Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Autumn Semester 2016

Computer Science Bachelor Information
Bachelor Studies (Programme Regulations 2008)
Compulsory major courses may also qualify as electives. Students may also choose courses from the Master's program in Computer Science. It is their responsibility to make sure that they meet the requirements and conditions for these courses.
252-3110-00LHuman Computer Interaction Information W4 credits2V + 1UO. Hilliges, M. Norrie
AbstractThe course provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.
ObjectiveThe goal of the course is that students should understand the principles of user-centred design and be able to apply these in practice.
ContentThe course will introduce students to various methods of analysing the user experience, showing how these can be used at different stages of system development from requirements analysis through to usability testing. Students will get experience of designing and carrying out user studies as well as analysing results. The course will also cover the basic principles of interaction design. Practical exercises related to touch and gesture-based interaction will be used to reinforce the concepts introduced in the lecture. To get students to further think beyond traditional system design, we will discuss issues related to ambient information and awareness.
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 credits4GM. Troyer, P. Chatzidoukas
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
ObjectiveIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
ContentProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Lecture notes
Class notes, handouts
227-0627-00LApplied Computer ArchitectureW6 credits4GA. Gunzinger
AbstractThis lecture gives an overview of the requirements and the architecture of parallel computer systems, performance, reliability and costs.
ObjectiveUnderstand the function, the design and the performance modeling of parallel computer systems.
ContentThe lecture "Applied Computer Architecture" gives technical and corporate insights in the innovative Computer Systems/Architectures (CPU, GPU, FPGA, special processors) and their real implementations and applications. Often the designs have to deal with technical limits.
Which computer architecture allows the control of the over 1000 magnets at the Swiss Light Source (SLS)?
Which architecture is behind the alarm center of the Swiss Railway (SBB)?
Which computer architectures are applied for driver assistance systems?
Which computer architecture is hidden behind a professional digital audio mixing desk?
How can data streams of about 30 TB/s, produced by a protone accelerator, be processed in real time?
Can the weather forecast also be processed with GPUs?
How can a good computer architecture be found?
Which are the driving factors in succesful computer architecture design?
Lecture notesScript and exercices sheets.
Prerequisites / NoticePrerequisites:
Basics of computer architecture.
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 credits3GC. Frei
AbstractThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
ObjectiveAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
ContentLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade.
Lecture notesScripts of all lectures will be available.
Literature"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
227-1037-00LIntroduction to Neuroinformatics Information W6 credits2V + 1UK. A. Martin, M. Cook, V. Mante, M. Pfeiffer
AbstractThe course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.
ObjectiveUnderstanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.
ContentThis course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.
Does not take place this semester.
W4 credits3PA. Steger
AbstractSolve programming problems from previous ACM Programming Contests (see; learn and use efficient programming methods and algorithms.
ObjectiveThe objective of this course is to learn how to solve algorithmic problems given as descriptions in natural language, similar to those posed in ACM Programming Contests. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and their efficient implementation using C/C++ and the STL.
  •  Page  1  of  1