Search result: Catalogue data in Autumn Semester 2016

Electrical Engineering and Information Technology Master Information
Major Courses
A total of 42 CP must be achieved during the Master Program. The individual study plan is subject to the tutor's approval.
Electronics and Photonics
Core Subjects
These core subjects are particularly recommended for the field of "Electronics and Photonics".
NumberTitleTypeECTSHoursLecturers
227-0147-00LVLSI II: Design of Very Large Scale Integration CircuitsW7 credits5GH. Kaeslin, F. K. Gürkaynak, M. Korb
AbstractThis second course in our VLSI series is concerned with how to turn digital circuit netlists into safe, testable and manufacturable mask layout, taking into account various parasitic effects. Low-power circuit design is another important topic. Economic aspects and management issues of VLSI projects round off the course.
ObjectiveKnow how to design digital VLSI circuits that are safe, testable, durable, and make economic sense.
ContentThe second course begins with a thorough discussion of various technical aspects at the circuit and layout level before moving on to economic issues of VLSI. Topics include:
- The difficulties of finding fabrication defects in large VLSI chips.
- How to make integrated circuit testable (design for test).
- Synchronous clocking disciplines compared, clock skew, clock distribution, input/output timing.
- Synchronization and metastability.
- CMOS transistor-level circuits of gates, flip-flops and random access memories.
- Sinks of energy in CMOS circuits.
- Power estimation and low-power design.
- Current research in low-energy computing.
- Layout parasitics, interconnect delay, static timing analysis.
- Switching currents, ground bounce, IR-drop, power distribution.
- Floorplanning, chip assembly, packaging.
- Layout design at the mask level, physical design verification.
- Electromigration, electrostatic discharge, and latch-up.
- Models of industrial cooperation in microelectronics.
- The caveats of virtual components.
- The cost structures of ASIC development and manufacturing.
- Market requirements, decision criteria, and case studies.
- Yield models.
- Avenues to low-volume fabrication.
- Marketing considerations and case studies.
- Management of VLSI projects.

Exercises are concerned with back-end design (floorplanning, placement, routing, clock and power distribution, layout verification). Industrial CAD tools are being used.
Lecture notesH. Kaeslin: "Top-Down Digital VLSI Design, from Gate-Level Circuits to CMOS Fabrication", Lecture Notes Vol.2 , 2015.

All written documents in English.
LiteratureH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Prerequisites / NoticeHighlight:
Students are offered the opportunity to design a circuit of their own which then gets actually fabricated as a microchip! Students who elect to participate in this program register for a term project at the Integrated Systems Laboratory in parallel to attending the VLSI II course.

Prerequisites:
"VLSI I: from Architectures to Very Large Scale Integration Circuits and FPGAs" or equivalent knowledge.

Further details:
Link
227-0197-00LWearable Systems IW6 credits4GG. Tröster, U. Blanke
AbstractContext recognition in mobile communication systems like mobile phone, smart watches and wearable computer will be studied using advanced methods from sensor data fusion, pattern recognition, statistics, data mining and machine learning.
Context comprises the behavior of individuals and of groups, their activites as well as the local and social environment.
ObjectiveUsing internal sensors and sensors in our environment including data from the wristwatch, bracelet or internet (crowd sourcing), our 'smart phone' detects our context continuously, e.g. where we are, what we are doing, with whom we are together, what is our constitution, what are our needs. Based on this information our 'smart phone' offers us the appropriate services like a personal assistant.Context comprises user's behavior, his activities, his local and social environment.

In the data path from the sensor level to signal segmentation to the classification of the context, advanced methods of signal processing, pattern recognition and machine learning will be applied. Sensor data generated by crowdsouring methods are integrated. The validation using MATLAB is followed by implementation and testing on a smart phone.
Context recognition as the crucial function of mobile systems is the main focus of the course. Using MatLab the participants implement and verify the discussed methods also using a smart phone.
ContentUsing internal sensors and sensors in our environment including data from the wristwatch, bracelet or internet (crowd sourcing), our 'smart phone' detects our context continuously, e.g. where we are, what we are doing, with whom we are together, what is our constitution, what are our needs. Based on this information our 'smart phone' offers us the appropriate services like a personal assistant. Context recognition - what is the situation of the user, his activity, his environment, how is he doing, what are his needs - as the central functionality of mobile systems constitutes the focus of the course.

The main topics of the course include
Sensor nets, sensor signal processing, data fusion, time series (segmentation, similariy measures), supervised learning (Bayes Decision Theory, Decision Trees, Random Forest, kNN-Methods, Support Vector Machine, Adaboost, Deep Learning), clustering (k-means, dbscan, topic models), Recommender Systems, Collaborative Filtering, Crowdsourcing.

The exercises show concrete design problems like motion and gesture recognition using distributed sensors, detection of activity patterns and identification of the local environment.

Presentations of the PhD students and the visit at the Wearable Computing Lab introduce in current research topics and international research projects.

Language: german/english (depending on the participants)
Lecture notesLecture notes for all lessons, assignments and solutions.
Link
LiteratureLiterature will be announced during the lessons.
Prerequisites / NoticeNo special prerequisites
227-0301-00LOptical Communication FundamentalsW6 credits2V + 1U + 1PJ. Leuthold
AbstractThe path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.
ObjectiveAn in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.
Content* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.

* Chapter 2: The Transmitter: Components of a transmitter, Lasers, The spectrum of a signal, Optical modulators, Modulation formats.

* Chapter 3: The Optical Fiber Channel: Geometrical optics, The wave equations in a fiber, Fiber modes, Fiber propagation, Fiber losses, Nonlinear effects in a fiber.

* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.

* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection teqchniques, Error correction coding.

* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.

* Chapter 7: Optical Amplifiers : Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.
Lecture notesLecture notes are handed out.
LiteratureGovind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010
Prerequisites / NoticeFundamentals of Electromagnetic Fields & Bachelor Lectures on Physics.
227-0663-00LNano-Optics Information W6 credits2V + 2UL. Novotny
AbstractNano-Optics is the study of optical phenomena and techniques on the nanometer scale. It is an emerging field of study motivated by the rapid advance of nanoscience and technology. It embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high-resolution imaging and spectroscopy.
ObjectiveUnderstanding concepts of light localization and light-matter interactions on the nanoscale.
ContentStarting with an angular spectrum representation of optical fields the role of inhomogeneous evanescent fields is discussed. Among the topics are: theory of strongly focused light, point spread functions, resolution criteria, confocal microscopy, and near-field optical microscopy. Further topics are: optical interactions between nanoparticles, atomic decay rates in inhomogeneous environments, single molecule spectroscopy, light forces and optical trapping, photonic bandgap materials, and theoretical methods in nano-optics.
Prerequisites / Notice- Electrodynamics (or equivalent)
- Physics I+II
227-1033-00LNeuromorphic Engineering I Information Restricted registration - show details
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
W6 credits2V + 3UT. Delbrück, G. Indiveri, S.‑C. Liu
AbstractThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
ObjectiveUnderstanding of the characteristics of neuromorphic circuit elements.
ContentNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteratureS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Prerequisites / NoticeParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
  •  Page  1  of  1