Search result: Catalogue data in Autumn Semester 2016

Medicinal and Industrial Pharmaceutical Sciences Master Information
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
535-0030-00LTherapeutic ProteinsO3 credits3GC. Halin Winter, D. Neri
AbstractIn this course, various topics related to the development, GMP production and application of therapeutic proteins will be discussed. Furthermore, students will expand their training in pharmaceutical immunology and will be introduced to the basic concepts of pharmaceutical product quality management.
ObjectiveStudents know and understand:
- basic mechanisms and regulation of the immune response
- the pathogenic mechanisms of the most important immune-mediated disorders
- the most frequently used expression systems for the production of therapeutic proteins
- the use of protein engineering tools for modifying different features of therapeutic proteins
- the mechanism of action of selected therapeutic proteins and their application
- basic concepts in the GMP production of therapeutic proteins
ContentThe course consists of two parts:
In a first part, students will complete their training of pharmaceutical immunology (Chapter 13 - 16 Immunobiology VIII textbook). This part particularly focuses on the pathogenic mechanisms of immune-mediated diseases. Deepened knowledge of immunology will be relevant for understanding the mechanism of action of many therapeutic proteins, as well as for understanding one major concern related to the use of protein-based drugs, namely, immunogenicity.
The second part focuses on topics related to the development and application of therapeutic proteins, such as protein expression, protein engineering, reducing immunogenicity, and GMP production of therapeutic proteins. Furthermore, selected examples of approved therapeutic proteins will be discussed.
Lecture notesHandouts to the lectures will be available for downloading under Link
Literature- Chapters 13-16 of the Immunobiology VIII book (Janeway et al.)
- Lecture Handouts
- Paper References provided in the Scripts
- EMEA Dossier for Humira
535-0041-00LPharmacology and Toxicology III Information O2 credits2GM. Detmar, U. Quitterer
AbstractThe course is divided into two parts. The first part provides a detailed understanding of drugs and pharmacotherapy of infectious diseases and cancer. The second part gives an overview of the field of pharmacogenomics with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.
ObjectiveThe course advances basic knowledge in pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects of drug therapy in the fields of infectious diseases and cancer. The course also provides an overview of the field of pharmacogenomics, with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.
ContentTopics include the pharmacology and pharmacotherapy of infectious diseases and cancer. In the field of pharmacogenomics, the course is focused on genetics, genome-wide association studies, genetic disease predisposition, examples of genetic variability of drug metabolism and drug responses, identification of new drug targets, relevance of pharmacogenomics for clinical drug development, and toxicogenomics.
Lecture notesA script is provided for each lecture course. The scripts define important and exam-relevant contents of lectures. Scripts do not replace the lecture.
LiteratureRecommended reading:
The classic textbook in Pharmacology:
Goodman and Gliman`s The Pharmacological Basis of Therapeutics
Laurence Brunton, Bruce Chabner, Bjorn Knollman.
12th edition - 1808 pages
McGraw-Hill Professional; ISBN: 978-0071624428

or

Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.
Allgemeine und spezielle Pharmakologie und Toxikologie.
11th edition - 1216 pages
2013; Urban & Fischer (Elsevier, München)
ISBN-10: 3437425234; ISBN-13: 978-3437425233
535-0050-00LPharmacoepidemiology and Drug Safety Information O3 credits2GS. Russmann
AbstractIntroduction to the principles, methods and applications of pharmacoepidemiology and drug safety. Drug safety in the pharmaceutical industry and regulatory authorities, but also for hospital and office pharmacists. Another focus is the evaluation and interpretation of pharmacoepidemiological drug safety studies in the medical literature and the evaluation of benefits vs. risks.
ObjectiveObjectives:
- To familiarize participants with the principle methods and applications of pharmacoepidemiology and drug safety that is relevant for industry, regulatory affairs, but also for clinical pharmacists in hospitals and office pharmacies.
- Perform independently a causality assessment of suspected adverse drug reactions in patients
- Study designs and biostatistics used for the quantitative evaluation of drug safety
- Setup of programs that can effectively reduce medication errors and improve drug safety in clinical practice, particularly in hospitals
Content- Historical landmarks of drug safety
- Pharmacovigilance and causality assessment
- Drug safety in premarketing clinical trials
- Descriptive, cohort and case-control drug safety study designs; Data analysis and control of confounding
- Pharmacoepidemiology and regulatory decision making in drug safety; Risk management plans (RMPs)
- Medication errors, clinical pharmacology / clinical pharmacy
- Clinical Decision Support Systems, Interventional Pharmacoepidemiology
- Pharmacoepidemiological databases, 'Big Data'
- Interactive discussion of many real-life examples for each topic
Lecture notesThis course will be a combination of formal lectures, group discussions and self-directed studies. Course material will be taught through seminars, case studies in small groups.
Reading material and scripts will be provided for each week.
LiteratureRecommended literature
- Rothman: Introduction to Epidemiology
- Strom, Kimmel, Hennessy: Textbook of Pharmacoepidemiology
535-0010-00LDrug Seminars I Restricted registration - show details
6 credit points are awarded after successful presentation in the Seminar Week. - Strictly for students enrolled in the Master programmes Pharmaceutical Sciences or MIPS
O0 credits11SD. Neri
AbstractDrug therapy is nothing less than interference with a highly complex biological system, which is affected by various internal and external factors. A profound understanding of drug effects thus requires a transdisciplinary approach of investigation. The drug seminars provide a platform for the presentation and discussion of these transdisciplinary approaches for the investigation of drug action.
ObjectiveDrug therapy is nothing less than interference with a highly complex biological system, which is affected by various internal and external factors. A profound understanding of drug effects thus requires a transdisciplinary approach of investigation. The drug seminars provide a platform for the presentation and discussion of these transdisciplinary approaches for the investigation of drug action.
ContentThe faculty members of the Institute of Pharmaceutical Sciences offer specific projects from different areas of the pharmaceutical sciences, each of which is elaborated by a small groups of students (4-8). Each group is tutored by a faculty member. The objective of this work is to achieve an in-depth understanding of the problem investigated and to present the results of the work to an audience composed of all students participating in the drug seminar and the faculty of the Institute of Pharmaceutical Sciences. Presentations will take place in the framework of a dedicated mini-symposium, which is part of the external seminar week. The possibility exists to invite external experts from industry or the public health sector to participate in the mini-symposium. Students are strongly encouraged to make use of this option and will again be supported in these efforts by the faculty members.
535-0423-00LDrug Delivery and Drug TargetingO2 credits2VJ.‑C. Leroux, D. Brambilla
AbstractThe students gain an overview on current principles, methodologies and systems for controlled delivery and targeting of drugs. This enables the students to understand and evaluate the field in terms of scientific criteria.
ObjectiveThe students dispose of an overview on current principles and systems for the controlled delivery and targeting of drugs. The focus of the course lies on developing a capacity to understand the involved technologies and methods, as well as an appreciation of the chances and constraints of their therapeutic usage, with prime attention on anticancer drugs, therapeutic peptides, proteins, nucleic acids and vaccines.
ContentThe course covers the following topics: drug targeting and delivery principles, radiopharmaceuticals, macromolecular drug carriers, liposomes, micelles, micro/nanoparticles, gels and implants, administration of vaccines, delivery of active agents in tissue engineeering, targeting at the gastrointestinal level, synthetic carriers for nucleic acid drugs, ophthalmic devices and novel trends in transdermal and nasal drug delivery.
Lecture notesSelected lecture notes, documents and supporting material will be directly provided or may be downloaded using

Link

The website also displays additional information on peroral delivery systems, transdermal systems and systems for alternative routes (nasal, pulmonary) of delivery. These fields are covered in detail in the course Galenische Pharmazie II (Galenical Pharmacy II).
LiteratureY. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012.

Further references will be provided in the course.
535-0137-00LClinical Chemistry IIO1 credit1VM. Hersberger
AbstractDetailed knowledge on particular aspects of clinical chemistry and medical laboratory diagnostics concerning quality control, point-of-care analytics, analytics of kidney stones, tumor markers, diagnosis of HIV and hepatitis, pharmacogenetics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.
ObjectiveDetailed knowledge on the implementation and interpretation of clinical laboratory diagnostic tests. Competence to interprete selected tests.
ContentInternal and external quality control, point-of-care analytics, analytics of kidney stones, use of tumor marker determinations, diagnosis of HIV and hepatitis, pharmacogenetics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.
Lecture notesDocumentation will be available before the lectures electronically.
Literature- Jürgen Hallbach, Klinische Chemie und Hämatologie für den Einstieg, Thieme Verlag
- Harald Renz, Praktische Labordiagnostik, de Gruyter Verlag
- Walter Guder, Das Laborbuch für Klinik und Praxis, Elsevier Verlag
- Lothar Thomas, Labor und Diagnose, TH Books
- William Marshall, Clinical Chemistry, Mosby Ltd.
- Alan H.B. Wu, Tietz, Clinical Guide to Laboratory Tests, Saunders
Prerequisites / NoticeRequirement: basic knowledge in clinical chemistry and laboratory diagnostics
535-0250-00LBiotransformation of Drugs and XenobioticsO1 credit1VS.‑D. Krämer
AbstractKnowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intraindividual factors influencing metabolism.
ObjectiveGoals: knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intraindividual factors influencing metabolism.
ContentMajor reactions of biotransformation. Major enzymes and reaction partners involved in the biotransformation of drugs and xenobiotics. Toxic reactions of metabolites. Factors which affect the biotransformation.
Lecture notesBiotransformation of drugs and xenobiotics
LiteratureB. Testa and S.D. Krämer. The Biochemistry of Drug Metabolism: Volumes 1 and 2, VHCA, Zürich, 2008 and 2010.

B. Testa and S.D. Krämer. The Biochemistry of Drug Metabolism: Parts 1 to 7. Published in Chemistry & Biodiversity, 2006-2009.
535-0546-00LPatentsO1 credit1VA. Koepf, P. Pliska
AbstractKnowledge in the field of intellectual property, especially of patents and trademarks, with particular emphasis on pharmaceutics.
Introduction into intellectual property; prosecution of patent applications; patent information; exploitation and enforcement of patents; peculiarities in pharmaceutics and medicine; social, political and ethical aspects; Trademarks.
ObjectiveBasic knowledge in the field of industrial property, especially of patents and trademarks, with particular emphasis on the chemical, pharmaceutical and biotech field.
Content1. Introduction into industrial property (patents, trademarks, industrial designs);
2. Prosecution of patent applications (patentability);
3. Patent information (patent publications, databases, searches);
4. Exploitation and enforcement of patents (possibilities of exploitation, licenses, parallel imports, scope of protection, patent infringement);
5. Peculiarities in pharmaceutics and medicine (supplementary protection certificates, experimental use exemption, therapy and diagnosis, medical indication);
6. Social, political and ethical aspects (patents and prices for medicinal products, traditional knowledge and ethnomedicine, bioprospecting and biopiracy, human DNA inventions);
7. Trademarks, types of trademarks, grounds for refusal, peculiarities of pharma-trademarks.
Lecture notesA script is available in electronic form during the lecture.
Literature- Swiss Patents Act: Link
- Swiss Trademarks Act: Link
- Swiss Industrial-Designs Act: Link
- European Patent Convention: Link
- Patent Cooperation Treaty: Link
- Swiss Federal Institute of Intellectual Property: Link
- European Patent Office: Link
- World Intellectual Property Organization: Link
  •  Page  1  of  1