWritten session examination in "Mechanics 1" and "Mechanics 2" for D-MAVT Students, Students in Human Movement Sciences and Sport and all other Students, who take "Mechanics 1" and "Mechanics 2":

Part 1: 20 minutes: Neither notes nor calculators allowed
right afterwards:
Part 2: 50 minutes: 3 self-written A4 pages. No caluculator.

Prüfungsinformation für alle Studierende, die den Jahreskurs "Mechanics 1" and "Mechanics 2" belegen: Prüfung "Mechanics 1" in Deutsch: 1. Teil: 20 Min. Gleich anschliessend 2. Teil: 50 Min. Falls sich das Ergebnis der drei Semester-Klausuren verbessernd auf die finale Note auswirkt, so zählen diese zu 30 % zum Schlussergebnis von "Mechanics 1". Die Jahreskursnote setzt sich zusammen aus 45 % "Mechanics 1" und 55 % "Mechanics 2".
151-0711-00LEngineering Materials and Production IO4 credits4GK. Wegener
AbstractThe lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure; thermally activated processes; solidification; elastic, plastic deformation, creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.
ObjectiveUnderstanding the basics of metallic materials for engineers who are confronted with material decisions in design and production.
ContentThe lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure as ideal and real structure, alloying, thermally activated processes e.g. diffusion, recovery, recrystallisation, solidification, elastic and plastic deformation and creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.
Lecture notesyes
151-0301-00LMachine ElementsO2 credits1V + 1UM. Meboldt, Q. Lohmeyer
AbstractIntroduction to machine elements and mechanical systems as basics of product development. Case studies of their application in products and systems.
ObjectiveThe students get an overview of the main mechanical components (machine elements) which are used in mechanical engineering. Selected examples will demonstrate how these can be assembled into functional parts and complete systems such as machinery, tools or actuators. At the same time, also the problem of production (production-oriented design) is discussed.
In concurrent lectures / exercises "technical drawing and CAD" the design implementation will be practiced.
Content- Innovation Process: A Quick Overview
- Stages of the planning and design process
- Requirements for a design and technical implementation
- Choice of materials - Basic principles of a material-specific design
- Manufacturing process - fundamentals of a production-oriented design
- Connections, fuses, seals
- Machine-standard elements
- Storage & guides
- Transmission and its components
- Drives

The idea of machine elements is complemented by case studies and illustrated.
Lecture notesThe lecture slides will be published beforehand on the website of the pd|z.
Prerequisites / NoticeFor Bachelor studies in Mechanical and Process Engineering, the lecture "Maschinenelemente" (HS) is examined together with "Innovationsprozess" (FS) in the exam "Basisprüfung Maschinenelemente and Innovationsprozess".
529-0010-00LChemistryO3 credits2V + 1UC. Mondelli, A. de Mello
AbstractThis is a general chemistry course aimed at first year undergraduate students in the Department of Mechanical and Process Engineering (D-MAVT).
ObjectiveThe aims of the course are as follows:
1) To provide a thorough understanding of the basic principles of chemistry and its application.
2) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe their transformations.
3) To emphasize areas considered most relevant in an engineering context.
ContentElectronic structure of atoms, chemical bonding, molecular shape and bonding theory, gases, thermodynamics, chemical thermodynamics, chemical kinetics, equilibria, solutions and intermolecular forces, redox and electrochemistry.
LiteratureThe course is based on "Chemistry the Central Science" by Brown, LeMay, Bursten, Murphy and Woodward. Pearson, 12th Edition (international edition).
Additional First Year Courses
NumberTitleTypeECTSHoursLecturers
151-0321-00LTechnical Drawing and CAD Restricted registration - show details
Only for Mechanical Engineering BSc.
O4 credits4GK. Shea
AbstractFundamentals of Technical Drawing and Computer Aided Design (CAD). Introduction to the design process and sketching. Create and read technical drawings. Create 3D models in CAD and fabricate them directly using additive manufacturing (3D printing).
ObjectiveThe lecture and exercises teach the fundamentals of technical drawing and CAD. After taking the course students will be able to create accurate technical drawings of parts and assemblies as well as read them. Students will also be able to create models of parts and assemblies in a 3D, feature-based CAD system. They will understand the links with simulation, product data management (PDM) and additive manufacturing.
ContentIntroduction to Engineering Design
Sketching in Engineering Design

Technical Drawing:
- projections and views
- cuts
- notations
- primitives
- ISO norm elements
- dimensioning
- tolerances
- assemblies
- documentation

CAD:
- CAD basics
- CAD modeling methods
- sketch modeling
- modeling operations
- feature-based modeling
- assemblies
- creating 2D drawings from 3D parts
- links to simulation, e.g. kinematics
- links to model variants and Product Data Management (PDM)
- links to additive manufacturing (3D printing)
Lecture notesLecture slides and exercise handouts are available on the course Moodle website: https://moodle-app2.let.ethz.ch/course/index.php?categoryid=56
LiteratureIn addition to the lecture material the following books are recommended (only in German):

TZ
Technisches Zeichnen: selbstständig lernen und effektiv üben
Susanna Labisch und Christian Weber
2008 Vieweg
ISBN: 978-3-8348-0312-2 ;ISBN: 978-3-8348-9451-9 (eBook)
eBook (accessible from the ETH domain): http://link.springer.com/book/10.1007/978-3-8348-9451-9/page/1

VSM Normen-Auszugs 2010
14. Auflage, ISBN 978-3-03709-049-7
(kann in den Übungen bestellt und gekauft werden)

CAD
Marcel Schmid
CAD mit NX: NX 8
J.Schlembach Fachverlag
ISBN: 978-3-935340-72-4
Prerequisites / NoticeThis course is given as a lecture (1h /week) and an exercise (3h/week). Students are split into working groups for the exercises with a maximum of 20 students per group.

Semester Fee
A fee is charged for printed copies of the course handouts.
First Year Optional Colloquia
NumberTitleTypeECTSHoursLecturers
151-0501-02LMechanics 1: Kinematics and Statics (Colloquium)Z0 credits1KE. Mazza
AbstractBasics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction
ObjectiveThe understanding of the fundamentals of Statics for engineers and their application in simple settings.
ContentBasics: Position of a material point; velocity; kinematics of rigid bodies; translation, rotation, planar motion; forces, action-reaction principle, internal and external forces, distributed forces; mechanical power.
Statics: equivalence and reduction of groups of forces; rest and equilibrium; basic theorem of statics; kinematic and static boundary conditions, applications to supports and clamps of rods and beams; procedures for determination of forces at supports and clamps; parallel forces and centre of gravity; statics of systems, solution using basic theorem and using the principle of virtual power, statically indeterminate systems; statically determinate truss structures, ideal truss structures, nodal point equilibrium, methods for truss force determination; friction, static friction, sliding friction, friction at joints and supports, rolling resistance; forces in cables; beam loading, force and moment vector.
Lecture notesÜbungsblätter
LiteratureSayir, M.B., Dual J., Kaufmann S., Ingenieurmechanik 1: Grundlagen und Statik, Teubner
3. Semester
Compulsory Courses
Examination Block 1
NumberTitleTypeECTSHoursLecturers
401-0363-10LAnalysis IIIO3 credits2V + 1UM. Soner
AbstractIntroduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.
ObjectiveMathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

The first lecture is on Thursday, September 29 13-15 in HG F 7 and video transmitted into HG F 5.

The exercises Sheet are here: Link

The coordinator is Claudio Sibilia (see https://www.math.ethz.ch/the-department/people.html?u=sibiliac)

The first exercise session is on Thursday, September 22 or resp. Friday, September 23. If you would like feedback on your work, please give it to your course assistent or leave it in the box of your course assistant in HG F 27. The due Date is one week later the assignment.

Office hour (Praesenz): Thursday 16-17, NO E 39.
ContentLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform

Download the syllabus: https://polybox.ethz.ch/index.php/s/bu5KY8vWNMOnaAa
Lecture notesAlessandra Iozzi's Lecture notes: https://polybox.ethz.ch/index.php/s/RcsFm70tWCheSqH

Errata: https://polybox.ethz.ch/index.php/s/VKh86gvQRTwIE0w
LiteratureE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
151-0503-00LDynamicsO6 credits4V + 2UG. Haller, P. Tiso
AbstractKinematics, dynamics and oscillations: Motion of a single particle - Motion of systems of particles - 2D and 3D motion of rigid bodies Vibrations
ObjectiveThis course provides Bachelor students of mechanical engineering with fundamental knowledge of kinematics and dynamics of mechanical systems. By studying motion of a single particle, systems of particles and rigid bodies, we introduce essential concepts such as work and energy, equations of motion, and forces and torques. Further topics include stability of equilibria and vibrations. Examples presented in the lectures and weekly exercise lessons help students learn basic techniques that are necessary for advanced courses and work on engineering applications.
Content1. Motion of a single particle || Kinematics: trajectory, velocity, acceleration, inertial frame, moving frames - Forces and torques. Active- and reaction forces. - Linear momentum principle, angular momentum principle, work-energy principle - Equations of motion;
2. Motion of systems of particles || Internal and external forces - Linear momentum principle, angular momentum principle, work-energy principle - Rigid body systems of particles; conservative systems
3. 3D motion of rigid bodies || Kinematics: angular velocity, velocity transport formula, instantaneous center of rotation - Linear momentum principle, angular momentum principle, work-energy principle - Parallel axis theorem. Angular momentum transport formula
4. Vibrations || 1-DOF oscillations: natural frequencies, free-, damped-, and forced response - Multi-DOF oscillations: natural frequencies, normal modes, free-, damped-, and forced response - Estimating natural frequencies and mode shapes - Examples
Lecture notesHand-written slides will be downloadable after each lecture.
LiteratureTyped course notes from the previous year
Prerequisites / NoticePlease log in to moodle ( https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php ), search for "Dynamics", and join the course there. All exercises sheets, lecture materials etc. will be uploaded there.
151-0303-00LDimensioning I Information O3 credits3GP. Hora, K. Wegener
AbstractIntroduction to dimensioning (strength calculation) for static and dynamic loaded components and machine parts. Critical strength and fracture criteria. Analytical methods for the calculation of stresses and strains. Consideration of stress concentrations by notch effects. Strength proof for different machine elements.
ObjectiveThe lecture uses basic strength theory from Mechanics II to size and design typical machine elements as beam structures, axes and shafts, pressure vessels, weldings and screws. The students learn to define both geometry and material of frequently used machine elements. Strength calculations are performed both for static and fatigue operating conditions.
Content- Theoretical basics of engineering design
- Description of ductil and brittle material behavior
- Design of machine elements at static loading conditions
- Notch effects
- Axes and shafts
- Fatigue design
- Surface pressure
- Rotationally symmetric bodies, pressure vessels and cylindrical interference
- Dimensioning of permanent and separable joints
Lecture notesThe lecture bases on the books specified under "LITERATUR". The books 1) to 5) can be downloaded as pdf's.
Additional documentation and handouts are available as PDFs on our website.
Literature1) K.-H. Decker und K. Kabus, Maschinenelemente, München: Carl Hanser Verlag, 2014.
2) H. Wittel, D. Muhs, D. Jannasch und J. Vossiek, Roloff/Matek Maschinenelemente, Berlin: Springer, 2013.
3) B. Schlecht, Maschinenelemente 1: Festigkeit, Wellen, Verbindungen, Federn, Kupplungen, München: Pearson Studium, 2007.
4) M. Meier und P. Ermanni, Dimensionieren 1, Zürich, 2012.
5) H. Haberhauer, F.Bodenstein: Maschinenelemente,Berlin: Springer 2008
6) H.H.Ott: Maschinenkonstruktion, Band II und III, AMIV, 1983
7)«FKM-Richtlinie: Rechnerischer Festigkeitsnachweis für Maschinenbauteile; 4. Auflage,» VDMA, Frankfurt am Main, 2002.
151-0051-00LThermodynamics IO4 credits2V + 2UD. Poulikakos
AbstractIntroduction to the fundamentals of technical thermodynamics.
ObjectiveIntroduction to the fundamentals of technical thermodynamics.
Content1. Konzepte und Definitionen
2. Der erste Hauptsatz, der Begriff der Energie und Anwendungen für geschlossene Systeme
3. Eigenschaften reiner kompressibler Substanzen, quasistatische Zustandsänderungen
4. Elemente der kinetischen Gastheorie
5. Der erste Hauptsatz in offenen Systemen - Energieanalyse in einem Kontrollvolumen
6. Der zweite Hauptsatz - Der Begriff der Entropie
7. Nutzbarkeit der Energie - Exergie
8. Thermodynamische Beziehungen für einfache, kompressible Substanzen.
Lecture notesavailable
LiteratureM.J. Moran, H.N Shapiro, D.D. Boettner and M.B. Bailey, Principles of Engineering Thermodynamics, 8th Edition, John Wiley and Sons, 2015.

H.D. Baehr and S. Kabelac, Thermodynamik, 15. Auflage, Springer Verlag, 2012.
151-0591-00LControl Systems IO4 credits2V + 2UE. Frazzoli
AbstractAnalysis and synthesis of linear systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem.
ObjectiveIntroduction to main ideas of linear systems analysis and synthesis. Transient and steady-state behavior, system engineering (input/output, static/dynamic behavior, feedforward and feedback loops, etc.), introduction of most important tools (solution of linear ODE, Laplace transformation, Nyquisttheorem, etc.). Elementary controller synthesis methods.
ContentModeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis (stability, reachability, observability, etc.) of open-loop systems. Laplace transformation, systems analysis in the frequency domain. Transfer functions and analysis of the influence of its poles and zeros on the system's dynamic behavior. Frequency response. Analysis of closed-loop systems using the Nyquist criterion. Formulation of performance constraints. Specification of closed-loop system behavior. Synthesis of elementary closed-loop control systems (PID, lead/lag compensation, loop shaping).
Lecture notesLino Guzzella: Analysis and Synthesis of Single-Input Single-Output Control Systems, 3rd Edition, 2011, vdf Hochschulverlag AG
Prerequisites / NoticeBasic knowledge of (complex) analysis and linear algebra
Examination Block 2
NumberTitleTypeECTSHoursLecturers
402-0033-10LPhysics IO6 credits4V + 2UW. Wegscheider
AbstractThis is a two-semester course introducing students into the foundations of Modern Physics. Topics include electricity and magnetism, light, waves, quantum physics, solid state physics, and semiconductors. Selected topics with important applications in industry will also be considered.
ObjectiveThe lecture is intended to promote critical, scientific thinking. Key concepts of Physics will be acquired, with a focus on technically relevant applications. At the end of the two semesters, students will have a good overview over the topics of classical and modern Physics.
ContentElectric and magnetic fields, current, magnetism, Maxwell's equations, concept of light, classical optics, waves.
Lecture notesNotes from lectures will be available (in German).
LiteratureFriedhelm Kuypers
Physik fuer Ingenieure und Naturwissenschaftler
Band 2: Elektrizitaet, Optik, Wellen, 2012, 436 Seiten, ca. 25 Euro.

Paul A. Tipler, Gene Mosca, Michael Basler und Renate Dohmen
Physik für Wissenschaftler und Ingenieure
Spektrum Akademischer Verlag, 2009, 1636 Seiten, ca. 80 Euro.
Engineering Tools II
The participation at the Engineering Tools course is mandatory. If you miss any classes, no credit points will be awarded. For exemptions you have to contact the lecturer of the course.
NumberTitleTypeECTSHoursLecturers
151-0021-00LEngineering Tool II: Introduction to MATLAB Information Restricted registration - show details
The Engineering Tool course is for MAVT-Bachelor students only.
O0.4 credits1KB. Berisha, P. Hora
AbstractIntroduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications.
ObjectiveIntroduction to numerical calculations with MATLAB.
ContentIntroduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications.
Lecture notesWeb-based tutorial:
http://www.ivp.ethz.ch/studium/vorlesungen.html
Prerequisites / NoticeDer Kurs findet in einem Hörsaal statt und es stehen keine Rechner zur Verfügung. Es wird empfohlen, dass pro zwei Studierenden mindestens ein Laptop mit installiertem Matlab mitgebracht wird.

Installation Matlab:

- es funktionieren alle Versionen
- netzunabhängige Node-Lizenz (z.B. zum Download auf IDES)
- folgende Toolboxes/Features müssen installiert sein: Simulink (wird für RT1 benutzt), Curve Fitting Toolbox, Optimization Toolbox, Symbolic Toolbox, Global Optimization Toolbox
5. Semester
Compulsory Courses Examination Block 3
NumberTitleTypeECTSHoursLecturers
151-0261-00LThermodynamics IIIO3 credits2V + 1UR. S. Abhari, A. Steinfeld
AbstractTechnical applications of engineering thermodynamics. Extension of thermodynamical fundamentals taught in Thermodynamics I and II.
ObjectiveUnderstand and apply thermodynamic principles and processes for use in a range of cycles used commonly in practice.
ContentRadiation Heat Transfer, Heat Exchangers, Ideal Gas Mixtures & Psychrometry, Steam Processes, Gas Power Processes, Internal Combustion Engines, Gas Turbine Processes, Refrigeration & Heat Pumps
151-0103-00LFluid Dynamics IIO3 credits2V + 1UP. Jenny
AbstractTwo-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
ObjectiveExpand basic knowledge of fluid dynamics.
Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.
ContentTwo-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Lecture notesLecture notes are available (in German).
(See also info on literature below.)
LiteratureRelevant chapters (corresponding to lecture notes) from the textbook

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Prerequisites / NoticeAnalysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas
Electives
NumberTitleTypeECTSHoursLecturers
151-0917-00LMass TransferW4 credits2V + 2UR. Büchel, S. E. Pratsinis
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 2nd edition, Cambridge University Press, 1997.
Prerequisites / NoticeTwo tests are offered for practicing the course material. Participation is mandatory.
401-0603-00LStochastics (Probability and Statistics)W4 credits2V + 1UM. H. Maathuis
AbstractThis class covers the following concepts: random variables, probability, discrete and continuous distributions, joint and conditional probabilities and distributions, the law of large numbers, the central limit theorem, descriptive statistics, statistical inference, inference for normally distributed data, point estimation, and two-sample tests.
ObjectiveKnowledge of the basic principles of probability and statistics.
ContentIntroduction to probability theory, some basic principles from mathematical statistics and basic methods for applied statistics.
Lecture notesLecture notes
LiteratureLecture notes
151-0573-00LSystem Modeling Information W4 credits2V + 2UG. Ducard, C. Onder
AbstractGeneric modeling approaches for control-oriented models based on first principles, Lagrangian formalism and experimental data. Model parametrization and estimation techniques. Analysis of linear systems, model scaling, linearization, order reduction, and balancing. Basic analysis of nonlinear models.
ObjectiveIntroduction to system modeling for control. Parameter identification. Analysis of linear and nonlinear systems. Case studies.
ContentIntroduction to generic system modeling approaches for control-oriented models based on first principles and on experimental data.
Examples: mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Estimation techniques (least-squares methods).
Class case studies: Loud-speaker, Water-propelled rocket, geostationary satellites, etc.
The exercises address practical examples. One larger case study is to be solved.
Lecture notesThe handouts in English will be sold in the first lecture.
LiteratureA list of references is included in the handouts.
  •  Page  1  of  7 Next page Last page     All