Search result: Catalogue data in Autumn Semester 2016

Biology Master Information
Elective Major Subject Areas
Elective Major: Microbiology and Immunology
Elective Compulsory Master Courses
NumberTitleTypeECTSHoursLecturers
551-0223-00LImmunology III Information W4 credits2VM. Kopf, M. Bachmann, J. Kisielow, A. Lanzavecchia, S. R. Leibundgut, A. Oxenius, R. Spörri
AbstractThis course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies
Key experimental results will be shown to help understanding how immunological text book knowledge has evolved.
ObjectiveObtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses,
- Recognition of pathogenic microorganisms by the host cells and molecular events thereafter,
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines
Contento Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
o NK T cells and responses to lipid antigens
o Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
o Overview of cytokines and their effector function
o Co-stimulation (signals 1-3)
o Dendritic cells
o Evolution of the "Danger" concept
o Cells expressing Pattern Recognition Receptors and their downstream signals
o T cell function and dysfunction in acute and chronic viral infections
LiteratureDocuments of the lectures are available for download at:
Link
Prerequisites / NoticeImmunology I and II recommended but not compulsory
551-0512-00LCurrent Topics in Molecular and Cellular Neurobiology Information Restricted registration - show details
Number of participants limited to 8.
W2 credits1SU. Suter
AbstractThe course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.
ObjectiveThe course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.
ContentYou will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance.
You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).
Lecture notesPresentations will be made available after the seminars.
Prerequisites / NoticeYou must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).
551-1103-00LMicrobial Biochemistry Information W4 credits2VJ. Vorholt-Zambelli, J. Piel
AbstractThe lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms. Emphasis is on processes that are specific to bacteria and archaea and that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest.
ObjectiveThe lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms.
ContentImportant biochemical processes specific to bacteria and archaea will be presented that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest. Emphasis is on concepts of energy generation and assimilation.

List of topics:
Eating sugars and letting them in
Challenging: Aromatics, xenobiotics, and oil
Complex: (Ligno-)Cellulose and in demand for bioenergy
Living on a diet and the anaplerotic provocation
Of climate relevance: The microbial C1 cycle
What are AMO and Anammox?
20 amino acids: the making of
Extending the genetic code
The 21st and 22nd amino acid
Some exotic biochemistry: nucleotides, cofactors
Ancient biochemistry? Iron-sulfur clusters, polymers
Secondary metabolites: playground of evolution
Lecture notesA script will be provided during the course.
551-1105-00LGlycobiologyW4 credits2VM. Aebi, T. Hennet
AbstractStructural principles, nomenclature and different classes of glycosylation. The different pathways of N- and O-linked protein glycosylation and glycolipid biosynthesis in prokaryotes and eukaryotes are discussed. Specific glycan binding proteins and their role in deciphering the glycan code are presented. The role of glycans in infectious diseases, antigen mimicry and autoimmunity are discussed.
ObjectiveDetailed knowledge in 1) the different areas of prokaryotic and eukaryotic glycobiology, in particular in the biosynthesis of glycoproteins and glycolipids, 2) the cellular machinery required for these pathways, 3) the principles of carbohydrate/protein interaction, 4) the function of lectins, 5) the role of glycans in infectious disease.
ContentStructure and linkages; analytical approaches; N-linked protein glycosylation (ER, Golgi); glycan-assisted protein folding and quality control; O-linked protein glycosylation; glucosaminoglycans; glycolipids; prokaryotic glycosylation pathways; lectins; glycans and infectious disease
Lecture noteshandouts
LiteratureIntroduction to Glycobiology; M.E.Taylor, K.Drickamer, Oxford University Press, 2003
Essentials of Glycobiology (second edition); A.Varki et al. Cold Spring Harbor Laboratory Press, 2009
Prerequisites / NoticeThe course will be in English. It will include the preparation of short essays (marked) about defined topics in Glycobiology.
551-1117-00LCutting Edge Topics: Immunology and Infection Biology Information W2 credits1SA. Oxenius, B. Becher, C. Halin Winter, M. Kopf, S. R. Leibundgut, C. Münz, A. Trkola, M. van den Broek
AbstractWeekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.
ObjectiveWeekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.
The aim of this course is to confront students with current research topics and with scientific presentation. The course offers the opportunity to gain in depth knowledge about diverse topics which are often only briefly touched in the concept courses and to engage in discussion with experts in the field.
ContentImmunology and infection biology.
The specific topics are variable and depend each semester on the list of invited experts.
551-1153-00LSystems Biology of Metabolism
Number of participants limited to 15.
W4 credits2VU. Sauer, N. Zamboni, M. Zampieri
AbstractStarting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.
ObjectiveDevelop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.
ContentThe course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.
Lecture notesScript and original publications will be supplied during the course.
Prerequisites / NoticeThe course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.
551-1171-00LImmunology: from Milestones to Current TopicsW4 credits2SB. Ludewig, J. Kisielow, M. Kopf, A. Oxenius, University lecturers
AbstractMilestones in Immunology: on old concepts and modern experiments
ObjectiveThe course will cover six grand topics in immunology (B cells, innate immunity, antigen presentation, tumor immunity, thymus and T cells, cytotoxic T cells and NK cells) and for each grand topic four hours will be allocated. During the first double hour, historical milestone papers will be presented by the supervisor providing an overview on the development of the conceptional framework and critical technological advances. The students will also prepare themselves for this double lecture by reading the historical milestone papers and contributing to the discussion. In the following lecture up to four students will present each a recent high impact research paper which emerged from the landmark achievements of the previously discussed milestone concepts.
ContentMilestones and current topics of innate immunity, antigen presentatino, B cells, thymus and T cells, cytotoxic T cells and NK cells, and tumor immunology.
Lecture notesOriginal and review articles will be distributed by the lecturer.
LiteratureLiteraturunterlagen werden vor Beginn des Kurses auf folgender website zugänglich sein: Moodle Course Link
551-1303-00LCellular Biochemistry of Health and Disease Information Restricted registration - show details
Number of participants limited to 15.
W4 credits2SP. Picotti, Y. Barral, J. Fernandes de Matos, V. Korkhov, B. Kornmann, R. Kroschewski, M. Peter, A. E. Smith, K. Weis
AbstractDuring this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.
ObjectiveStudents will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.
ContentGuided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.
LiteratureThe literature will be provided during the course
Prerequisites / NoticeThe course will be taught in English.
636-0001-00LSeparations in Biotechnology and Bioprocess EconomyW6 credits3GS. Panke
AbstractSeparations play an integral part of any biotechnological process. This course aims at enabling students specifically with a chemistry/biology background to select & roughly design suitable separation processes for typical biotechnological products such as monoclonal antibodies, antibiotics, and fine chemicals and at providing a basic set of purification operations & judge on process economy.
ObjectiveStudents should be able to select for a given biotechnological product a suitable set of purification operations and judge on process economy.
ContentIntroduction – membrane operations – adsorption and chromatography – crystallization – overall process economics –
Lecture notesHandouts during course
752-4009-00LMolecular Biology of Foodborne PathogensW3 credits2VM. Loessner, M. Schuppler
AbstractThe course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.
ObjectiveDetailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.
ContentMolecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment ? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnsotics and antimicrobial intervention.
Lecture notesElectronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.
LiteratureRecommendations will be given in the first lecture
Prerequisites / NoticeLectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), with no break !
752-5103-00LFunctional Microorganisms in FoodsW3 credits2GC. Lacroix, T. de Wouters, L. Meile, C. Schwab
AbstractThis integration course will discuss new applications of microorganisms with functional properties in food and functional food products. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality, safety and potential health benefits for consumers.
ObjectiveTo understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods utilization with high quality, safety and potential health benefits for the consumers. This course will integrate basic knowledge in food microbiology, microbial physiology, biochemistry, and technology.
ContentThis course will address selected and current topics on new applications of microorganisms with functional properties in food and functional food products and characterization of functionality and safety of food bacteria. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to the selected topics as follows:

- Probiotics and Prebiotics: Probiotics, functional foods and health, towards understanding molecular modes of probiotic action; Challenges for the production and addition of probiotics to foods; Prebiotics and other microbial substrates for gut functionality.

- Bioprotective Cultures and Antimicrobial Metabolites: Antifungal cultures and applications in foods; Antimicrobial peptide-producing cultures (bacteriocins) for enhancing food quality and safety; Development of new protective cultures, the long path from research to industry.

- Legal and Protection Issues Related Functional Foods

- Industrial Biotechnology of Flavor and Taste Development

- Safety of Food Starter Cultures and Probiotics

Students will be required to complete a group project on food products and ingredients with of from functional bacteria. The project will involve information research and analysis followed by an oral presentation and short writen report.
Lecture notesCopy of the power point slides from lectures will be provided.
LiteratureA list of references will be given at the beginning of the course for the different topics presented during this course.
751-4504-00LPlant Pathology IW2 credits2GB. McDonald
AbstractPlant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.
ObjectiveStudents will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.
ContentCourse description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 No Lecture: First day of autumn semester

Week 2 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles. Nematode attack strategies and types of damage.

Week 3 Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV, plum pox virus. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission. Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots.

Week 4 Fungal pathogens, classification, growth and reproduction, sexual and asexual spores, transmission. Fungal life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs.

Week 5 Symptoms and signs of fungal infection. Example fungal diseases: potato late blight, wheat stem rust, grape powdery mildew, wheat Septoria leaf blotch.

Week 6 Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, papillae, active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance.

Week 7 Pisatin and pisatin demethylase. Local and systemic acquired resistance, signal molecules.

Week 8 Pathogen effects on food quality and safety.

Week 9 Epidemiology: historical epidemics, disease pyramid, environmental effects on epidemic development. Plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 10 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity.

Week 11 Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies. ELISA, PCR, rDNA and rep-PCR.

Week 12 Strategies for minimizing disease risks: principles of disease control and management.

Week 13 Disease control strategies: economic thresholds, physical control methods.

Week 14 Cultural control methods: avoidance, tillage practices, crop sanitation, fertilizers, crop rotation.
Lecture notesDetailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.
551-1145-00LViral and non-Viral Vectors for Human Gene-Therapy - from Pathogens to Safe Medical Applications
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BIO708

Mind the enrolment deadlines at UZH:
Link
W2 credits3VUniversity lecturers
AbstractBasic aspects of virology, the viral mechanisms for transfer of genetic material into cells, different vector-systems and target cells, animal models, specific applications for inborn diseases of the immune system and of metabolism, adverse effects, and new developments of vector systems will be taught.
ObjectiveKnowledge of important viral and non-viral vector systems.
Knowledge of application in human diseases.
Knowledge of limiting factors.
636-0017-00LComputational Biology Information W4 credits3GT. Stadler, C. Magnus
AbstractThe aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.
ObjectiveAttendees will learn which information is contained in genetic sequencing data and how to extract information from them using computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species
ContentThe course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods to directly analyze this alignment (such as BLAST algorithm, GWAS approaches). Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. We finally introduce the field of phylodynamics. The aim of that field is to understand and quantify the population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.
Lecture notesSlides of the lecture will be available online.
Link
LiteratureThe course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Felsenstein, J. 2004. Inferring Phylogenies.
* Semple, C. & Steel, M. 2003. Phylogenetics.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST
Prerequisites / NoticeBasic knowledge in linear algebra, analysis, and statistics will be helpful. Some programming experience will be useful for the exercises, but is not required. Programming skills will not be tested in the examination.
751-4805-00LRecent Advances in Biocommunication
Number of participants limited to 25
W2 credits2SC. De Moraes
AbstractStudents will gain insight into the role of sensory cues and signals in mediating interactions within and between species. There will be a primary, but not exclusive, focus on chemical signaling in interactions among plants, insects and microbes. The course will focus on the discussion of current literature addressing key conceptual questions and state-of-the-art research techniques and methods.
ObjectiveStudents will gain insight into the role of sensory cues and signals in mediating interactions within and between species. There will be a primary, but not exclusive, focus on chemical signaling in interactions among plants, insects and microbes. The course will focus on the discussion of current literature addressing key conceptual questions and state-of-the-art research techniques and methods. Students will engage in discussion and critical analyses of relevant papers and present their evaluations in a seminar setting.
  •  Page  1  of  1