Search result: Catalogue data in Autumn Semester 2016

Physics Bachelor Information
Bachelor Studies (Programme Regulations 2016)
First Year
» First Year Compulsory Courses
» GESS Science in Perspective
» Minor Courses
First Year Compulsory Courses
First Year Examination Block 1
NumberTitleTypeECTSHoursLecturers
401-1151-00LLinear Algebra IO7 credits4V + 2UM. Akveld
AbstractIntroduction to the theory of vector spaces for mathematicians and physicists: Basics, vector spaces, linear transformations, solutions of systems of equations and matrices, determinants, endomorphisms, eigenvalues and eigenvectors.
Objective- Mastering basic concepts of Linear Algebra
- Introduction to mathematical methods
Content- Basics
- Vectorspaces and linear maps
- Systems of linear equations and matrices
- Determinants
- Endomorphisms and eigenvalues
Literature- H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8
- S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Lecture notes. Link: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20150901.pdf
402-1701-00LPhysics IO7 credits4V + 2UA. Wallraff
AbstractThis course gives a first introduction to Physics. The emphasis is on classical mechanics, together with an introduction to thermodynamics.
ObjectiveAcquire knowledge of the basic principles regarding the physics of classical mechanics and thermodynamics. Skills in solving physics problems.
252-0847-00LComputer Science Information O5 credits2V + 2UB. Gärtner
AbstractThis lecture is an introduction to programming based on the language C++. We cover fundamental types, control statements, functions, arrays, and classes. The concepts will be motivated and illustrated through algorithms and applications.
ObjectiveThe goal of this lecture is an algorithmically oriented introduction to programming.
ContentThis lecture is an introduction to programming based on the language C++. We cover fundamental types, control statements, functions, arrays, and classes. The concepts will be motivated and illustrated through algorithms and applications.
Lecture notesLecture notes in English and Handouts in German will be distributed electronically along with the course.
LiteratureAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
First Year Examination Block 2
NumberTitleTypeECTSHoursLecturers
401-1261-07LAnalysis IO10 credits6V + 3UM. Einsiedler
AbstractIntroduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.
ObjectiveThe ability to work with the basics of calculus in a mathematically rigorous way.
LiteratureK. Koenigsberger: Analysis I, Springer-Verlag
http://link.springer.com/book/10.1007/978-3-642-18490-1

R. Courant: Vorlesungen ueber Differential- und Integralrechnung.
Springer Verlag
http://link.springer.com/book/10.1007/978-3-642-61988-5

V. Zorich: Analysis I. Springer Verlag 2006
http://link.springer.com/book/10.1007/3-540-33278-2

Chr. Blatter: Analysis. https://people.math.ethz.ch/%7eblatter/

Struwe: Analysis I/II, siehe
https://people.math.ethz.ch/%7estruwe/skripten.html

H. Heuser: Lehrbuch der Analysis. Teubner Verlag
W. Walter: Analysis 1. Springer Verlag
O. Forster: Analysis I. Vieweg Verlag

J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag
Link

Schichl u. Steinbauer, Einführung in das mathematische Arbeiten
http://link.springer.com/book/10.1007/978-3-642-28646-9

Beutelspacher, Das ist o.B.d.A. trivial
http://link.springer.com/book/10.1007/978-3-8348-9599-8
Bachelor Studies (Programme Regulations 2010)
First Year
Course Units of the first year can be found in section Bachelor Studies (Programme Regulations 2016) - First Year.
Compulsory Courses
Second Year Compulsory Courses
Examination Block I
NumberTitleTypeECTSHoursLecturers
401-2303-00LComplex Analysis Information O6 credits3V + 2UR. Pandharipande
AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
ObjectiveWorking Knowledge with functions of one complex variables; in particular applications of the residue theorem
LiteratureTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

R.Remmert: Theory of Complex Functions. Springer Verlag
401-2333-00LMethods of Mathematical Physics IO6 credits3V + 2UC. A. Keller
AbstractFourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics.
Objective
Prerequisites / NoticeDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-2883-00LPhysics IIIO7 credits4V + 2UJ. Home
AbstractIntroductory course on quantum and atomic physics including optics and statistical physics.
ObjectiveA basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations.
ContentEvidence for Quantum Mechanics: atoms, photons, photo-electric effect, Rutherford scattering, Compton scattering, de-Broglie waves.

Quantum mechanics: wavefunctions, operators, Schrodinger's equation, infinite and finite square well potentials, harmonic oscillator, hydrogen atoms, spin.

Atomic structure: Perturbation to basic structure, including Zeeman effect, spin-orbit coupling, many-electron atoms. X-ray spectra, optical selection rules, emission and absorption of radiation, including lasers.

Optics: Fermat's principle, lenses, imaging systems, diffraction, interference, relation between geometrical and wave descriptions, interferometers, spectrometers.

Statistical mechanics: probability distributions, micro and macrostates, Boltzmann distribution, ensembles, equipartition theorem, blackbody spectrum, including Planck distribution
Lecture notesLecture notes will be provided electronically during the course.
LiteratureQuantum mechanics/Atomic physics/Molecules: "The Physics of Atoms and Quanta", H. Hakan and H. C. Wolf, ISBN 978-3-642-05871-4

Optics: "Optics", E. Hecht, ISBN 0-321-18878-0

Statistical mechanics: "Statistical Physics", F. Mandl 0-471-91532-7
Examination Block II
NumberTitleTypeECTSHoursLecturers
402-2203-01LClassical Mechanics Information O7 credits4V + 2UG. M. Graf
AbstractA conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.
Objective
Third Year Compulsory Courses
NumberTitleTypeECTSHoursLecturers
402-0205-00LQuantum Mechanics I Information O10 credits3V + 2UT. K. Gehrmann
AbstractIntroduction to non-relativistic single-particle quantum mechanics. In particular, the basic concepts of quantum mechanics, such as the quantisation of classical systems, wave functions and the description of observables as operators on a Hilbert space, and the formulation of symmetries will be discussed. Basic phenomena will be analysed and illustrated by generic examples.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, perturbation theory) and generic examples and applications (bound states, tunneling, scattering states, in one- and three-dimensional settings). Ability to solve simple problems.
ContentKeywords: Schrödinger equation, basic formalism of quantum mechanics (states, operators, commutators, measuring process), symmetries (translations, rotations), quantum mechanics in one dimension, spherically symmetric problems in three dimensions, scattering theory, perturbation theory, variational techniques, spin, addition of angular momenta, relation between QM and classical physics.
LiteratureF. Schwabl: Quantum mechanics
J.J. Sakurai: Modern Quantum Mechanics
C. Cohen-Tannoudji: Quantum mechanics I
Core Courses
Core Courses in Experimental Physics
NumberTitleTypeECTSHoursLecturers
402-0263-00LAstrophysics I Information W10 credits3V + 2UA. Refregier
AbstractThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
ObjectiveThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0255-00LIntroduction to Solid State PhysicsW10 credits3V + 2UK. Ensslin
AbstractThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.
ObjectiveIntroduction to Solid State Physics.
ContentThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.
Lecture notesA Manuscript is distributed.
LiteratureIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Prerequisites / NoticeVoraussetzungen: Physik I, II, III wünschenswert
Core Courses in Theoretical Physics
NumberTitleTypeECTSHoursLecturers
402-0205-00LQuantum Mechanics I Information W10 credits3V + 2UT. K. Gehrmann
AbstractIntroduction to non-relativistic single-particle quantum mechanics. In particular, the basic concepts of quantum mechanics, such as the quantisation of classical systems, wave functions and the description of observables as operators on a Hilbert space, and the formulation of symmetries will be discussed. Basic phenomena will be analysed and illustrated by generic examples.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, perturbation theory) and generic examples and applications (bound states, tunneling, scattering states, in one- and three-dimensional settings). Ability to solve simple problems.
ContentKeywords: Schrödinger equation, basic formalism of quantum mechanics (states, operators, commutators, measuring process), symmetries (translations, rotations), quantum mechanics in one dimension, spherically symmetric problems in three dimensions, scattering theory, perturbation theory, variational techniques, spin, addition of angular momenta, relation between QM and classical physics.
LiteratureF. Schwabl: Quantum mechanics
J.J. Sakurai: Modern Quantum Mechanics
C. Cohen-Tannoudji: Quantum mechanics I
Practical Courses
NumberTitleTypeECTSHoursLecturers
402-0000-01LPhysics Lab I Information O4 credits1V + 4PA. Biland, M. Doebeli, M. Kroner, S. P. Quanz
AbstractIntroductory lab course in experimental physics with accompanying lecture
ObjectiveÜbergeordnetes Thema des Praktikums und der Vorlesung ist die Auseinandersetzung mit den grundlegenden Herausforderungen eines physikalischen Experimentes. Am Beispiel einfacher experimenteller Aufbauten und Aufgaben stehen vor allem folgende Gesichtspunkte im Vordergrund:

- Motivation und Herangehensweise in der Experimentalphysik
- Praktischer Aufbau von Experimenten und grundlegende Kenntnisse von Messmethoden und Instrumenten
- Einführung in relevante statistische Methoden der Datenauswertung und Fehleranalyse
- Kritische Beurteilung und Interpretation der Beobachtungen und Ergebnisse
- Darstellen und Kommunizieren der Ergebnisse mit Graphiken und Text
- Ethische Aspekte der experimentellen Forschung und wissenschaftlicher Kommunikation
ContentVersuche zu Themen aus den Bereichen der Mechanik, Optik, Wärme, Elektrizität und Kernphysik mit begleitender Vorlesung zur Vertiefung des Verständnisses der Datenanalyse und Interpretation
Lecture notesAnleitung zum Physikalischen Praktikum; Vorlesungsskript
Prerequisites / NoticeAus einer Liste von 33 Versuchen müssen 9 Versuche in Zweiergruppen durchgeführt werden.

Am ersten Termin findet nur eine dreistündige Einführungsveranstaltung im Hörsaal statt und es werden noch keine Experimente durchgeführt.
402-0241-00LAdvanced Physics Laboratory I Information Restricted registration - show details
IMPORTANT: You may not enrol repeatedly in the course of the Bachelor programme.
O9 credits18PC. Grab, T. M. Ihn
AbstractThis laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. Written manuals for the individual experiments are available.
Objective
402-0240-00LAdvanced Physics Laboratory II Information Restricted registration - show details
Prerequiste: "Advanced Physics Laboratory I" completed. Before enroling in "Advanced Physics Laboratory II", please enrol in "Advanced Physics Laboratory I".

Enrol at most once in the course of the Bachelor programme!
W9 credits18PC. Grab, T. M. Ihn
AbstractThis laboratory course provides basic experimental skill training for performing physics experiments, including: Implementation of physics experiments using an instruction manual. Planning, designing, realizing, analyzing, and interpreting experiments. Estimating measurement precision.
ObjectiveStudents should learn how to perform a bit more complex experiments, analyze the data and interpret the results.
Proseminars, Experimental and Theoretical Semester Papers
To organise a semester project take contact with one of the instructors.

Not all lecturers are directly eligible in myStudies if "Professors" is the required type of lecturers. In such cases please take contact with the Study Administration (www.phys.ethz.ch/studies/study-administration.html).
NumberTitleTypeECTSHoursLecturers
402-0210-96LProseminar Theoretical Physics: Solitons and Instantons in Condensed Matter Information Restricted registration - show details
Number of participants limited to 24.
W9 credits4SV. Geshkenbein
AbstractA guided self-study of original papers and of advanced textbooks in theoretical physics. Within the general topic, determined each semester, participants give a presentation on a particular subject and deliver a written report.
Objective
402-0217-BSLTheoretical Semester Project in a Group of the Physics Department Restricted registration - show details
Supervisors: C. Anastasiou, N. Beisert, G. Blatter, P. De Forcrand, M. Gaberdiel, A. Gehrmann-De Ridder, V. Geshkenbein, G. M. Graf, S. Huber, A. Lazopoulos, R. Renner, T. C. Schulthess, M. Sigrist, M. Troyer, O. Zilberberg
W9 credits18ASupervisors
AbstractThis course unit is an alternative if no suitable "Proseminar Theoretical Physics" is available of if the proseminar is already overbooked.
Objective
Prerequisites / NoticeDie Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein.
  •  Page  1  of  4 Next page Last page     All